JPH05105596A - Method for growing single crystal of silicon carbide - Google Patents

Method for growing single crystal of silicon carbide

Info

Publication number
JPH05105596A
JPH05105596A JP26768791A JP26768791A JPH05105596A JP H05105596 A JPH05105596 A JP H05105596A JP 26768791 A JP26768791 A JP 26768791A JP 26768791 A JP26768791 A JP 26768791A JP H05105596 A JPH05105596 A JP H05105596A
Authority
JP
Japan
Prior art keywords
sic
single crystal
crucible
raw material
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26768791A
Other languages
Japanese (ja)
Inventor
Yoshiharu Fujikawa
好晴 藤川
Kiyoshi Ota
潔 太田
Kazuyuki Koga
和幸 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26768791A priority Critical patent/JPH05105596A/en
Publication of JPH05105596A publication Critical patent/JPH05105596A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sublime SiC stably in a method for growing single crystal of SiC by enlarging seed crystal of SiC and obtaining ingot of single crystal of SiC by setting seed crystal at the upper part of a crucible and subliming SiC such as powder or granule prepared in the crucible. CONSTITUTION:A raw material 2 for single crystal of SiC is prepared in a crucible 1 made of graphite. The raw material 2 consists of SiC and carbon and, for example, comprises a layer 2a containing carbon on the surface part of the raw material 2b and SiC 2 such as powder or granule under the layer 2a. A holder 3 having fixed and set seed crystal 4 of SiC is placed on an opening part 5 of the crucible 1 and is in an argon gas atmosphere. Then, the crucible 1 is heated by a high-frequency induction heating coil provided around the crucible 1, the SiC 2b is sublimated, the seed crystal 4 of SiC is grown to prepare an ingot of single crystal of SiC.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子デバイスに用いられ
る炭化ケイ素の単結晶成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a silicon carbide single crystal used in an electronic device.

【0002】[0002]

【従来の技術】炭化ケイ素(SiC)は物理的、化学的
に安定であり、且つ禁制帯幅が広い半導体であることか
ら、耐環境性半導体素子及び短波長発光ダイオードの材
料として注目されている。
2. Description of the Related Art Silicon carbide (SiC) is a semiconductor that is physically and chemically stable and has a wide band gap. Therefore, it has attracted attention as a material for environment-resistant semiconductor elements and short wavelength light emitting diodes. ..

【0003】SiCには、3C形、4H形、6H形、1
5R形等各種の結晶形が存在する。このうち3C形Si
Cは高温あるいは放射線の照射される環境下で作動する
能動素子に用途が考えられている。また6H形SiCは
禁制帯幅が約2.9eVであり、青色発光素子として用
いられている。4H形SiCは、約3.2eVと6H形
SiCよりも広い禁制帯幅をもつため、青色から紫色の
発光ダイオードや、その他の結晶形のSiCとのヘテロ
接合デバイスに用途が考えられている。
For SiC, 3C type, 4H type, 6H type, 1
There are various crystal forms such as 5R form. Of these, 3C type Si
C is considered to be used as an active element that operates in a high temperature environment or a radiation environment. Further, 6H-type SiC has a band gap of about 2.9 eV and is used as a blue light emitting element. Since 4H-type SiC has a bandgap of about 3.2 eV, which is wider than that of 6H-type SiC, it is considered to be used for a blue to violet light emitting diode and other heterojunction devices with crystalline SiC.

【0004】SiC基板用単結晶の成長方法としては、
SiC原材料の分解・昇華を利用した昇華法、又はSi
化合物とC化合物を高温で合成するアチソン法がある。
しかし、アチソン法では不純物制御及び結晶サイズの制
御が困難であることから、昇華法が多く用いられてい
る。
As a method of growing a single crystal for a SiC substrate,
Sublimation method utilizing decomposition / sublimation of SiC raw material, or Si
There is an Acheson method for synthesizing a compound and a C compound at high temperature.
However, since the Acheson method is difficult to control the impurities and the crystal size, the sublimation method is often used.

【0005】この昇華法によるSiC単結晶成長方法と
しては、例えば雑誌「真空」第30巻,第11号,19
87年の第52頁〜第58頁に掲載されている。
As a method for growing a SiC single crystal by this sublimation method, for example, magazine "Vacuum", Vol. 30, No. 11, No. 19
It is published on pages 52 to 58 of 1987.

