JPH05107025A - Coaxial-degree measuring apparatus - Google Patents

Coaxial-degree measuring apparatus

Info

Publication number
JPH05107025A
JPH05107025A JP26575391A JP26575391A JPH05107025A JP H05107025 A JPH05107025 A JP H05107025A JP 26575391 A JP26575391 A JP 26575391A JP 26575391 A JP26575391 A JP 26575391A JP H05107025 A JPH05107025 A JP H05107025A
Authority
JP
Japan
Prior art keywords
work
outer diameter
measuring device
microscope
laser outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26575391A
Other languages
Japanese (ja)
Inventor
Katsuhisa Okawa
勝久 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26575391A priority Critical patent/JPH05107025A/en
Publication of JPH05107025A publication Critical patent/JPH05107025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To make it possible to measure the degree of the outer diameter of a work and an object point in high accuracy by obtaining the central position of the outer diameter of a cylindrical work with laser outer-diameter measuring devices, expanding the object point with a high-magnification objective lens, and obtaining the central position of the object point. CONSTITUTION:A work 12 is set at a position, where the axis of the work 12 becomes parallel with the optical axis of a microscope 1 and the edge is located on the focal point surface of a high-magnification objective lens 4. The edge of the work 12 is expanded with the microscope 1, at which the lens 4 is set, and the object point where the coaxial degree is to be obtained, is captured with a camera 2. The central position of the object point is computed with an image processing device 3. The diameter of the work 12 is detected with first and second laser-outer-diameter-measuring device light-projecting units 6 and 8 and light receiving units 7 and 9, which are orthogonal to the optical axis of the microscope. The central position of the outer diameter of the work 12 is computed with a laser-outer-diameter measuring device controller 16. The coaxial degree is computed with an operating device 18 based on the central position of the measured object point and the central position of the outer diameter of the work 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円筒形のワークの端面
上に設けられる対象点のワークに対する同軸度を測定す
る同軸度測定装置に関し、特に光通信用レーザダイオー
ドモジュールの集光スポットの同軸度測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coaxiality measuring device for measuring the coaxiality of a target point provided on the end face of a cylindrical work with respect to the work, and more particularly, to the coaxial of a focused spot of a laser diode module for optical communication. Degree measuring device.

【0002】[0002]

【従来の技術】従来の同軸度測定装置は、図2に示すよ
うに顕微鏡1と、顕微鏡1の像面上におかれ顕微鏡1に
固定されるカメラ2と、カメラ2に接続され顕微鏡1に
より拡大される円筒形状ワーク12の外径の中心位置と
対象点の中心位置を算出する画像処理装置17と、顕微
鏡1にとりつけられる低倍率対物レンズ13と、顕微鏡
1を支持する顕微鏡台5と、円筒形状ワーク12を保持
し顕微鏡1の光軸と円筒形状ワーク12の軸が平行かつ
同軸にそして端面が低倍率対物レンズ13の焦点面上に
くる位置にセットするワーク供給ユニット11とを有し
ている。
2. Description of the Related Art A conventional coaxiality measuring apparatus includes a microscope 1, a camera 2 placed on the image plane of the microscope 1 and fixed to the microscope 1, and a microscope 1 connected to the camera 1 as shown in FIG. An image processing device 17 for calculating the center position of the outer diameter of the enlarged cylindrical work 12 and the center position of the target point, a low-magnification objective lens 13 attached to the microscope 1, and a microscope table 5 for supporting the microscope 1. It has a work supply unit 11 which holds the cylindrical work 12 and sets the optical axis of the microscope 1 and the axis of the cylindrical work 12 in parallel and coaxially and sets the end face on the focal plane of the low magnification objective lens 13. ing.

