JPH0510627A - Absorption type apparatus for cooling/heating water - Google Patents

Absorption type apparatus for cooling/heating water

Info

Publication number
JPH0510627A
JPH0510627A JP3161395A JP16139591A JPH0510627A JP H0510627 A JPH0510627 A JP H0510627A JP 3161395 A JP3161395 A JP 3161395A JP 16139591 A JP16139591 A JP 16139591A JP H0510627 A JPH0510627 A JP H0510627A
Authority
JP
Japan
Prior art keywords
absorber
evaporator
cooling
condenser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3161395A
Other languages
Japanese (ja)
Inventor
Masayuki Kondo
雅行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP3161395A priority Critical patent/JPH0510627A/en
Publication of JPH0510627A publication Critical patent/JPH0510627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To simplify an absorption type apparatus for cooling/heating water in constitution, where waste heat from another apparatus or in a plant system is utilized for the heat source, without interfering with the disposal of waste heat at the other apparatus or in the plant system. CONSTITUTION:A condenser 3 and an absorber 5 are connected with a bypass valve 12 interposed therebetween and a temperature detector 10 or a pressure detector is provided at an evaporator. The opening of the bypass valve 12 is controlled on the basis of the output of the temperature detector 10 or the pressure detector and, when the load of cold water has been cleared, the refrigerant vapor is sent from the condenser direct to the absorber where the refrigerant vapor produced at a generator is absorbed into a concentrated solution and the heat of absorption is carried off by cooling water which flows though an absorber-cooling coil. This method makes it possible to reduce the capacity of the radiator for expelling waste heat or to dispense with the radiator itself.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷温水機に係
り、特に加熱源として他の装置乃至プラントシステムの
排熱を利用する吸収式冷温水機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater, and more particularly to an absorption chiller-heater that uses exhaust heat of another device or plant system as a heating source.

【0002】[0002]

【従来の技術】従来、加熱源として他の装置乃至プラン
トシステムの排熱を利用する吸収式冷温水機が各種考案
されている。図3はそのような吸収式冷温水機の1例を
示す。図示の装置は、吸収式冷凍機33と、他の装置乃
至プラントシステムに結合されて排熱を吸収式冷凍機3
3に搬送する媒体が循環する配管14と、冷温水機の負
荷30と吸収式冷凍機33の間に冷却媒体を循環させる
冷却媒体配管31と、吸収式冷凍機の凝縮器の凝縮熱及
び吸収器の吸収熱を除去放熱する冷却手段32と、前記
配管14に設けられた放熱器34とを含んで構成されて
いる。このような吸収式冷温水機にあっては、当該冷温
水機の冷水負荷が無くなると吸収式冷凍機33の蒸発器
への液冷媒の供給が続いていても、液冷媒が蒸発しなく
なり、蒸発器で液冷媒が蒸発しなくなると、吸収器での
濃溶液の吸収能力が供給される冷媒蒸気量を上回って、
吸収器の圧力が低下する。吸収器の圧力、したがって蒸
発器の圧力が低下すると、蒸発器の温度が低下し、蒸発
器の液冷媒の凍結もしくは蒸発器内を循環する冷却媒体
としての水が凍結する恐れがある。
2. Description of the Related Art Heretofore, various absorption chiller-heaters have been devised which utilize exhaust heat of other devices or plant systems as a heating source. FIG. 3 shows an example of such an absorption chiller-heater. The illustrated apparatus is connected to an absorption refrigerating machine 33 and another apparatus or plant system to absorb exhaust heat.
3, a pipe 14 through which the medium to be conveyed circulates, a cooling medium pipe 31 for circulating a cooling medium between the load 30 of the chiller / heater and the absorption chiller 33, and the condensation heat and absorption of the condenser of the absorption chiller. It is configured to include a cooling means 32 for removing and radiating heat absorbed by the container, and a radiator 34 provided in the pipe 14. In such an absorption chiller-heater, even if the supply of the liquid refrigerant to the evaporator of the absorption chiller 33 continues when the chilled water load of the chiller-heater disappears, the liquid refrigerant does not evaporate, When the liquid refrigerant does not evaporate in the evaporator, the absorption capacity of the concentrated solution in the absorber exceeds the supplied refrigerant vapor amount,
Absorber pressure drops. When the pressure of the absorber, and thus the pressure of the evaporator, decreases, the temperature of the evaporator decreases, and the liquid refrigerant in the evaporator may freeze, or water as a cooling medium circulating in the evaporator may freeze.