【0006】図3にこのSiC単結晶成長装置の要部断
面図を示す。
FIG. 3 shows a cross-sectional view of an essential part of this SiC single crystal growth apparatus.

【0007】1はグラファイトからなるルツボであり、
該ルツボ1内には粉末状SiCの原材料102が準備さ
れている。3は内側下面に6H形SiC結晶からなるS
iC種結晶4を設置固定するためのグラファイトからな
るホルダー(蓋)であり、前記ルツボ1の開口部5上に
載置(配設)されている。
1 is a crucible made of graphite,
A raw material 102 of powdered SiC is prepared in the crucible 1. 3 is S made of 6H-type SiC crystal on the inner lower surface
A holder (lid) made of graphite for mounting and fixing the iC seed crystal 4 is placed (disposed) on the opening 5 of the crucible 1.

【0008】前記ルツボ1は、その内部が約1〜10T
orr程度のArガス雰囲気にある状態で高周波誘導に
より約1800〜2500℃程度に加熱される。従っ
て、前記ルツボ1内の原材料102は該ルツボ1からの
熱伝導や熱輻射により分解、昇華し、ホルダー(蓋)3
の内側下面に設置固定され、原材料より低温の約170
0〜2400℃にあるSiC種結晶4の表面で再結晶し
て6H形SiC単結晶が成長するのである。
The inside of the crucible 1 is about 1-10T.
It is heated to about 1800 to 2500 ° C. by high frequency induction in an Ar gas atmosphere of about orr. Therefore, the raw material 102 in the crucible 1 is decomposed and sublimated by heat conduction and heat radiation from the crucible 1, and the holder (lid) 3
It is installed and fixed on the inner bottom surface of the
The 6H-type SiC single crystal grows by recrystallization on the surface of the SiC seed crystal 4 at 0 to 2400 ° C.

【0009】[0009]

【発明が解決しようとする課題】上述のようなSiC単
結晶成長方法では、成長初期時において原材料102は
ルツボ側部1b及び下部1cからの熱伝導や熱輻射によ
り加熱されて昇華すると共にルツボ上部1aからの熱輻
射により原材料102の上側表面部が加熱され高温にな
って、該表面からの昇華量が大きくなるが、その後、原
材料102の昇華が進むにつれて昇華しきれないカーボ
ンが残留して原材料102の表面にカーボンの含有が多
い層を形成する。この結果、この層がルツボ上部1aか
らの熱輻射を遮蔽し、原材料102は主にルツボ側部1
b及び下部1cからの熱伝導や熱輻射により昇華するの
で、結晶成長が小さく略一定となる。
In the above-described method for growing a SiC single crystal, the raw material 102 is heated by heat conduction and heat radiation from the crucible side portion 1b and the lower portion 1c to be sublimated and the upper portion of the crucible in the SiC single crystal growth method. The upper surface portion of the raw material 102 is heated to a high temperature by the heat radiation from 1a and the amount of sublimation from the surface increases, but thereafter, as the sublimation of the raw material 102 progresses, carbon that cannot be sublimated remains and the raw material remains. A layer containing a large amount of carbon is formed on the surface of 102. As a result, this layer shields heat radiation from the crucible upper portion 1a, and the raw material 102 is mainly composed of the crucible side portion 1a.
Since it is sublimated by heat conduction and heat radiation from b and the lower part 1c, the crystal growth is small and becomes substantially constant.

【0010】しかしながら、上述したように成長初期時
にはルツボ上部1aからの熱輻射を遮蔽する層がないた
め、原材料の表面からの昇華量が大きくなるので、単結
晶の成長速度と時間の関係を表す図4に示すように初期
時において結晶成長速度が大きくなり、結晶に欠陥や3
C形などの他形のSiC単結晶が発生するといった問題
があった。
However, as described above, since there is no layer that shields the heat radiation from the crucible upper portion 1a at the initial stage of growth, the amount of sublimation from the surface of the raw material becomes large, so that the relationship between the growth rate of a single crystal and time is expressed. As shown in FIG. 4, the crystal growth rate increased at the initial stage, and defects such as 3
There is a problem that another type of SiC single crystal such as C type is generated.