【0003】低倍率対物レンズ13はワーク12の端面
の像すべてがカメラ2の視野内に入るような低い倍率の
対物レンズである。顕微鏡1と低倍率対物レンズ13で
ワーク12の端面を拡大しその像をカメラ2がとらえ、
光電変換する。カメラ2がとらえた像のデータは、画像
処理装置17に送られワーク12の端面の外径より端面
外径の中心を算出し、一方同軸度の対象となる部分の中
心位置を算出し外径と対象点の同軸度を算出する。
The low-magnification objective lens 13 is a low-magnification objective lens so that the entire image of the end surface of the work 12 is within the field of view of the camera 2. The end surface of the work 12 is enlarged by the microscope 1 and the low-magnification objective lens 13, and the image is captured by the camera 2,
Photoelectric conversion. The image data captured by the camera 2 is sent to the image processing device 17 to calculate the center of the outer diameter of the end face from the outer diameter of the end face of the work 12, while calculating the center position of the target portion of the coaxiality. And calculate the coaxiality of the target point.

【0004】ここで対象点とは例えば光通信用LDモジ
ュールの光ファイバとの結合点、すなわちレーザダイオ
ード光の集光スポットの空中像である。図2に示す同軸
度測定装置は、この結合点位置と光通信用LDモジュー
ル外径との同軸を測定する用途に用いられる。
Here, the target point is, for example, a coupling point with an optical fiber of an LD module for optical communication, that is, an aerial image of a focused spot of laser diode light. The coaxiality measuring device shown in FIG. 2 is used for the purpose of measuring the coaxiality between this coupling point position and the outer diameter of the LD module for optical communication.

【0005】図3は光通信用LDモジュールであるワー
ク12の端面を示す平面図である。ワーク外径14の中
心に対象点15であるLD光の集光スポットが配置され
ている。
FIG. 3 is a plan view showing an end face of a work 12 which is an LD module for optical communication. At the center of the work outer diameter 14, a focused spot of LD light, which is a target point 15, is arranged.

【0006】[0006]

【発明が解決しようとする課題】この従来の同軸度測定
装置では、同軸度の基準となるワーク12の外径と対象
点を同一の画像でとらえて処理する必要性から、対象点
より大きいワーク12の外径にあわせて顕微鏡1の倍率
を決めるため、低倍率の対物レンズ13を使用すること
となりカメラ2の解像度の制限から1ミクロン以下、
0.1ミクロン台の高精度な同軸度検出精度がえられな
いという問題点があった。
In this conventional coaxiality measuring device, since it is necessary to process the outer diameter of the workpiece 12 which is the reference of the coaxiality and the target point by the same image, the workpiece larger than the target point is processed. Since the magnification of the microscope 1 is determined according to the outer diameter of the lens 12, a low-magnification objective lens 13 is used, and the resolution of the camera 2 limits the resolution to 1 micron or less.
There is a problem in that a highly accurate coaxiality detection accuracy on the order of 0.1 micron cannot be obtained.

【0007】[0007]