【0003】[0003]

【発明が解決しようとする課題】他の装置乃至プラント
システムから冷温水機に供給されている排熱は、当該冷
温水機の負荷の有無に関係なく、他の装置乃至プラント
システムが運転される限り供給が継続され、供給された
排熱は回収された上、排熱の運搬媒体である流体、例え
ば冷却水は他の装置乃至プラントシステムに還流されね
ばならない。冷温水機の冷水負荷がないのに、供給され
る排熱で冷温水機の運転が継続されると、前述のように
液冷媒及び冷水が凍結する恐れがある。このような事態
を避けるために、従来の排熱利用冷温水機においては、
冷温水機の冷水負荷がないとき供給される排熱を放熱す
る目的で、図3に示すように、余分に放熱器33が設け
られている。
Exhaust heat supplied from another device or plant system to the chiller-heater operates the other device or plant system regardless of the load on the chiller-heater. As long as the supply of the exhaust heat is continued, the exhaust heat supplied must be recovered and the fluid, which is a carrier of the exhaust heat, such as cooling water, must be returned to another device or plant system. If the chilled water heater does not have a chilled water load and the supplied waste heat continues to operate the chilled water heater, the liquid refrigerant and the chilled water may freeze as described above. In order to avoid such a situation, in the conventional chiller-heater using exhaust heat,
An additional radiator 33 is provided as shown in FIG. 3 for the purpose of radiating the exhaust heat supplied when the cold / hot water machine has no cold water load.

【0004】本発明の課題は、加熱源として他の装置乃
至プラントシステムの排熱を利用する吸収式冷温水機の
構成を、前記他の装置乃至プラントシステムの排熱処理
に支障を及ぼすことなく簡易化するにある。
An object of the present invention is to simplify the structure of an absorption chiller-heater that uses the exhaust heat of another device or plant system as a heat source without affecting the exhaust heat treatment of the other device or plant system. There is a change.

【0005】[0005]

【課題を解決するための手段】本発明の課題は、凝縮器
と吸収器をバイパス弁を介して接続するとともに、蒸発
器に温度検出器または圧力検出器を設け、前記バイパス
弁はその開度が前記温度検出器または圧力検出器の出力
に基づいて制御されるものとすることにより達成され
る。
SUMMARY OF THE INVENTION An object of the present invention is to connect a condenser and an absorber via a bypass valve, and to provide a temperature detector or a pressure detector in the evaporator, the bypass valve having an opening degree. Is controlled based on the output of the temperature detector or the pressure detector.

【0006】[0006]

【作用】通常時(冷水負荷があるとき)は前記バイパス
弁は閉じられており、凝縮器の冷媒蒸気は該凝縮器内で
凝縮液化されたのち、蒸発器に供給される。冷水負荷が
減少すると、蒸発器に供給される液冷媒の蒸発により該
冷水の温度、すなわち蒸発器の温度が通常より低下し、
液冷媒の蒸発が少なくなる。蒸発器の温度低下は温度検
出器により検知され、検知される温度が低くなるとバイ
パス弁が開かれる。バイパス弁が開かれると、凝縮器に
流入してくる冷媒蒸気はバイパス弁を経て吸収器に導か
れ、吸収器で濃溶液に吸収される。このため、蒸発器で
発生する冷媒蒸気が少なくなっても吸収器には十分な量
の冷媒蒸気が凝縮器から供給されるので、吸収器の圧力
が過度に低下することがなく、したがって蒸発器の温度
が過度に低下するのが防がれる。つまり、冷水負荷が減
少した場合、他の装置乃至プラントシステムから供給さ
れる排熱は、一部は凝縮器の冷却手段で、のこりは吸収
器で発生する吸収熱として吸収器の冷却手段で除去され
る。
In the normal state (when there is a cold water load), the bypass valve is closed, and the refrigerant vapor in the condenser is condensed and liquefied in the condenser and then supplied to the evaporator. When the cold water load decreases, the temperature of the cold water, that is, the temperature of the evaporator, becomes lower than usual due to the evaporation of the liquid refrigerant supplied to the evaporator,
Evaporation of liquid refrigerant is reduced. A decrease in temperature of the evaporator is detected by a temperature detector, and when the detected temperature becomes low, the bypass valve is opened. When the bypass valve is opened, the refrigerant vapor flowing into the condenser is guided to the absorber via the bypass valve and is absorbed in the concentrated solution in the absorber. Therefore, even if the amount of refrigerant vapor generated in the evaporator is reduced, a sufficient amount of refrigerant vapor is supplied to the absorber from the condenser, so that the pressure of the absorber does not drop excessively and therefore the evaporator is not reduced. It is possible to prevent the temperature of the battery from dropping excessively. In other words, when the cold water load is reduced, part of the waste heat supplied from other devices or plant systems is the cooling means of the condenser, and the dust is removed by the cooling means of the absorber as absorption heat generated in the absorber. To be done.