【0011】従って、本発明はSiC単結晶を安定した
成長速度で形成して良質なSiC単結晶を成長させる方
法を提供するものである。
Therefore, the present invention provides a method for growing a high quality SiC single crystal by forming the SiC single crystal at a stable growth rate.

【0012】[0012]

【課題を解決するための手段】本発明の炭化ケイ素単結
晶成長方法は、炭化ケイ素からなる原材料にカーボンを
含有せしめることを特徴とする。
The silicon carbide single crystal growth method of the present invention is characterized in that carbon is contained in a raw material made of silicon carbide.

【0013】特に、上記原材料は上側ほどカーボンの含
有率が大きく、又は、上記原材料はその表面部にカーボ
ンを含有する層が形成されていることを特徴とする。
In particular, the above raw material has a higher carbon content toward the upper side, or the above raw material is characterized in that a layer containing carbon is formed on the surface thereof.

【0014】[0014]

【作用】上述のように原材料を構成すると、単結晶成長
初期時において、ルツボ上部からの輻射熱を遮蔽するの
で、単結晶成長が行われる全過程において、主にルツボ
側部及び下部からの輻射熱及び伝導熱により昇華が起こ
る。従って、昇華量が略一定となり、単結晶の成長速度
が安定して行われる。
When the raw material is constituted as described above, the radiant heat from the upper part of the crucible is shielded at the initial stage of the single crystal growth, so that the radiant heat from the side part and the lower part of the crucible is mainly generated in the whole process of growing the single crystal. Sublimation occurs due to conduction heat. Therefore, the sublimation amount becomes substantially constant, and the growth rate of the single crystal is stable.

【0015】[0015]

【実施例】本発明の各実施例について図面を参照しつつ
詳細に説明する。尚、従来例と同一部分には同一符号を
付してその説明は割愛する。
Embodiments of the present invention will be described in detail with reference to the drawings. The same parts as those in the conventional example are designated by the same reference numerals and the description thereof will be omitted.

【0016】図1は本発明に係る第1実施例のSiC単
結晶成長装置の断面図である。
FIG. 1 is a sectional view of a SiC single crystal growth apparatus according to the first embodiment of the present invention.

【0017】1はグラファイトからなるルツボであり、
該ルツボ1内には、SiC単結晶の原料を含む原材料2
が準備されている。
1 is a crucible made of graphite,
A raw material 2 containing a raw material of a SiC single crystal is provided in the crucible 1.
Is being prepared.

【0018】前記原材料2は、その表面部に粉末状また
は顆粒状の粒径1〜200μm程度のカーボンのみから
なる、または粉末状または顆粒状の粒径1〜200μm
程度のSiCと粒径1〜200μm程度のカーボンが混
合してなる例えば層厚1〜10mm程度の輻射熱遮蔽層
2a、そして該輻射熱遮蔽層2a下に粉末状または顆粒
の粒径1〜200μm程度のSiC2bで構成されてい
る。
The raw material 2 is composed only of powdery or granular carbon having a particle size of about 1 to 200 μm on the surface thereof, or powdery or granular particle size of 1 to 200 μm.
Radiant heat shield layer 2a having a layer thickness of about 1 to 10 mm, and a powder or granules having a particle size of about 1 to 200 μm under the radiant heat shield layer 2a. It is composed of SiC2b.

【0019】又、前記ルツボ1、ホルダー3からなるS
iC単結晶成長装置10は図示していないArガス等を
導入する反応管内に配置され、その周囲に高周波誘導加
熱用コイルが巻回されている。
Also, the S consisting of the crucible 1 and the holder 3
The iC single crystal growth apparatus 10 is arranged in a reaction tube (not shown) for introducing Ar gas or the like, and a high frequency induction heating coil is wound around the reaction tube.

【0020】次に、SiC種結晶4として板状で結晶形
が6H形SiCであるものを用い、上記SiC単結晶成
長装置10で従来例と同様にSiC単結晶を作成した。
Next, as the SiC seed crystal 4, a plate-shaped crystal having a crystal form of 6H-type SiC was used, and an SiC single crystal was prepared by the above-described SiC single crystal growth apparatus 10 in the same manner as in the conventional example.