【課題を解決するための手段】本発明は同軸度測定装置
は、対物レンズが取り付けられた顕微鏡と、この顕微鏡
の光軸と同軸の状態に円筒形状のワークを保持するワー
ク供給ユニットと、前記ワークの端面の対象点が配置さ
れる範囲の前記顕微鏡による像を光電変換するカメラ
と、このカメラに撮像される前記対象点の中心位置を算
出する画像処理装置と、互いに前記ワークを挟んで向い
合う第1のレーザ外径測定器投光ユニットおよび第1の
レーザ外径測定器受光ユニットと、これら第1のレーザ
外径測定器投光ユニットおよび第1のレーザ外径測定器
受光ユニットと垂直な方向に互いに前記ワークを挟んで
向い合う第2のレーザ外径測定器投光ユニットおよび第
2のレーザ外径測定器受光ユニットと、前記第1のレー
ザ外径測定器投光ユニットおよび第1のレーザ外径測定
器受光ユニットならびに前記第2のレーザ外径測定器投
光ユニットおよび第2のレーザ外径測定器受光ユニット
に接続され前記ワークの中心位置を算出するレーザ外径
測定器コントローラと、このレーザ外径測定器コントロ
ーラが算出する前記ワークの中心位置および前記画像処
理装置が算出する前記対象点の中心位置より前記対象点
の前記ワークに対する同軸度を算出する演算装置とを備
えている。
According to the present invention, there is provided a coaxiality measuring device, a microscope having an objective lens attached thereto, a work supply unit for holding a cylindrical work coaxially with the optical axis of the microscope, A camera that photoelectrically converts an image by the microscope in the range where the target point on the end surface of the work is arranged, an image processing device that calculates the center position of the target point imaged by this camera, and face each other with the work sandwiched therebetween. A first laser outer diameter measuring device light emitting unit and a first laser outer diameter measuring device light receiving unit which are fitted to the first laser outer diameter measuring device light emitting unit and the first laser outer diameter measuring device light receiving unit A second laser outer diameter measuring device light projecting unit and a second laser outer diameter measuring device light receiving unit, which face each other across the workpiece in different directions, and the first laser outer diameter measuring device light projecting unit. And a first laser outer diameter measuring device light receiving unit, and a second laser outer diameter measuring device projecting unit and a second laser outer diameter measuring device light receiving unit connected to the laser outer unit for calculating the center position of the work. A diameter measuring device controller, and an arithmetic device for calculating the coaxiality of the target point with respect to the work from the center position of the work calculated by the laser outer diameter measuring device controller and the center position of the target point calculated by the image processing device. It has and.

【0008】本発明の同軸度測定装置は、対物レンズが
取り付けられた顕微鏡と、この顕微鏡の光軸と同軸の状
態に円筒形状のワークを保持するワーク供給ユニット
と、前記ワークの端面の対象点が配置される範囲の前記
顕微鏡による像を光電変換するカメラと、このカメラに
撮像される前記対象点の中心位置を算出する画像処理装
置と、それぞれが前記ワークの側面上で前記ワークの中
心軸に垂直な面上の異なる点である第1〜第3の点の位
置を測定する第1〜第3の測長手段と、これら第1〜第
3の測長手段に接続され前記第1〜第3の点の位置から
前記ワークの中心位置を測定するコントローラと、この
コントローラが算出する前記ワークの中心位置および前
記画像処理装置が算出する前記対象点の中心位置より前
記対象点の前記ワークに対する同軸度を算出する演算装
置とを備えている。
The coaxiality measuring apparatus of the present invention comprises a microscope having an objective lens attached thereto, a work supply unit for holding a cylindrical work coaxially with the optical axis of the microscope, and a target point on the end face of the work. A camera for photoelectrically converting an image by the microscope in a range where is arranged, an image processing device for calculating the center position of the target point imaged by the camera, and a central axis of the work on the side surface of the work. First to third length measuring means for measuring the positions of first to third points, which are different points on a plane perpendicular to the plane, and the first to third length measuring means connected to the first to third length measuring means. A controller that measures the center position of the work from the position of a third point, and the work position of the target point from the center position of the work calculated by the controller and the center position of the target point calculated by the image processing apparatus. And an arithmetic unit for calculating a concentricity with respect.

【0009】[0009]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0010】図1は本発明の一実施例の同軸度測定装置
の構成図である。
FIG. 1 is a block diagram of a coaxiality measuring device according to an embodiment of the present invention.

【0011】ワーク供給ユニット11が円筒形状ワーク
12を保持し、ワーク12の軸が顕微鏡1の光軸と平行
かつ同軸になりそして端面が高倍率対物レンズ4の焦点
面上にくる位置にワーク12をセットする。高倍率対物
レンズ4はワーク12の外径との同軸度を求めたい対象
点がカメラ2の視野から外れない範囲で最も高い倍率の
対物レンズである。
The work supply unit 11 holds a cylindrical work 12, the axis of the work 12 is parallel and coaxial with the optical axis of the microscope 1, and the end face is at a position on the focal plane of the high-power objective lens 4. Set. The high-magnification objective lens 4 is an objective lens with the highest magnification in a range in which the target point for which the coaxiality with the outer diameter of the work 12 is desired to be obtained does not deviate from the visual field of the camera 2.