【0007】冷水負荷が増加したら、蒸発器の温度が上
昇し、温度検出器はこの温度上昇を検知してバイパス弁
を閉じる。バイパス弁が閉じられると、冷温水機は通常
の運転状態に戻る。
When the cold water load increases, the temperature of the evaporator rises, and the temperature detector detects this temperature rise and closes the bypass valve. When the bypass valve is closed, the chiller-heater returns to the normal operating state.

【0008】蒸発器の温度と圧力は相関しているから、
蒸発器の温度でなく圧力を用いても同様の制御が可能で
ある。
Since the temperature and pressure of the evaporator are correlated,
Similar control is possible by using pressure instead of evaporator temperature.

【0009】[0009]

【実施例】以下図面を参照して本発明の実施例を説明す
る。なお、以下に説明する実施例では便宜上温水を供給
するための構成要素部分は省略してある。
Embodiments of the present invention will be described below with reference to the drawings. Note that, in the embodiments described below, the component parts for supplying hot water are omitted for convenience.

【0010】図1は本発明の第1の実施例である吸収式
冷温水機の要部を示し、該冷温水機は、他のプラントの
冷却水システム1から配管14を経て供給される排熱で
希溶液を加熱する再生器2と、該再生器2で蒸発した冷
媒蒸気を内装された凝縮器冷却コイル8を流れる冷却水
で冷却して凝縮液化させる凝縮器3と、該凝縮器3で生
成された液冷媒を冷却媒体コイル13上で蒸発させる蒸
発器4と、該蒸発器4に冷媒蒸気通路で連通され冷媒蒸
気を吸収器冷却コイル18上の濃溶液に吸収させて希溶
液を生成する吸収器5と、該吸収器5で生成された希溶
液を希溶液管15、溶液熱交換器7の被加熱流体側を経
て前記再生器2に送りこむ溶液ポンプ6と、前記再生器
2と吸収器5を前記溶液熱交換器7の加熱流体側を経て
接続し吸収器5内部端に散布器18を備えた濃溶液管1
6と、前記凝縮器3と前記吸収器5を開度制御可能なバ
イパス弁12を介して接続するバイパス管9と、前記蒸
発器4の温度を検出する温度センサ10の出力を受けて
前記バイパス弁12の開度制御を行うコントローラ11
と、を含んで構成されている。
FIG. 1 shows a main part of an absorption chiller-heater according to a first embodiment of the present invention. The chiller-heater is supplied from a cooling water system 1 of another plant through a pipe 14 and exhausted. A regenerator 2 for heating the dilute solution with heat, a condenser 3 for condensing and liquefying the refrigerant vapor evaporated in the regenerator 2 by cooling water flowing through a condenser cooling coil 8 in which it is condensed, and the condenser 3 The evaporator 4 that evaporates the liquid refrigerant generated in step 3 above on the cooling medium coil 13, and the evaporator 4 is connected to the evaporator 4 through the refrigerant vapor passage so that the refrigerant vapor is absorbed by the concentrated solution on the absorber cooling coil 18 to form a dilute solution. The absorber 5 to be generated, the solution pump 6 for feeding the dilute solution produced in the absorber 5 to the regenerator 2 via the dilute solution pipe 15, the heated fluid side of the solution heat exchanger 7, and the regenerator 2 And the absorber 5 are connected via the heating fluid side of the solution heat exchanger 7, Concentrated solution tube equipped with a dispenser 18 with end 1
6, a bypass pipe 9 that connects the condenser 3 and the absorber 5 via a bypass valve 12 that can control the opening, and a temperature sensor 10 that detects the temperature of the evaporator 4 to receive the bypass. Controller 11 that controls the opening degree of valve 12
And are included.