【0021】即ち、前記ルツボの内部が約1〜10To
rr程度のArガス雰囲気となった状態で、ルツボ1を
高周波誘導により約1800〜2500℃程度に加熱
し、ルツボ1内の原材料2のうち、主にSiCが該ルツ
ボ1からの熱伝導や熱輻射により分解、昇華し、ホルダ
ー3の内側下面に設置固定(配設)され、ルツボ1より
低温の約1700〜2400℃程度にある6H形SiC
種結晶4の表面に再結晶されてSiC単結晶を成長され
るのである。
That is, the inside of the crucible is about 1 to 10 To.
In an Ar gas atmosphere of about rr, the crucible 1 is heated to about 1800 to 2500 ° C. by high frequency induction, and among the raw materials 2 in the crucible 1, mainly SiC is the heat conduction or heat source from the crucible 1. 6H type SiC decomposed and sublimated by radiation, installed (fixed) on the inner lower surface of the holder 3, and at a temperature lower than that of the crucible 1 at about 1700 to 2400 ° C.
The SiC single crystal is grown by being recrystallized on the surface of the seed crystal 4.

【0022】この場合、従来に比べて欠陥の少ない良質
な6H形SiC単結晶が得られ、且つ3C形等の他形の
SiCは発生しなかった。
In this case, a good quality 6H-type SiC single crystal having fewer defects than the conventional one was obtained, and other-type SiC such as 3C type was not generated.

【0023】これは、単結晶成長初期時において、既に
ルツボ上部1aからの輻射熱を遮蔽する効果がある輻射
熱遮蔽層2aが原材料2のうち表面部に構成されている
ので、単結晶成長が行われる全過程において、主にルツ
ボ側部1b及びルツボ下部1cからの輻射熱及び伝導熱
により昇華が起こり、従って、昇華量が略一定となり、
単結晶の成長速度と時間の関係を表す図2に示すように
単結晶の成長速度が安定して行われるためである。
This is because the radiant heat shielding layer 2a, which has an effect of shielding the radiant heat from the crucible upper portion 1a, is already formed on the surface portion of the raw material 2 at the initial stage of the single crystal growth, so that the single crystal growth is performed. In the whole process, sublimation occurs mainly by radiant heat and conductive heat from the crucible side part 1b and the crucible lower part 1c, so that the sublimation amount becomes substantially constant,
This is because the growth rate of the single crystal is stable as shown in FIG. 2, which shows the relationship between the growth rate of the single crystal and time.

【0024】尚、上記実施例における原材料は、単一の
輻射熱遮蔽層のみを有するが、カーボンの含有比が異な
る2つ以上の輻射熱遮蔽層を有してもよい。尚、輻射熱
遮断層はカーボンのみまたはカーボンとSiCからな
り、SiCとカーボンが均一に混合されていてもよく、
更に上側ほどカーボンの混合比が大きくなるように構成
されていてもよい。又、原材料はSiCとカーボンが混
合してなり、表面部(上側)ほど該カーボンの割合が望
ましくは連続的に大きくなるようにしても原材料の表面
部で熱が遮蔽されるので、効果がある。
Although the raw materials in the above embodiments have only a single radiation heat shielding layer, they may have two or more radiation heat shielding layers having different carbon content ratios. The radiant heat blocking layer may be composed of only carbon or carbon and SiC, and SiC and carbon may be uniformly mixed.
Further, the carbon mixing ratio may be increased toward the upper side. Further, the raw material is a mixture of SiC and carbon, and even if the ratio of the carbon is desirably continuously increased toward the surface portion (upper side), heat is shielded by the surface portion of the raw material, which is effective. ..

【0025】また、原材料はSiCとカーボンを単に混
合したものでもよく、更にはSiCにカーボンを添加す
るだけでもルツボ上部からの輻射熱を遮蔽するので、効
果がある。但し、上述したように表面部にカーボンの含
有が大きい方が、昇華開始時に昇華量がより安定するの
で特に好ましい効果が得られる。
The raw material may be a mixture of SiC and carbon, and the addition of carbon to SiC shields the radiant heat from the upper part of the crucible, which is effective. However, as described above, when the content of carbon in the surface portion is large, the amount of sublimation becomes more stable at the start of sublimation, so that a particularly preferable effect is obtained.

【0026】また、原材料は、表面に輻射熱遮断層とな
る厚み1〜2mm程度のポーラス状カーボン板、その板
下にSiCが構成すれるようにしてもよい。
The raw material may be composed of a porous carbon plate having a thickness of about 1 to 2 mm, which serves as a radiation heat blocking layer on the surface, and SiC below the plate.