【0012】高倍率対物レンズ4のセットされた顕微鏡
1でワーク12の端面を拡大しワーク12の外径との同
軸度を求めたい対象点をカメラ2がとらえる。カメラ2
は顕微鏡1の像面上におかれ顕微鏡1に固定されてい
る。顕微鏡1は顕微鏡台5に支持されている。カメラ2
がどらえた像のデータは画像処理装置3に送られワーク
12の外径との同軸度を求めたい対象点の中心位置を算
出する。
The microscope 1 in which the high-magnification objective lens 4 is set up enlarges the end face of the work 12 and the camera 2 captures the target point for which the coaxiality with the outer diameter of the work 12 is to be obtained. Camera 2
Is fixed on the microscope 1 on the image plane of the microscope 1. The microscope 1 is supported by a microscope table 5. Camera 2
The defocused image data is sent to the image processing device 3 to calculate the center position of the target point for which the coaxiality with the outer diameter of the work 12 is to be obtained.

【0013】一方、光軸が顕微鏡1の光軸に対し垂直な
第1のレーザ外径測定器投光ユニット6と第1のレーザ
外径測定受光ユニット7によりワーク12の径および側
面の位置を検出しこれからレーザ外径測定器コントロー
ラ16によりワーク12の外径の一の方向の中心位置を
算出する。第1のレーザ外径測定器投光ユニット6と第
1のレーザ外径測定器受光ユニット7は対になっており
1セットでレーザ外径測定器となる。ここでレーザ外径
測定器とは例えばアンリツ(株)製レーザ外径測定器K
L15Xシリーズ等であり、ワーク12の径および側面
の位置を0.1ミクロン台の精度で測定できる。
On the other hand, the diameter of the work 12 and the position of the side surface thereof are determined by the first laser outer diameter measuring device projecting unit 6 and the first laser outer diameter measuring light receiving unit 7 whose optical axes are perpendicular to the optical axis of the microscope 1. The laser outer diameter measuring device controller 16 calculates the center position of the outer diameter of the workpiece 12 in one direction from the detected value. The first laser outer diameter measuring device projecting unit 6 and the first laser outer diameter measuring device light receiving unit 7 are paired, and one set serves as a laser outer diameter measuring device. Here, the laser outer diameter measuring instrument is, for example, laser outer diameter measuring instrument K manufactured by Anritsu Corporation.
The L15X series and the like can measure the diameter and the position of the side surface of the work 12 with an accuracy of the order of 0.1 micron.

【0014】また光軸が顕微鏡1の光軸と第1のレーザ
外径測定器投光ユニット6の光軸に対し垂直な第2のレ
ーザ外径測定器投光ユニット8と第2のレーザ外径測定
器受光ユニット9により第1のレーザ外径測定器の測定
対象である一の方向と直角な他の方向のワーク12の径
および測面の位置を検出し、これからレーザ外径測定器
コントローラ16によりワーク12の外径の他の方向の
中心位置を算出する。第2のレーザ外径測定器投光ユニ
ット8と第2のレーザ外径測定器受光ユニット9は対に
なっており1セットでレーザに外径測定器となる。
Further, the second laser outer diameter measuring unit light projecting unit 8 and the second laser outer unit whose optical axes are perpendicular to the optical axis of the microscope 1 and the optical axis of the first laser outer diameter measuring device projecting unit 6. The diameter measuring device light receiving unit 9 detects the diameter and the position of the measuring surface of the work 12 in the other direction perpendicular to the one direction to be measured by the first laser outer diameter measuring device. The center position of the outer diameter of the work 12 in the other direction is calculated by 16. The second laser outer diameter measuring device projecting unit 8 and the second laser outer diameter measuring device light receiving unit 9 are paired, and one set serves as an outer diameter measuring device for the laser.

【0015】カメラ2と画像処理装置3により得られる
対象点の中心位置および第1のレーザ外径測定器と第2
のレーザ外径測定器とレーザ外径測定器コントローラ1
6により得られるワーク12の外径の中心位置からワー
ク12の外径と対象点の同軸度をレーザ外径測定器コン
トローラ16と画像処理装置3のそれぞれと接続する演
算装置18が算出する。
The center position of the target point obtained by the camera 2 and the image processing device 3, the first laser outer diameter measuring device, and the second laser outer diameter measuring device.
Laser Outer Diameter Measuring Instrument and Laser Outer Diameter Measuring Instrument Controller 1
From the center position of the outer diameter of the work 12 obtained in step 6, the outer diameter of the work 12 and the coaxiality of the target point are calculated by the arithmetic unit 18 connected to the laser outer diameter measuring device controller 16 and the image processing apparatus 3, respectively.

【0016】第1のレーザ外径測定器投光ユニット6と
第1のレーザ外径測定器受光ユニット7と第2のレーザ
外径測定器投光ユニット8と第2のレーザ外径測定器受
光ユニット9はサブベース10により顕微鏡台5に接
続、固定され顕微鏡1との相対位置が固定されている。
A first laser outer diameter measuring device projecting unit 6, a first laser outer diameter measuring device light receiving unit 7, a second laser outer diameter measuring device projecting unit 8, and a second laser outer diameter measuring device The unit 9 is connected and fixed to the microscope table 5 by the sub-base 10, and the position relative to the microscope 1 is fixed.

【0017】図4は本発明の他の実施例の構成図であ
る。
FIG. 4 is a block diagram of another embodiment of the present invention.

【0018】この実施例で、顕微鏡1、カメラ2、画像
処理装置3、高倍率対物レンズ4、顕微鏡台5、ワーク
供給ユニット11および演算装置18は図1に示すもの
と同じである。
In this embodiment, the microscope 1, the camera 2, the image processing device 3, the high-magnification objective lens 4, the microscope table 5, the work supply unit 11 and the arithmetic unit 18 are the same as those shown in FIG.

【0019】図4は示す実施例では、計測方向が顕微鏡
1の光軸に対し垂直な第1の光マイクロメータ21によ
りワーク12の側面の点の位置を検出する。ここで光マ
イクロメータとは例えばアンリツ(株)製光マイクロK
L13Xシリーズ等であり、ワーク12の側面の点の位
置を0.1ミクロン台の精度で測定できる。
In the embodiment shown in FIG. 4, the position of a point on the side surface of the work 12 is detected by the first optical micrometer 21 whose measuring direction is perpendicular to the optical axis of the microscope 1. Here, the optical micrometer is, for example, an optical micro K manufactured by Anritsu Corporation.
The L13X series and the like can measure the position of a point on the side surface of the work 12 with an accuracy of the order of 0.1 micron.

【0020】また、計測方向が顕微鏡1の光軸に対し垂
直な、第2の光利マイクロメータ22と第3の光マイク
ロメータ23それぞれにより第1の光マイクロメータ2
1が計測するワーク12の側面の位置を含むワーク12
の軸に垂直な面内のワーク12の側面の他の2点の位置
を検出する。
The second optical micrometer 22 and the third optical micrometer 23, whose measurement directions are perpendicular to the optical axis of the microscope 1, are used to form the first optical micrometer 2 respectively.
Work 12 including the position of the side surface of work 12 measured by 1
The positions of the other two points on the side surface of the work 12 in the plane perpendicular to the axis of are detected.

【0021】これら3点を通る円は一意に決まるため、
光マイクロメータ21と光マイクロメータ22と第3の
光マイクロメータ23により検出されたワーク12の側
面の3点の位置よりワーク12の中心位置を光マイクロ
メータコントローラ19を介して演算装置18が算出す
る。カメラ2と画像処理装置3により得られる対象点の
中心位置および第1の光マイクロメータ21と第2の光
マイクロメータ22と第3の光マイクロメータ23と光
マイクロメータコントローラ19より得られるワーク1
2の外径の中心位置からワーク12の外径と対象点の同
軸度を画像処理装置3と光マイクロメータコントローラ
19のそれぞれと接続する演算装置18が算出する。
Since the circle passing through these three points is uniquely determined,
The arithmetic unit 18 calculates the central position of the work 12 via the optical micrometer controller 19 from the positions of the three points on the side surface of the work 12 detected by the optical micrometer 21, the optical micrometer 22, and the third optical micrometer 23. To do. Workpiece 1 obtained from the center position of the target point obtained by the camera 2 and the image processing device 3 and the first optical micrometer 21, the second optical micrometer 22, the third optical micrometer 23, and the optical micrometer controller 19.
From the center position of the outer diameter of 2, the outer diameter of the workpiece 12 and the coaxiality of the target point are calculated by the arithmetic unit 18 connected to the image processing apparatus 3 and the optical micrometer controller 19.

【0022】第1の光マイクロメータ21と第2の光マ
イクロメータ22と第3の光マイクロメータ23はサブ
ベース20により顕微鏡台5に接続、固定され顕微鏡1
との相対位置を固定されている。
The first optical micrometer 21, the second optical micrometer 22 and the third optical micrometer 23 are connected and fixed to the microscope table 5 by the sub-base 20 and fixed to the microscope 1.
The relative position with is fixed.

【0023】[0023]

【発明の効果】以上説明したように本発明は、ワーク1
2の外径の中心位置をレーザ外径測定器または3つの測
長手段により求め、一方対象点を高倍率の対物レンズに
より大きく拡大して画像処理して対象点の中心位置を求
め、ワーク12の外径と対象点の同軸度を高精度(0.
1ミクロン台)で測定できるという効果を有する。
As described above, according to the present invention, the work 1
The center position of the outer diameter of 2 is determined by a laser outer diameter measuring device or three length measuring means, while the target point is greatly enlarged by a high-magnification objective lens and image processing is performed to determine the center position of the target point. The accuracy of the outer diameter and the coaxiality of the target point (0.
It has the effect that it can be measured on the order of 1 micron.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来の同軸度測定装置を示す構成図である。FIG. 2 is a configuration diagram showing a conventional coaxiality measuring device.

【図3】光通信用LDモジュールの端面を示す平面図で
ある。
FIG. 3 is a plan view showing an end face of an LD module for optical communication.

【図4】本発明の他の実施例の構成図である。FIG. 4 is a configuration diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 顕微鏡 2 カメラ 3 画像処理装置 4 高倍率対物レンズ 5 顕微鏡台 6 第1のレーザ外径測定器投光ユニット 7 第1のレーザ外径測定器受光ユニット 8 第2のレーザ外径測定器投光ユニット 9 第2のレーザ外径測定器受光ユニット 10 サブベース 11 ワーク供給ユニット 12 ワーク 13 低倍率対物レンズ 14 ワーク外径 15 LD光の集光スポット 16 レーザ外径測定器コントローラ 17 画像処理装置 18 演算装置 19 光マイクロメータコントローラ 20 サブベース 21 第1の光マイクロメータ 22 第2の光マイクロメータ 23 第3の光マイクロメータ 1 microscope 2 camera 3 image processing device 4 high-magnification objective lens 5 microscope stage 6 first laser outer diameter measuring device projecting unit 7 first laser outer measuring device light receiving unit 8 second laser outer measuring device projecting Unit 9 Second laser outer diameter measuring device light receiving unit 10 Sub-base 11 Work supply unit 12 Work 13 Low magnification objective lens 14 Work outer diameter 15 LD light condensing spot 16 Laser outer diameter measuring instrument controller 17 Image processing device 18 Calculation Device 19 Optical micrometer controller 20 Sub-base 21 First optical micrometer 22 Second optical micrometer 23 Third optical micrometer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対物レンズが取り付けられた顕微鏡と、
この顕微鏡の光軸と同軸の状態に円筒形状のワークを保
持するワーク供給ユニットと、前記ワークの端面の対象
点が配置される範囲の前記顕微鏡による像を光電変換す
るカメラと、このカメラに撮像される前記対象点の中心
位置を算出する画像処理装置と、互いに前記ワークを挟
んで向い合う第1のレーザ外径測定器投光ユニットおよ
び第1のレーザ外径測定器受光ユニットと、これら第1
のレーザ外径測定器投光ユニットおよび第1のレーザ外
径測定器受光ユニットと垂直な方向に互いに前記ワーク
を挟んで向い合う第2のレーザ外径測定器投光ユニット
および第2のレーザ外径測定器受光ユニットと、前記第
1のレーザ外径測定器投光ユニットおよび第1のレーザ
外径測定器受光ユニットならびに前記第2のレーザ外径
測定器投光ユニットおよび第2のレーザ外径測定器受光
ユニットに接続され前記ワークの中心位置を算出するレ
ーザ外径測定器コントローラと、このレーザ外径測定器
コントローラが算出する前記ワークの中心位置および前
記画像処理装置が算出する前記対象点の中心位置より前
記対象点の前記ワークに対する同軸度を算出する演算装
置とを含むことを特徴とする同軸度測定装置。
1. A microscope having an objective lens attached thereto,
A work supply unit that holds a cylindrical work coaxially with the optical axis of the microscope, a camera that photoelectrically converts an image by the microscope in a range where a target point on the end surface of the work is arranged, and an image captured by the camera. An image processing apparatus for calculating the center position of the target point, a first laser outer diameter measuring instrument light projecting unit and a first laser outer diameter measuring instrument light receiving unit facing each other with the work sandwiched therebetween, 1
Second laser outer diameter measuring device projecting unit and second laser outer measuring device projecting unit facing each other with the work sandwiched therebetween in a direction perpendicular to the laser outer diameter measuring device projecting unit and the first laser outer measuring device receiving unit. Diameter measuring device light receiving unit, first laser outer diameter measuring device projecting unit, first laser outer diameter measuring device receiving unit, second laser outer diameter measuring device projecting unit and second laser outer diameter A laser outer diameter measuring device controller connected to a measuring device light receiving unit for calculating the center position of the work, and a center position of the work calculated by the laser outer diameter measuring device controller and the target point calculated by the image processing device. A coaxiality measuring device, comprising: a calculation device that calculates a coaxiality of the target point with respect to the workpiece from a center position.
【請求項2】 対物レンズが取り付けられた顕微鏡と、
この顕微鏡の光軸と同軸の状態に円筒形状のワークを保
持するワーク供給ユニットと、前記ワークの端面の対象
点が配置される範囲の前記顕微鏡による像を光電変換す
るカメラと、このカメラに撮像される前記対象点の中心
位置を算出する画像処理装置と、それぞれが前記ワーク
の側面上で前記ワークの中心軸に垂直な面上の異なる点
である第1〜第3の点の位置を測定する第1〜第3の測
長手段と、これら第1〜第3の測長手段に接続され前記
第1〜第3の点の位置から前記ワークの中心位置を測定
するコントローラと、このコントローラが算出する前記
ワークの中心位置および前記画像処理装置が算出する前
記対象点の中心位置より前記対象点の前記ワークに対す
る同軸度を算出する演算装置とを含むことを特徴とする
同軸度測定装置。
2. A microscope having an objective lens attached thereto,
A work supply unit that holds a cylindrical work coaxially with the optical axis of the microscope, a camera that photoelectrically converts an image by the microscope in a range where a target point on the end surface of the work is arranged, and an image captured by the camera. And an image processing apparatus for calculating the center position of the target point, and measuring the positions of first to third points, which are different points on the side surface of the work and perpendicular to the center axis of the work. First to third length measuring means, a controller connected to these first to third length measuring means for measuring the center position of the work from the positions of the first to third points, and this controller A coaxiality measuring device, comprising: a calculation device that calculates the coaxiality of the target point with respect to the work from the calculated central position of the work and the central position of the target point calculated by the image processing device.
JP26575391A 1991-10-15 1991-10-15 Coaxial-degree measuring apparatus Pending JPH05107025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26575391A JPH05107025A (en) 1991-10-15 1991-10-15 Coaxial-degree measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26575391A JPH05107025A (en) 1991-10-15 1991-10-15 Coaxial-degree measuring apparatus

Publications (1)

Publication Number Publication Date
JPH05107025A true JPH05107025A (en) 1993-04-27

Family

ID=17421536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26575391A Pending JPH05107025A (en) 1991-10-15 1991-10-15 Coaxial-degree measuring apparatus

Country Status (1)

Country Link
JP (1) JPH05107025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888861B1 (en) * 2017-03-22 2018-08-16 주식회사 마크텍코리아 Pipe Measuring Device and Measuring Method thereof
CN108453564A (en) * 2018-03-05 2018-08-28 上海理工大学 Ball-screw in NC Machine Tools assembles the vision inspection apparatus and method of coaxiality error
CN109596074A (en) * 2018-12-25 2019-04-09 芜湖哈特机器人产业技术研究院有限公司 Coaxial bearing degree detection system
CN110146257A (en) * 2019-05-17 2019-08-20 中国科学院上海技术物理研究所 A kind of device and method of rapid survey space laser load optical axis variation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888861B1 (en) * 2017-03-22 2018-08-16 주식회사 마크텍코리아 Pipe Measuring Device and Measuring Method thereof
CN108453564A (en) * 2018-03-05 2018-08-28 上海理工大学 Ball-screw in NC Machine Tools assembles the vision inspection apparatus and method of coaxiality error
CN109596074A (en) * 2018-12-25 2019-04-09 芜湖哈特机器人产业技术研究院有限公司 Coaxial bearing degree detection system
CN109596074B (en) * 2018-12-25 2020-12-15 芜湖哈特机器人产业技术研究院有限公司 Bearing coaxiality detection system
CN110146257A (en) * 2019-05-17 2019-08-20 中国科学院上海技术物理研究所 A kind of device and method of rapid survey space laser load optical axis variation
CN110146257B (en) * 2019-05-17 2024-02-20 中国科学院上海技术物理研究所 Device and method for rapidly measuring change of optical axis of space laser load

Similar Documents

Publication Publication Date Title
US6825454B2 (en) Automatic focusing device for an optical appliance
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
KR20200014907A (en) Measurement system and method
JP3227106B2 (en) Inner diameter measuring method and inner diameter measuring device
CN109238659A (en) A kind of focal length of lens measurement technology and device based on experiment ray tracing principle
JPH05107025A (en) Coaxial-degree measuring apparatus
IL131987A (en) Optical device for the contactless measurement of distance of a light source
CN117491285A (en) Image definition focusing-based method and device
CN104081153A (en) Measuring form changes of a substrate
JP3726028B2 (en) 3D shape measuring device
JP2016148569A (en) Image measuring method and image measuring device
CN101738164B (en) Method for demarcating four-quadrant detector in real time
CN111060293A (en) Focal length testing device
CN116105638A (en) U-shaped turntable coaxiality detection system and detection method
JP2007183181A (en) Three-dimensional shape measuring apparatus
JP2008026049A (en) Flange focal distance measuring instrument
CN206193312U (en) Micron-scale photoelectric centering device based on surface reflection image
CN112197714B (en) Free-form surface measuring device and detection method based on differential color confocal technology
KR20210058657A (en) Image capturing device
JP2638356B2 (en) Focusing spot coaxiality measuring device
CN208171174U (en) A kind of online image measurer
JP2005316069A (en) Laser beam condensing optical system and laser machining device
JP2001166202A (en) Focus detection method and focus detector
JPS6168532A (en) Spot size measurement for optical fiber
CN213812182U (en) Dual-mode center deviation measuring system