【0011】前記凝縮器冷却コイル8と吸収器5に内装
された吸収器冷却コイル19とは連通されており、吸収
器5で発生する吸収熱及び凝縮器の凝縮熱を除去する冷
却水が流れている。
The condenser cooling coil 8 and the absorber cooling coil 19 installed in the absorber 5 are communicated with each other, and cooling water for removing the absorption heat generated in the absorber 5 and the condensation heat of the condenser flows. ing.

【0012】次に、上記構成の冷温水機の動作を説明す
る。冷水負荷があるときは、冷却媒体である水は蒸発器
に配置された冷却媒体コイル13を通って流れ、ここで
冷却されて、例えば空調用の室内ユニットに循環供給さ
れる。再生器2内の希溶液は冷却水システム1から配管
14を経て供給される高温の冷却水で加熱され、冷媒蒸
気を発生させて濃溶液となり、溶液熱交換器7の加熱流
体側を経て散布器18から吸収器冷却コイル19上に散
布される。再生器2で発生した前記冷媒蒸気は、隣接す
る凝縮器3に流入し、凝縮器冷却コイル8を流れる冷却
水で冷却されて凝縮液化し、液冷媒となる。
Next, the operation of the chiller-heater having the above structure will be described. When there is a cold water load, the cooling medium, water, flows through a cooling medium coil 13 arranged in the evaporator, where it is cooled and circulated for supply to an indoor unit for air conditioning, for example. The dilute solution in the regenerator 2 is heated by the high-temperature cooling water supplied from the cooling water system 1 through the pipe 14 to generate a refrigerant vapor to become a concentrated solution, which is then sprayed via the heating fluid side of the solution heat exchanger 7. From the container 18 onto the absorber cooling coil 19. The refrigerant vapor generated in the regenerator 2 flows into the adjacent condenser 3 and is cooled by the cooling water flowing in the condenser cooling coil 8 to be condensed and liquefied to become a liquid refrigerant.

【0013】本実施例では、冷媒として水を、吸収剤と
して臭化リチウムが用いられ、吸収剤である臭化リチウ
ムに冷媒である水を溶解させて吸収液としている。先に
述べた濃溶液は冷温水機内を循環している吸収液のなか
で、吸収液中の臭化リチウム濃度の高いもの、希溶液は
吸収液中の臭化リチウム濃度の低いものである。
In this embodiment, water is used as a refrigerant and lithium bromide is used as an absorbent, and water as a refrigerant is dissolved in lithium bromide as an absorbent to form an absorbing liquid. The concentrated solution described above is a solution having a high lithium bromide concentration in the absorbing solution, and the dilute solution is a solution having a low lithium bromide concentration in the absorbing solution.

【0014】温度センサ10は蒸発器4の温度を検出し
てコントローラ11に出力し、コントローラ11は温度
センサ10の出力温度があらかじめ定められた下限値を
下回らない限り、バイパス弁12を閉じておく。通常の
冷水負荷がある状態では、蒸発器の温度は前記下限値よ
りも高く、バイパス弁12は閉じられており、凝縮器3
で生成された液冷媒は、液冷媒管17、散布器20を経
て冷却媒体コイル13上に散布され、該冷却媒体コイル
13内の冷却媒体の熱を奪って蒸発する。冷却媒体は熱
を奪われて冷却され、前述のように、例えば空調用の室
内ユニットに循環供給される。
The temperature sensor 10 detects the temperature of the evaporator 4 and outputs it to the controller 11. The controller 11 keeps the bypass valve 12 closed unless the output temperature of the temperature sensor 10 falls below a predetermined lower limit value. .. Under normal cold water load, the temperature of the evaporator is higher than the lower limit value, the bypass valve 12 is closed, and the condenser 3
The liquid refrigerant generated in 1 is sprayed on the cooling medium coil 13 via the liquid refrigerant pipe 17 and the sprayer 20, and the heat of the cooling medium in the cooling medium coil 13 is taken and evaporated. The cooling medium is deprived of heat to be cooled, and as described above, is circulated and supplied to, for example, an indoor unit for air conditioning.