【0027】又、上記実施例では、純粋なSiC単結晶
を作成したが、Al、N2等の不純物を添加して、欠陥
の少ないp、n形のSiC単結晶も作成できる。例え
ば、原材料は不純物を含有してもよい。
Further, in the above-mentioned embodiment, a pure SiC single crystal is prepared, but an impurity such as Al or N 2 may be added to form a p or n type SiC single crystal with few defects. For example, the raw material may contain impurities.

【0028】更に、上記実施例では、6H形SiCを種
結晶として6H形SiC単結晶を作成したが、温度制御
又は不純物の添加により欠陥の少ない4H形、3C形な
どの他の結晶形SiC単結晶も作成できる。
Further, in the above embodiment, a 6H-type SiC single crystal was prepared by using 6H-type SiC as a seed crystal, but other crystal-type SiC single crystals such as 4H-type and 3C-type having few defects by temperature control or addition of impurities. Crystals can also be created.

【0029】[0029]

【発明の効果】本発明によれば、原材料はカーボンを含
有するので、単結晶成長初期時において、ルツボ上部か
らの輻射熱を遮蔽する。この結果、単結晶成長が行われ
る全過程において、主にルツボ側部及び下部からの輻射
熱及び伝導熱により昇華が起こる。従って、昇華量が略
一定となり、単結晶の成長速度が安定して行われるの
で、良質な単結晶が得られる。
According to the present invention, since the raw material contains carbon, the radiant heat from the upper part of the crucible is shielded at the initial stage of single crystal growth. As a result, in the whole process of growing the single crystal, sublimation mainly occurs due to radiant heat and conductive heat from the side and bottom of the crucible. Therefore, the amount of sublimation becomes substantially constant, and the growth rate of the single crystal is stable, so that a good quality single crystal can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の結晶成長方法を行う装
置の断面図である。
FIG. 1 is a sectional view of an apparatus for performing a crystal growth method according to an embodiment of the present invention.

【図2】上記実施例における単結晶成長速度と時間の関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a single crystal growth rate and time in the above example.

【図3】従来例の結晶成長方法を行う装置の断面図であ
る。
FIG. 3 is a sectional view of an apparatus for performing a conventional crystal growth method.

【図4】従来例における単結晶成長速度と時間の関係を
示す図である。
FIG. 4 is a diagram showing a relationship between a single crystal growth rate and time in a conventional example.

【符号の説明】[Explanation of symbols]

1 ルツボ 1a ルツボ上部 1b ルツボ側部 1c ルツボ下部 2 原材料 2a 輻射熱遮蔽層 2b SiC 3 ホルダー(蓋) 4 SiC種結晶 10 単結晶成長装置 1 crucible 1a crucible upper part 1b crucible side part 1c crucible lower part 2 raw material 2a radiant heat shielding layer 2b SiC 3 holder (lid) 4 SiC seed crystal 10 single crystal growth apparatus

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素からなる原材料を加熱昇華さ
せ、該原材料の上側上方に配設した種結晶上に炭化ケイ
素単結晶を成長させる方法において、炭化ケイ素からな
る原材料にカーボンを含有せしめることを特徴とする炭
化ケイ素単結晶成長方法。
1. A method of growing a silicon carbide single crystal on a seed crystal disposed above and above a raw material made of silicon carbide by heating to sublimate the raw material made of silicon carbide. A method for growing a single crystal of silicon carbide.
【請求項2】 上記原材料は上側ほどカーボンの含有率
が大きいことを特徴とする請求項1記載の炭化ケイ素単
結晶成長方法。
2. The method for growing a silicon carbide single crystal according to claim 1, wherein the raw material has a higher carbon content toward the upper side.
【請求項3】 上記原材料はその表面部にカーボンを含
有する層が形成されていることを特徴とする請求項1記
載の炭化ケイ素単結晶成長方法。
3. The method for growing a silicon carbide single crystal according to claim 1, wherein the raw material has a layer containing carbon formed on the surface thereof.
JP26768791A 1991-10-16 1991-10-16 Method for growing single crystal of silicon carbide Pending JPH05105596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26768791A JPH05105596A (en) 1991-10-16 1991-10-16 Method for growing single crystal of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26768791A JPH05105596A (en) 1991-10-16 1991-10-16 Method for growing single crystal of silicon carbide

Publications (1)

Publication Number Publication Date
JPH05105596A true JPH05105596A (en) 1993-04-27

Family

ID=17448141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26768791A Pending JPH05105596A (en) 1991-10-16 1991-10-16 Method for growing single crystal of silicon carbide

Country Status (1)

Country Link
JP (1) JPH05105596A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933450A1 (en) * 1998-01-19 1999-08-04 Sumitomo Electric Industries, Ltd. Method of making SiC single crystal and apparatus for making SiC single crystal
JP2002520251A (en) * 1998-07-13 2002-07-09 シーメンス アクチエンゲゼルシヤフト Method for growing SiC single crystal
JP2009051702A (en) * 2007-08-28 2009-03-12 Denso Corp Method for producing silicon carbide single crystal
JP2009280431A (en) * 2008-05-21 2009-12-03 Bridgestone Corp Production method of silicon carbide single crystal
JP2013082629A (en) * 2010-06-07 2013-05-09 Sicrystal Ag METHOD FOR PRODUCING FACET-FREE SiC BULK SINGLE CRYSTAL, SiC BULK SINGLE CRYSTAL AND SINGLE CRYSTAL SiC SUBSTRATE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933450A1 (en) * 1998-01-19 1999-08-04 Sumitomo Electric Industries, Ltd. Method of making SiC single crystal and apparatus for making SiC single crystal
US6193797B1 (en) 1998-01-19 2001-02-27 Sumitomo Electric Industries, Ltd. Method of making SiC single crystal and apparatus for making SiC single crystal
US6391109B2 (en) 1998-01-19 2002-05-21 Sumitomo Electric Industries, Ltd. Method of making SiC single crystal and apparatus for making SiC single crystal
JP2002520251A (en) * 1998-07-13 2002-07-09 シーメンス アクチエンゲゼルシヤフト Method for growing SiC single crystal
JP2009051702A (en) * 2007-08-28 2009-03-12 Denso Corp Method for producing silicon carbide single crystal
JP2009280431A (en) * 2008-05-21 2009-12-03 Bridgestone Corp Production method of silicon carbide single crystal
JP2013082629A (en) * 2010-06-07 2013-05-09 Sicrystal Ag METHOD FOR PRODUCING FACET-FREE SiC BULK SINGLE CRYSTAL, SiC BULK SINGLE CRYSTAL AND SINGLE CRYSTAL SiC SUBSTRATE
JP2013082630A (en) * 2010-06-07 2013-05-09 Sicrystal Ag METHOD FOR PRODUCING FACET-FREE SiC BULK SINGLE CRYSTAL, SiC BULK SINGLE CRYSTAL AND SINGLE CRYSTAL SiC SUBSTRATE
DE102010029755B4 (en) 2010-06-07 2023-09-21 Sicrystal Gmbh Manufacturing process for a SiC bulk single crystal without facet and single crystal SiC substrate with homogeneous resistance distribution

Similar Documents

Publication Publication Date Title
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
US4863529A (en) Thin film single crystal diamond substrate
JPS6346039B2 (en)
JPH0558774A (en) Vessel for silicone carbide single crystal growing device
JPH06316499A (en) Production of sic single crystal
US4382837A (en) Epitaxial crystal fabrication of SiC:AlN
JP4495153B2 (en) Phase controlled sublimation
JPH0455397A (en) Production of alpha-sic single crystal
JP4253974B2 (en) SiC single crystal and growth method thereof
JPH04193799A (en) Production of silicon carbide single crystal
JP3128179B2 (en) Method for producing n-type silicon carbide single crystal
JPH05105596A (en) Method for growing single crystal of silicon carbide
JP3237069B2 (en) Method for producing SiC single crystal
JP2003226600A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, and methods of producing them
JP4304783B2 (en) SiC single crystal and growth method thereof
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
JPH09157092A (en) Production of silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JP2680617B2 (en) Method for growing silicon carbide single crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JPH06298600A (en) Method of growing sic single crystal
JP2004262709A (en) GROWTH METHOD FOR SiC SINGLE CRYSTAL
JPH0416597A (en) Production of silicon carbide single crystal
JPH06298514A (en) Production of highly pure silicon carbide