【0015】冷却媒体コイル13上で蒸発した冷媒蒸気
は、冷媒蒸気通路を経て吸収器5に流入し、吸収器冷却
コイル19上に散布された前記濃溶液に吸収されて希溶
液を生成する。この希溶液は溶液ポンプ6により、溶液
熱交換器7の被加熱流体側に送られ、加熱流体側を流れ
る濃溶液と熱交換して昇温されたのち、再生器2に流入
して上述のサイクルを繰り返す。冷媒蒸気が濃溶液に吸
収される際に発生する吸収熱は、吸収器冷却コイル19
内を流れる冷却水により冷却除去される。
The refrigerant vapor evaporated on the cooling medium coil 13 flows into the absorber 5 through the refrigerant vapor passage, is absorbed by the concentrated solution sprinkled on the absorber cooling coil 19, and produces a dilute solution. This dilute solution is sent to the heated fluid side of the solution heat exchanger 7 by the solution pump 6, heat-exchanges with the concentrated solution flowing on the heating fluid side to be heated, and then flows into the regenerator 2 to cause the above mentioned Repeat the cycle. The absorption heat generated when the refrigerant vapor is absorbed in the concentrated solution is absorbed by the absorber cooling coil 19
It is cooled and removed by the cooling water flowing inside.

【0016】この状態で運転されているときに冷水負荷
が無くなっても、他のプラントの冷却水システム1から
配管14を経て供給される排熱はそのまま継続して供給
されるから、再生器2における冷媒蒸気と濃溶液の生成
は継続され、凝縮器での液冷媒の生成と蒸発器への該液
冷媒の散布、吸収器への濃溶液の散布も継続して行われ
る。
Even when the cold water load disappears during operation in this state, the exhaust heat supplied from the cooling water system 1 of another plant through the pipe 14 is continuously supplied as it is, so that the regenerator 2 The production of the refrigerant vapor and the concentrated solution is continued, and the production of the liquid refrigerant in the condenser, the spraying of the liquid refrigerant to the evaporator, and the spraying of the concentrated solution to the absorber are also continued.

【0017】冷水負荷の低下つまり冷却媒体の温度が低
下すると液冷媒が蒸発しにくくなり、吸収器5に流入す
る冷媒蒸気の量が少なくなる。吸収器5に流入する冷媒
蒸気の量が少なくなると、吸収器5の圧力、従って蒸発
器4の圧力が低下し、ひいては蒸発器4の温度もさらに
低下する。
When the cold water load is lowered, that is, the temperature of the cooling medium is lowered, the liquid refrigerant is hard to evaporate, and the amount of the refrigerant vapor flowing into the absorber 5 is reduced. When the amount of the refrigerant vapor flowing into the absorber 5 decreases, the pressure of the absorber 5, and thus the pressure of the evaporator 4, decreases, and the temperature of the evaporator 4 further decreases.

【0018】蒸発器4の温度が低下して、温度センサ1
0が検知する温度が前記下限値を下回ると、コントロー
ラ11はバイパス弁12を開き、凝縮器3内の冷媒蒸気
を蒸気の状態のままで吸収器5に導入する。冷媒蒸気が
凝縮器から吸収器に導入されると吸収器つまりは蒸発器
の圧力が上昇し、液冷媒の温度が凍結温度まで低下する
ことがない。したがって、冷却媒体の凍結などのトラブ
ル発生の恐れが無くなる。一方、吸収器に導入された冷
媒蒸気は吸収器冷却コイル19上に散布される濃溶液に
吸収され、発生する吸収熱は該吸収器冷却コイル19を
流れる冷却水によって冷却除去されるから、吸収の効率
が低下することもない。また、バイパス弁12の開度
は、温度センサ10の検出温度と前記下限値の偏差の大
きさを入力として、比例制御、PI制御あるいはPID
制御などを選択して制御すればよい。
The temperature of the evaporator 4 decreases and the temperature sensor 1
When the temperature detected by 0 falls below the lower limit value, the controller 11 opens the bypass valve 12 and introduces the refrigerant vapor in the condenser 3 into the absorber 5 in the vapor state. When the refrigerant vapor is introduced from the condenser to the absorber, the pressure of the absorber, that is, the evaporator, rises, and the temperature of the liquid refrigerant does not decrease to the freezing temperature. Therefore, there is no fear of trouble such as freezing of the cooling medium. On the other hand, the refrigerant vapor introduced into the absorber is absorbed by the concentrated solution sprayed on the absorber cooling coil 19, and the generated heat of absorption is cooled and removed by the cooling water flowing through the absorber cooling coil 19. There is no reduction in efficiency. Further, the opening degree of the bypass valve 12 is input with the magnitude of the deviation between the temperature detected by the temperature sensor 10 and the lower limit value as a proportional control, PI control or PID.
Control may be selected and controlled.

【0019】上述の動作により、他のプラントの冷却水
システム1から供給される冷却水は、冷温水機の冷水負
荷がなくなっても、液冷媒の凍結や冷却媒体の凍結など
のトラブルを発生することなく、排熱を回収(冷却)さ
れ、冷却水システム1に還流されるので、他のプラント
の運転、操業に支障を生ずることがない。また、前記配
管14に放熱用の余分の放熱器を設ける場合もその容量
を小さくすることができる。
By the above-mentioned operation, the cooling water supplied from the cooling water system 1 of another plant causes troubles such as freezing of the liquid refrigerant and freezing of the cooling medium even if the cold water load of the cold / hot water machine is removed. Exhaust heat is recovered (cooled) and returned to the cooling water system 1 without causing any trouble in the operation and operation of other plants. Also, when an extra radiator for heat dissipation is provided in the pipe 14, the capacity can be reduced.

【0020】冷温水機の冷水負荷が再び発生すると、冷
却媒体コイル13中に少なくとも前記下限値の温度より
も高温の冷却媒体が流入し、温度センサ10が出力する
温度が前記下限値よりも高くなるので、コントローラ1
1はバイパス弁12を閉じ、凝縮器3から吸収器への冷
媒蒸気の流入を停止する。従って冷媒蒸気は凝縮器3で
凝縮液化されたのち、液冷媒管17、散布器20を経て
冷却媒体コイル13上に散布され、該冷却媒体コイル1
3内の冷却媒体の熱を奪って蒸発するという通常運転の
サイクルに復帰する。
When the cold water load of the chiller / heater again occurs, a cooling medium having a temperature higher than at least the lower limit value flows into the cooling medium coil 13, and the temperature output by the temperature sensor 10 becomes higher than the lower limit value. So, controller 1
1 closes the bypass valve 12 to stop the flow of the refrigerant vapor from the condenser 3 to the absorber. Therefore, the refrigerant vapor is condensed and liquefied in the condenser 3, and then is sprayed on the cooling medium coil 13 via the liquid refrigerant pipe 17 and the sprayer 20.
It returns to the normal operation cycle in which the heat of the cooling medium in 3 is taken and evaporated.

【0021】なお、上記実施例ではバイパス弁は開度制
御可能な弁としてあるが、開閉2位置制御の弁としても
よい。
In the above embodiment, the bypass valve is a valve whose opening degree can be controlled, but it may be a valve for opening / closing two positions.

【0022】次に、図2を参照して本発明の第2の実施
例を説明する。第2の実施例が前記第1の実施例と異な
るのは、バイパス管9が無く、バイパス弁12が液冷媒
管17に設けられていることと、液冷媒管17の径が冷
媒蒸気を流すために第1の実施例の場合よりも大きくし
てあることである。本実施例においては、通常の冷水負
荷の状態では、バイパス弁12は必要な液冷媒の流量を
通過させる開度に維持される。冷水負荷が無くなり、蒸
発器の温度が前記予め定められた温度よりも低下したこ
とが温度センサ10により検出されると、コントローラ
11は、バイパス弁12の開度をそれまでの液冷媒を流
すときの開度よりも大きくする。バイパス弁の開度が大
きくなると、液冷媒だけでなく冷媒蒸気が同時に凝縮器
から蒸発器に流入し、蒸発器の圧力低下すなわち温度低
下が防止される。
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment differs from the first embodiment in that there is no bypass pipe 9 and the bypass valve 12 is provided in the liquid refrigerant pipe 17, and the diameter of the liquid refrigerant pipe 17 allows the refrigerant vapor to flow. Therefore, it is made larger than that of the first embodiment. In the present embodiment, the bypass valve 12 is maintained at an opening that allows the required flow rate of the liquid refrigerant to pass under a normal cold water load condition. When the temperature sensor 10 detects that the cold water load has disappeared and the temperature of the evaporator has dropped below the predetermined temperature, the controller 11 causes the opening degree of the bypass valve 12 to flow the liquid refrigerant until then. Larger than the opening. When the opening degree of the bypass valve becomes large, not only the liquid refrigerant but also the refrigerant vapor flows into the evaporator from the condenser at the same time, and the pressure drop of the evaporator, that is, the temperature drop is prevented.

【0023】上記第1、第2の実施例においては、蒸発
器の温度が検出され、検出された温度をコントローラ1
1への入力としてバイパス弁の開度制御が行われてい
る。しかし、蒸発器に液冷媒が散布され、吸収器で冷媒
蒸気が吸収されている状態では、蒸発器の圧力と温度は
互いに関連しているので、蒸発器の圧力を検出し、検出
された圧力をコントローラ11への入力としてバイパス
弁の開度制御を行っても、同様の動作が可能である。
In the first and second embodiments, the temperature of the evaporator is detected, and the detected temperature is detected by the controller 1
The opening control of the bypass valve is performed as an input to 1. However, when the liquid refrigerant is sprayed on the evaporator and the refrigerant vapor is absorbed by the absorber, the pressure and temperature of the evaporator are related to each other, so the pressure of the evaporator is detected and the detected pressure is detected. Even when the opening degree control of the bypass valve is performed by using the input to the controller 11, the same operation is possible.

【0024】また、上記実施例は一重効用吸収式冷凍機
を対象にしているが、二重効用吸収式冷凍機の場合にも
同様に効果を奏することは明らかである。
Further, although the above embodiment is directed to the single-effect absorption refrigerator, it is clear that the same effect is exerted also in the double-effect absorption refrigerator.

【0025】なお、温水供給中に温水負荷が無くなった
場合は、冷水供給モードに切り替えて運転を継続するこ
とにより、冷水負荷が無くなった状態となり、上に述べ
た動作により排熱の除去は継続可能となる。
When the hot water load disappears during hot water supply, the cold water load disappears by switching to the cold water supply mode and continuing the operation, and the exhaust heat removal continues due to the above-described operation. It will be possible.

【0026】[0026]

【発明の効果】本発明によれば、凝縮器と蒸発器がバイ
パス弁を介して接続され、蒸発器の温度もしくは圧力が
下限値以下になったときに、該バイパス弁が開かれて凝
縮器から吸収器へ直接冷媒蒸気が供給されるので、運転
中に冷水負荷がなくなっても液冷媒や冷却媒体の凍結の
恐れなしに、他の装置もしくはプラントシステムから供
給される排熱を除去、放熱できるとともに、余分に放熱
器を設ける場合もその容量を小さくすることが可能にな
る。
According to the present invention, the condenser and the evaporator are connected via the bypass valve, and when the temperature or pressure of the evaporator becomes lower than the lower limit value, the bypass valve is opened and the condenser is opened. Since the refrigerant vapor is supplied directly from the absorber to the absorber, even if the cold water load disappears during operation, the waste heat supplied from other devices or plant systems can be removed and radiated without fear of freezing of the liquid refrigerant or cooling medium. In addition, the capacity can be reduced even when an additional radiator is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の要部構成を示す系統図
である。
FIG. 1 is a system diagram showing a main part configuration of a first embodiment of the present invention.

【図2】本発明の第2の実施例の要部構成を示す系統図
である。
FIG. 2 is a system diagram showing a main part configuration of a second embodiment of the present invention.

【図3】従来技術の例を示す系統図である。FIG. 3 is a system diagram showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1 他の装置またはプラントの冷却システム 2 再生器 3 凝縮器 4 蒸発器 5 吸収器 6 溶液ポンプ 7 溶液熱交換器 8 凝縮器冷却コイル 9 バイパス管 10 温度センサ 11 コントローラ 12 バイパス弁 13 冷却媒体コイル 14 配管 15 希溶液管 16 濃溶液管 17 液冷媒管 18 散布器 19 吸収器冷却コイル 20 散布器 30 負荷 31 冷却媒体配管 32 冷却手段 33 吸収式冷凍機 34 放熱器 1 Cooling system of other device or plant 2 Regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Solution pump 7 Solution heat exchanger 8 Condenser cooling coil 9 Bypass pipe 10 Temperature sensor 11 Controller 12 Bypass valve 13 Cooling medium coil 14 Piping 15 Dilute solution pipe 16 Concentrated solution pipe 17 Liquid refrigerant pipe 18 Disperser 19 Absorber cooling coil 20 Disperser 30 Load 31 Cooling medium pipe 32 Cooling means 33 Absorption refrigerator 34 Radiator

Claims (1)

【特許請求の範囲】 【請求項1】 希溶液を他の装置もしくはプラントから
供給される排熱で加熱して冷媒蒸気と濃溶液を発生させ
る再生器と、前記冷媒蒸気を凝縮させて液冷媒とする凝
縮器と、該液冷媒を蒸発させ冷却媒体から熱を奪って冷
却する蒸発器と、該蒸発器で蒸発した冷媒蒸気を前記濃
溶液に吸収させて吸収熱を取り去る吸収器とを含んでな
る吸収式冷温水機において、前記凝縮器と前記吸収器を
バイパス弁を介して接続するとともに、前記蒸発器の温
度を検出する温度検出器または前記蒸発器の圧力を検出
する圧力検出器を設け、前記バイパス弁はその開度が前
記温度検出器または圧力検出器の出力に基づいて制御さ
れるものであることを特徴とする吸収式冷温水機。
Claim: What is claimed is: 1. A regenerator that heats a dilute solution with exhaust heat supplied from another device or plant to generate a refrigerant vapor and a concentrated solution; and a liquid refrigerant that condenses the refrigerant vapor. And a condenser that evaporates the liquid refrigerant to remove heat from the cooling medium to cool it, and an absorber that absorbs the refrigerant vapor evaporated in the evaporator into the concentrated solution to remove the absorbed heat. In the absorption chiller-heater, the condenser and the absorber are connected via a bypass valve, and a temperature detector for detecting the temperature of the evaporator or a pressure detector for detecting the pressure of the evaporator is provided. An absorption chiller-heater, wherein the bypass valve is provided and its opening is controlled based on the output of the temperature detector or the pressure detector.
JP3161395A 1991-07-02 1991-07-02 Absorption type apparatus for cooling/heating water Pending JPH0510627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3161395A JPH0510627A (en) 1991-07-02 1991-07-02 Absorption type apparatus for cooling/heating water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161395A JPH0510627A (en) 1991-07-02 1991-07-02 Absorption type apparatus for cooling/heating water

Publications (1)

Publication Number Publication Date
JPH0510627A true JPH0510627A (en) 1993-01-19

Family

ID=15734281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161395A Pending JPH0510627A (en) 1991-07-02 1991-07-02 Absorption type apparatus for cooling/heating water

Country Status (1)

Country Link
JP (1) JPH0510627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139784A (en) * 2012-01-04 2013-07-18 General Electric Co <Ge> Method and apparatus for operating gas turbine engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139784A (en) * 2012-01-04 2013-07-18 General Electric Co <Ge> Method and apparatus for operating gas turbine engine

Similar Documents

Publication Publication Date Title
JPH10185346A (en) Method of stopping operation of absorption type refrigerating machine
JP2985747B2 (en) Absorption refrigerator
KR100585352B1 (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP2985513B2 (en) Absorption cooling and heating system and its control method
JPH0510627A (en) Absorption type apparatus for cooling/heating water
JP5785800B2 (en) Vapor absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
JP2002130859A (en) Absorption refrigerating machine
JP2789951B2 (en) Absorption refrigerator
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP2002061983A (en) Absorption refrigerating machine
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP3381094B2 (en) Absorption type heating and cooling water heater
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP3281228B2 (en) Absorption type cold / hot water unit
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
KR200308240Y1 (en) Absorption refrigerator with preventing the crystallization of a solution
JP3857955B2 (en) Absorption refrigerator
JP3086594B2 (en) Single double effect absorption refrigerator
JP2001082825A (en) Absorption heat pump
JPH08105661A (en) Absorption chilled and warm water generator and controlling method therefor
JPS63204080A (en) Absorption refrigerator
JPH08261591A (en) Vapor boiling absorption hot or chilled water generator and controlling method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070807

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees