JPH05103804A - Apparatus and method for measuring gap between bone and artificial joint stem - Google Patents

Apparatus and method for measuring gap between bone and artificial joint stem

Info

Publication number
JPH05103804A
JPH05103804A JP27094791A JP27094791A JPH05103804A JP H05103804 A JPH05103804 A JP H05103804A JP 27094791 A JP27094791 A JP 27094791A JP 27094791 A JP27094791 A JP 27094791A JP H05103804 A JPH05103804 A JP H05103804A
Authority
JP
Japan
Prior art keywords
bone
gap
pulse
artificial joint
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27094791A
Other languages
Japanese (ja)
Other versions
JP3274694B2 (en
Inventor
Yoshihisa Mizuguchi
義久 水口
Takatoshi Ide
隆俊 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27094791A priority Critical patent/JP3274694B2/en
Publication of JPH05103804A publication Critical patent/JPH05103804A/en
Application granted granted Critical
Publication of JP3274694B2 publication Critical patent/JP3274694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To accurately measure the gap generated between a bone, and an artificial joint stem. CONSTITUTION:A probe 26 transmits an ultrasonic pulse to a femur part 16 and receives the first reflected pulse from the inner surface of a femur 12 and the second reflected pulse from the outer surface of an artificial joint stem to convert them to electric signals. The electric signals are detected by a detection circuit 36 to be displayed on a CRT display device 44 and converted to digital data by an A/D converter 40 to be stored in a memory device 42. A CPU 50 calculates the width of a gap 18 from the time interval data of the first and second reflected pulses stored in the memory device 42 and the sonic velocity data in the gap 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、骨と人工関節ステム
との隙間測定装置および方法に関し、特にたとえば人工
股関節全置換術(THR)施行後の大腿骨と人工関節ス
テムとの間に生じる隙間を測定する、隙間測定装置およ
び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for measuring a gap between a bone and an artificial joint stem, and particularly to a gap formed between a femur and an artificial joint stem after performing total hip arthroplasty (THR). The present invention relates to a gap measuring device and method for measuring a gap.

【0002】[0002]

【従来の技術】変形性股関節症や慢性関節リュウマチな
どの関節疾患により損なわれた関節機能の再建に当た
り、生体関節として重要な股関節については、人工股関
節全置換術(THR)が近年盛んに施行されている。こ
のTHRは、図12に示すように、股関節ソケットおよ
び骨頭を人工股関節ソケット1および人工骨頭2に置き
換え、人工骨頭2から延びる人工関節ステム3を大腿骨
4の内部に挿入して固定するものである。しかし、この
THRは未だ完全なものではなく、施行後4〜5年経過
すると、たとえば人工関節ステム3が大腿骨4を圧迫す
る等の原因によってこれらの間に隙間が生じ、再置換手
術が必要となる場合がある。
2. Description of the Related Art In the reconstruction of joint function impaired by joint diseases such as osteoarthritis and rheumatoid arthritis, total hip arthroplasty (THR) has been actively performed in recent years for hip joints that are important as biological joints. ing. As shown in FIG. 12, this THR replaces the hip joint socket and the femoral head with the artificial hip joint socket 1 and the artificial femoral head 2, and inserts and fixes the artificial joint stem 3 extending from the artificial femoral head 2 into the femur 4. is there. However, this THR is not yet perfect, and when 4 to 5 years have passed after the operation, a gap is created between them due to, for example, the artificial joint stem 3 pressing the femur 4, and revision surgery is necessary. May be

【0003】従来では、X線像を利用してこの隙間を把
握し、再置換手術の施行時期を決めるようにしていた。
Conventionally, the gap has been grasped by using an X-ray image, and the time for performing revision surgery has been decided.

【0004】[0004]

【発明が解決しようとする課題】X線像を利用する従来
技術では、小さな隙間を把握することが困難であるとい
う問題点があった。そのため、股関節部に疼痛を生じる
ほどに隙間が大きくなっていてもその隙間を把握するこ
とができない場合があり、再置換手術を行うのに適切な
時期を見逃してしまうことがあった。
However, the conventional technique using X-ray images has a problem that it is difficult to grasp a small gap. Therefore, even if the gap is large enough to cause pain in the hip joint, the gap may not be grasped, and the proper time for revision surgery may be overlooked.

【0005】それゆえに、この発明の主たる目的は、よ
り小さな隙間を把握できる、骨と人工関節ステムとの隙
間測定装置および方法を提供することである。
Therefore, a main object of the present invention is to provide an apparatus and method for measuring a gap between a bone and an artificial joint stem, which can grasp a smaller gap.

【0006】[0006]

【課題を解決するための手段】第1の発明は、骨の内部
に挿入された人工関節ステムと骨との間に生じる隙間を
測定するための隙間測定装置であって、骨の内部に超音
波パルスを送信する送信手段、超音波パルスを送信した
ときの骨の内面で反射する第1反射パルスおよび人工関
節ステムの外面で反射する第2反射パルスのそれぞれを
受信する受信手段、および第1反射パルスと第2反射パ
ルスとの時間間隔に基づいて隙間を測定する測定手段を
備える、骨と人工関節ステムとの隙間測定装置である。
A first aspect of the present invention is a gap measuring device for measuring a gap generated between an artificial joint stem inserted into the bone and the bone, and a device for measuring the gap inside the bone. Transmitting means for transmitting a sound wave pulse, receiving means for receiving each of a first reflection pulse reflected on the inner surface of the bone and a second reflection pulse reflected on the outer surface of the artificial joint stem when the ultrasonic pulse is transmitted, and a first A gap measuring device between a bone and an artificial joint stem, which is provided with a measuring unit that measures a gap based on a time interval between a reflected pulse and a second reflected pulse.

【0007】第2の発明は、骨の内部に挿入された人工
関節ステムと骨との間に生じる隙間を測定する、隙間測
定方法であって、(a) 骨の内部に超音波パルスを送信
し、(b) 骨の内面で反射する第1反射パルスと人工関節
ステムの外面で反射する第2反射パルスとの時間間隔を
求め、そして(c)時間間隔と隙間における音速とに基づ
いて隙間を測定する、骨と人工関節ステムとの隙間測定
方法である。
A second aspect of the present invention is a gap measuring method for measuring a gap generated between an artificial joint stem inserted into the bone and the bone. (A) An ultrasonic pulse is transmitted inside the bone. Then, (b) find the time interval between the first reflected pulse reflected on the inner surface of the bone and the second reflected pulse reflected on the outer surface of the artificial joint stem, and (c) calculate the gap based on the time interval and the speed of sound in the gap. Is a method for measuring the gap between the bone and the artificial joint stem.

【0008】[0008]

【作用】骨の内面で反射する第1反射パルスと人工関節
ステムの外面で反射する第2反射パルスとの時間間隔お
よび骨と人工関節ステムとの隙間における音速に基づい
て隙間を測定する。なお、隙間には骨髄が満たされるた
め、隙間における音速としては、骨髄における音速が用
いられる。
The gap is measured based on the time interval between the first reflection pulse reflected on the inner surface of the bone and the second reflection pulse reflected on the outer surface of the artificial joint stem, and the sound velocity in the gap between the bone and the artificial joint stem. Since the bone marrow is filled in the gap, the sound velocity in the bone marrow is used as the sound velocity in the gap.

【0009】[0009]

【発明の効果】この発明によれば、超音波を用いて骨と
人工関節ステムとの隙間を把握するようにしているの
で、従来のX線を利用するものに比べてより小さな隙間
を精度よく測定することができる。そのため、たとえば
THR後の再置換に最適な時期が的確に判断できる。
According to the present invention, since the gap between the bone and the artificial joint stem is grasped by using ultrasonic waves, a smaller gap can be accurately formed as compared with the conventional one using X-rays. Can be measured. Therefore, it is possible to accurately determine the optimum time for revision after THR, for example.

【0010】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

【0011】[0011]

【実施例】図1に示すこの実施例の隙間測定装置10
は、大腿骨12の内部に人工関節ステム14が挿入され
た大腿部16内部の、特に、大腿骨12と人工関節ステ
ム14との隙間18を測定するためのものである。な
お、隙間18には骨髄20が満たされており、大腿骨1
2の周囲には肉22が存在する。
EXAMPLE A gap measuring device 10 of this example shown in FIG.
Is for measuring the space 18 inside the thigh 16 in which the artificial joint stem 14 is inserted inside the femur 12, particularly between the femur 12 and the artificial joint stem 14. The space 18 is filled with the bone marrow 20, and the femur 1
Meat 22 is present around 2.

【0012】隙間測定装置10は、大腿部16の周囲に
配置される複数の探触素子24を有する探触子26を含
み、それぞれの探触素子24は、たとえば圧電振動子か
らなり、電気信号を超音波(機械振動)に変換し、逆に
超音波エコーを電気信号に変換することができる。そし
て、複数の探触素子24のうち1つが、順次、探触子ス
キャンコントローラ28により選択され、有効化され
る。
The gap measuring device 10 includes a probe 26 having a plurality of probe elements 24 arranged around the thigh 16, each probe element 24 being, for example, a piezoelectric vibrator, Signals can be converted into ultrasonic waves (mechanical vibrations) and conversely ultrasonic echoes can be converted into electrical signals. Then, one of the plurality of probe elements 24 is sequentially selected and activated by the probe scan controller 28.

【0013】また、隙間測定装置10は、発振器(たと
えば水晶発振器)30を含む。発振器30は探触素子2
4の振動周波数に相当する繰り返し周期のパルス信号を
発生し、このパルス信号が送波パルスドライバ32に与
えられる。送波パルスドライバ32では、入力されたパ
ルス信号を増幅して送波パルス電圧を発生し、この送波
パルス電圧が先に説明したように順次有効化される探触
素子24に印加される。探触素子24では、送波パルス
ドライバ32により与えられた電気信号が超音波パルス
に変換され、その超音波パルスが大腿部16の内部に送
信される。
The gap measuring device 10 also includes an oscillator (for example, a crystal oscillator) 30. The oscillator 30 is the probe element 2
A pulse signal having a repeating period corresponding to the vibration frequency of 4 is generated, and this pulse signal is given to the transmission pulse driver 32. The transmission pulse driver 32 amplifies the input pulse signal to generate a transmission pulse voltage, and the transmission pulse voltage is applied to the probe elements 24 which are sequentially activated as described above. In the probe element 24, the electric signal given by the transmission pulse driver 32 is converted into an ultrasonic pulse, and the ultrasonic pulse is transmitted to the inside of the thigh portion 16.

【0014】一方、その超音波パルスにより発生した反
射パルス(エコー)が上記探触素子24によって電気信
号に変換される。このエコーの電気信号は、反射パルス
レシーバ34に入力されて増幅され、検波回路36で検
波され、波形整形回路38で波形整形される。そして、
波形整形されたアナログ信号が、AD変換器40によっ
てディジタルデータに変換され、記憶装置42のRAM
に格納される。同時に、このアナログ信号がCRT表示
器44に入力されて、その波形がCRT上に表示され
る。なお、このCRT表示器44は、オシロスコープの
ようにCRTコントローラ46により制御される。
On the other hand, the reflected pulse (echo) generated by the ultrasonic pulse is converted into an electric signal by the probe element 24. The electric signal of the echo is input to the reflected pulse receiver 34, amplified, detected by the detection circuit 36, and shaped by the waveform shaping circuit 38. And
The waveform-shaped analog signal is converted into digital data by the AD converter 40, and is stored in the RAM of the storage device 42.
Stored in. At the same time, this analog signal is input to the CRT display 44 and its waveform is displayed on the CRT. The CRT display 44 is controlled by the CRT controller 46 like an oscilloscope.

【0015】上述の探触子スキャンコントローラ28,
記憶装置42およびCRTコントローラ46は、バス4
8を介してこれらと接続されたCPU50によって制御
される。そして、記憶装置42に格納されたデータは、
CPU50に取り込まれて必要な計算処理が行われ、再
び記憶装置42に戻される。また、それらのデータは、
必要に応じてたとえば磁気テープ,ハードディスクある
いは光磁気ディスク等の外部メモリ52に記録される。
たとえば患者毎の固定パターンを外部メモリ52に記録
しておき、それを診察時に引き出して表示するようにす
れば、隙間18の状態の経時的な変化を容易に把握する
ことができる。
The probe scan controller 28 described above,
The storage device 42 and the CRT controller 46 are connected to the bus 4
It is controlled by the CPU 50 which is connected to these via the CPU 8. Then, the data stored in the storage device 42 is
The necessary calculation processing is performed by the CPU 50, and the necessary calculation processing is performed, and the calculation processing is returned to the storage device 42. Also, those data are
If necessary, it is recorded in the external memory 52 such as a magnetic tape, a hard disk or a magneto-optical disk.
For example, if a fixed pattern for each patient is recorded in the external memory 52 and is extracted and displayed at the time of examination, it is possible to easily grasp the change over time in the state of the gap 18.

【0016】なお、この実施例において、探触子26と
外部メモリ52以外の部分は、ケース54内にまとめて
収納される。使用時には、図2からよくわかるように、
THRが施行された大腿部16の外周面上に、たとえば
ソノゼリー(商品名:東芝メディカル株式会社)等の音
響結合剤56を介して探触子26が配置される。
In this embodiment, parts other than the probe 26 and the external memory 52 are housed together in a case 54. When using, as you can see from Figure 2,
The probe 26 is disposed on the outer peripheral surface of the thigh 16 on which the THR has been performed via an acoustic coupling agent 56 such as sonojelly (trade name: Toshiba Medical Co., Ltd.).

【0017】図1および図2を参照して、CPU50の
制御の下で探触子スキャンコントローラ28により有効
化された1つの探触素子24に送波パルス電圧を印加す
ると、その探触素子24から超音波パルスが発生され、
発生された超音波パルスは、たとえば図2における破線
矢印で示すように大腿部16の内部に伝わる。そして、
この超音波パルスの一部が音響インピーダンスの変化す
る、肉22と大腿骨12との境界面a,大腿骨12と骨
髄20との境界面bおよび骨髄20と人工関節ステム1
4との境界面cのそれぞれにおいて反射する。ここで
は、境界面a,bおよびcで反射するそれぞれの反射パ
ルスを反射パルスA,BおよびCと呼ぶことにする。そ
して、これらの反射パルスA〜Cが探触素子24におい
て電気信号に変換され、反射パルスレシーバ34,検波
回路36および波形整形回路38を通してCRT表示器
44に表示され、あるいは、波形整形回路38からAD
変換器40を通してデータとして記憶装置42に格納さ
れる。
Referring to FIGS. 1 and 2, when a transmission pulse voltage is applied to one probe element 24 validated by the probe scan controller 28 under the control of the CPU 50, the probe element 24 is applied. Ultrasonic pulse is generated from
The generated ultrasonic pulse propagates to the inside of the thigh 16 as indicated by the broken line arrow in FIG. 2, for example. And
The interface a between the meat 22 and the femur 12, the interface b between the femur 12 and the bone marrow 20, and the bone marrow 20 and the artificial joint stem 1 in which a part of the ultrasonic pulse changes in acoustic impedance
It reflects on each of the boundary surfaces c with 4. Here, the respective reflection pulses reflected by the boundary surfaces a, b and c will be referred to as reflection pulses A, B and C. Then, these reflected pulses A to C are converted into electric signals in the probe element 24 and displayed on the CRT display 44 through the reflected pulse receiver 34, the detection circuit 36 and the waveform shaping circuit 38, or from the waveform shaping circuit 38. AD
It is stored in the storage device 42 as data through the converter 40.

【0018】CRT表示器44では、横軸に超音波パル
スの大腿部16中の伝搬時間に相当する距離を表示し、
縦軸にエコー高さを表示するようにしており、したがっ
て、CRT表示器44にはたとえば図3に示すような波
形58が表示される。この波形58における最も左側の
パルスDは、探触素子24の取り付け位置すなわち原点
を示す。そして、原点から時間T1 遅れて反射パルスA
が検出され、反射パルスAから時間T2 遅れて反射パル
スBが検出され、反射パルスBから時間T3 遅れて反射
パルスCが検出される。したがって、肉22における音
速をV1 ,大腿骨12における音速をV2 ,骨髄20に
おける音速をV3 とすると、肉22,大腿骨12および
骨髄20のそれぞれの肉厚L1 ,L2 およびL3 (図
2)は、CPU50において数1の各計算を実行するこ
とによって求められる。
The CRT display 44 displays the distance corresponding to the propagation time of the ultrasonic pulse in the thigh 16 on the horizontal axis,
Since the echo height is displayed on the vertical axis, the CRT display 44 displays a waveform 58 as shown in FIG. 3, for example. The leftmost pulse D in the waveform 58 indicates the attachment position of the probe element 24, that is, the origin. Then, the reflected pulse A is delayed by time T 1 from the origin.
Is detected, the reflected pulse B is detected with a time T 2 delayed from the reflected pulse A, and the reflected pulse C is detected with a time T 3 delayed from the reflected pulse B. Therefore, assuming that the speed of sound in the meat 22 is V 1 , the speed of sound in the femur 12 is V 2 , and the speed of sound in the bone marrow 20 is V 3 , the wall thicknesses L 1 , L 2 and L of the meat 22, the femur 12 and the bone marrow 20, respectively. 3 (FIG. 2) is obtained by executing each calculation of the equation 1 in the CPU 50.

【0019】[0019]

【数1】 L1 =V1 ×T1 /2 L2 =V2 ×T2 /2 L3 =V3 ×T3 /2 そして、探触子スキャンコントローラ28によって、複
数の探触素子24を順番に有効化し、複数箇所での測定
データを収集することによって、全体的な隙間18の分
布が把握される。
[Number 1] and L 1 = V 1 × T 1 /2 L 2 = V 2 × T 2/2 L 3 = V 3 × T 3/2, the probe scan controller 28, a plurality of feeler elements 24 By sequentially activating and collecting the measurement data at a plurality of points, the overall distribution of the gaps 18 can be grasped.

【0020】なお、この実施例では、CRT表示器44
の横軸に距離を表示するようにしているので、CPU5
0が計算した骨髄20の肉厚L3 の値に対応するよう
に、CRT表示器44に表示される反射パルスBと反射
パルスCとの間隔をCRTコントローラ46によって調
整すれば、波形58から骨髄20の厚み、すなわち大腿
骨12と人工関節ステム14との隙間18の幅を直接把
握することができる。ただし、肉22の肉厚L1 および
大腿骨12の肉厚L2 については、この波形58におけ
る見掛けの距離L1 ´およびL2 ´に基づいて数2の各
計算を実行する必要がある。
In this embodiment, the CRT display 44
The distance is displayed on the horizontal axis of
If the interval between the reflection pulse B and the reflection pulse C displayed on the CRT display 44 is adjusted by the CRT controller 46 so that 0 corresponds to the calculated thickness L 3 of the bone marrow 20, the bone marrow from the waveform 58 can be obtained. The thickness of 20, that is, the width of the gap 18 between the femur 12 and the artificial joint stem 14 can be directly grasped. However, the thickness L 2 of the thickness L 1 and the femur 12 of meat 22, it is necessary to perform each calculation of the number 2 on the basis of the apparent distance L 1 'and L 2' in the waveform 58.

【0021】[0021]

【数2】 L1 =L1 ´×V1 /V3 2 =L2 ´×V2 /V3 発明者等は、以下に示す実験によりこの発明の実用性を
検証した。なお、実験では、単素子の探触子26´を用
いた。
L 1 = L 1 ′ × V 1 / V 3 L 2 = L 2 ′ × V 2 / V 3 The inventors of the present invention verified the practicality of the present invention by the following experiments. In the experiment, a single element probe 26 'was used.

【0022】測定試料の製作 図4,図6,図8および図10に示される、それぞれの
実験で用いられる試料70および72は、以下のように
して作製した。まず、豚の大腿骨を約30mmの長さに輪
切りにした骨片60および62を準備し、骨片60の内
部には12mm角の正方形断面の金属ステム64を挿入
し、骨片62の内部には直径12mmの円形断面の金属ス
テム66を挿入した。そして、それぞれの骨片60およ
び62の一方面に厚さ3mmのゴム板を接着剤で接着し、
ゴム板側を下にして水温38℃の水中につけた。骨髄6
8が液状化すると、それぞれの骨片60および62の他
方面をラップ材で密封した。このようにして作製した正
方形断面の金属ステム64を挿入した試料を第1試料7
0(図4,図8)とし、円形断面の金属ステム66を挿
入した試料を第2試料72(図6,図10)とした。そ
して、これらの試料70および72を用いて以下に示す
実験を行い、それぞれの実験における測定値とノギスに
より実測した測定値とを比較した。
Preparation of Measurement Samples Samples 70 and 72 shown in FIGS. 4, 6, 8 and 10 used in each experiment were prepared as follows. First, the bone pieces 60 and 62 are prepared by cutting the femur of a pig into slices of about 30 mm in length, and a metal stem 64 having a square section of 12 mm square is inserted into the bone piece 60. A metal stem 66 having a circular cross section with a diameter of 12 mm was inserted in the. Then, a rubber plate having a thickness of 3 mm is adhered to one surface of each of the bone pieces 60 and 62 with an adhesive,
It was immersed in water having a water temperature of 38 ° C. with the rubber plate side down. Bone marrow 6
When 8 was liquefied, the other side of each bone piece 60 and 62 was sealed with a wrap material. The sample in which the metal stem 64 having a square cross section manufactured in this manner was inserted was used as the first sample 7
The second sample 72 (FIGS. 6 and 10) was a sample in which the metal stem 66 having a circular cross section was inserted (FIG. 4, FIG. 8). Then, the following experiments were performed using these samples 70 and 72, and the measured values in each experiment were compared with the measured values measured with a caliper.

【0023】第1実験(リニア走査法) 図4に示すように、第1試料70を38℃の水中に探触
子26´から約19mm離した位置にステム64の上面が
水平になるように固定し、そして、探触子12をZ軸方
向に1〜2mmずつ移動させ、音響インピーダンスの異な
る境界面からのエコー位置を測定した。さらに、第1試
料70を90°,180°,270°と回転して、それ
ぞれの位置において同様に測定した。
First Experiment (Linear Scan Method) As shown in FIG. 4, the first sample 70 was placed in water at 38 ° C. so that the upper surface of the stem 64 was horizontal at a position about 19 mm away from the probe 26 '. The probe 12 was fixed, and the probe 12 was moved in the Z-axis direction by 1 to 2 mm each, and the echo position from the boundary surface having different acoustic impedance was measured. Furthermore, the 1st sample 70 was rotated 90 degrees, 180 degrees, and 270 degrees, and it measured similarly in each position.

【0024】図5は、ノギスにより実測した第1試料7
0の断面(実線)と第1実験により求めた骨の内面(○
印)および外面(●印)の位置とを示すグラフである。
なお、グラフ中の○印および●印の位置は、金属ステム
からのエコー位置を基準にして求めた(図7,図9およ
び図11において同じ)。 第2実験(リニア走査法) 図6に示すように、第2試料72を38℃の水中に探触
子26´から約19mm離した位置に固定し、そして、探
触子12をZ軸方向に1〜2mmずつ移動させ、音響イン
ピーダンスの異なる境界面からのエコー位置を測定し
た。さらに、第2試料72を90°,180°,270
°と回転して、それぞれの位置において同様に測定し
た。
FIG. 5 shows the first sample 7 actually measured by calipers.
0 cross-section (solid line) and the inner surface of the bone obtained by the first experiment (○
3 is a graph showing the positions of () and the outer surface (●).
The positions of the circles and the circles in the graph were determined based on the echo position from the metal stem (same in FIGS. 7, 9 and 11). Second Experiment (Linear Scanning Method) As shown in FIG. 6, the second sample 72 was fixed in water at 38 ° C. at a position about 19 mm away from the probe 26 ′, and the probe 12 was moved in the Z-axis direction. It was moved by 1 to 2 mm each, and the echo position from the boundary surface with different acoustic impedance was measured. Further, the second sample 72 is set to 90 °, 180 °, 270
Rotation was carried out at ° and the same measurement was performed at each position.

【0025】図7は、ノギスにより実測した第2試料7
2の断面(実線)と第2実験により求めた骨の内面(○
印)および外面(●印)の位置とを示すグラフである。 第3実験(サーキュラ走査法) 図8に示すように、38℃の水中に第1試料70を探触
子26´から約19mm離した位置に取り付け、そして、
探触子26´を固定した状態で第1試料70をα=0
°,90°,180°,270°と回転させながら骨や
金属ステムからのエコー位置を調べ、骨内部の厚さを測
定した。
FIG. 7 shows a second sample 7 actually measured by a caliper.
2 cross section (solid line) and the inner surface of the bone (○)
3 is a graph showing the positions of () and the outer surface (●). Third Experiment (Circular Scanning Method) As shown in FIG. 8, the first sample 70 was mounted in water at 38 ° C. at a position about 19 mm away from the probe 26 ′, and
With the probe 26 ′ fixed, the first sample 70 is α = 0.
The echo positions from the bone and the metal stem were examined while rotating at 90 °, 90 °, 180 °, and 270 °, and the thickness inside the bone was measured.

【0026】図9は、ノギスにより実測した第1試料7
0の断面(実線)と第3実験により求めた骨の内面(○
印)および外面(●印)の位置とを示すグラフである。 第4実験(サーキュラ走査法) 図10に示すように、第2試料72を探触子26´から
約19mm離した位置に取り付け、そして、探触子26´
を固定した状態で第2試料72をα=0°,30°,6
0°,…,360°と回転させながら、骨や金属ステム
からのエコー位置を調べ、骨内部の厚さを測定した。
FIG. 9 shows the first sample 7 actually measured by calipers.
0 cross section (solid line) and the inner surface of the bone obtained by the third experiment (○
3 is a graph showing the positions of () and the outer surface (●). Fourth Experiment (Circular Scanning Method) As shown in FIG. 10, the second sample 72 was attached at a position separated by about 19 mm from the probe 26 ′, and the probe 26 ′ was attached.
The second sample 72 with α fixed at 0 = 0 °, 30 °, 6
While rotating at 0 °, ..., 360 °, the echo position from the bone or the metal stem was examined, and the thickness inside the bone was measured.

【0027】図11は、ノギスにより実測した第2試料
72の断面(実線)と第4実験により求めた骨の内面
(○印)および外面(●印)の位置とを示すグラフであ
る。以上の各実験より、超音波を用いて金属ステムが挿
入された骨内部の骨や骨髄の厚さを測定した結果(特に
骨髄の厚さすなわち隙間の幅の測定結果)は、リニア走
査法およびサーキュラ走査法のいずれにおいても、ま
た、第1試料70および第2試料72のいずれにおいて
もノギスで実測した結果とかなりよく一致することが確
認できた。これにより、この発明の測定装置および測定
方法の実用性が明らかとなった。
FIG. 11 is a graph showing the cross section (solid line) of the second sample 72 actually measured by a caliper and the positions of the inner surface (O mark) and the outer surface (● mark) of the bone obtained by the fourth experiment. From the above experiments, the results of measuring the thickness of bone and bone marrow inside the bone in which the metal stem was inserted using ultrasonic waves (particularly the measurement result of the thickness of bone marrow, that is, the width of the gap) were obtained by the linear scanning method and It was confirmed that the results obtained in both the circular scanning method and the first sample 70 and the second sample 72 were in good agreement with the results actually measured with the caliper. From this, the practicality of the measuring device and the measuring method of the present invention became clear.

【0028】なお、実際の装置では、図1の波形整形回
路38からAD変換器40に信号を与えるとき、雑音の
影響を回避するように、一定の閾値でレベル弁別したパ
ルスだけを送るようにしてもよい。
In an actual device, when a signal is applied from the waveform shaping circuit 38 of FIG. 1 to the AD converter 40, only the pulse level-discriminated with a certain threshold is sent so as to avoid the influence of noise. May be.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の実施例における超音波パルスの伝播状態
を示す図解図である。
FIG. 2 is an illustrative view showing a propagation state of an ultrasonic pulse in the embodiment of FIG.

【図3】図1の実施例のCRT表示器により表示される
波形を示す図解図である。
3 is an illustrative view showing a waveform displayed by the CRT display of the embodiment of FIG. 1. FIG.

【図4】第1実験の方法を示す図解図である。FIG. 4 is an illustrative view showing a method of a first experiment.

【図5】第1試料の実測値と第1実験による測定値とを
比較するグラフである。
FIG. 5 is a graph comparing measured values of the first sample with measured values of the first experiment.

【図6】第2実験の方法を示す図解図である。FIG. 6 is an illustrative view showing a method of a second experiment.

【図7】第2試料の実測値と第2実験による測定値とを
比較するグラフである。
FIG. 7 is a graph comparing measured values of a second sample with measured values of a second experiment.

【図8】第3実験の方法を示す図解図である。FIG. 8 is an illustrative view showing a method of a third experiment.

【図9】第1試料の実測値と第3実験による測定値とを
比較するグラフである。
FIG. 9 is a graph comparing measured values of the first sample with measured values of a third experiment.

【図10】第4実験の方法を示す図解図である。FIG. 10 is an illustrative view showing a method of a fourth experiment.

【図11】第2試料の実測値と第4実験による測定値と
を比較するグラフである。
FIG. 11 is a graph comparing measured values of the second sample with measured values of the fourth experiment.

【図12】大腿骨内に人工関節ステムが挿入された状態
を示す図解図である。
FIG. 12 is an illustrative view showing a state in which an artificial joint stem is inserted into the femur.

【符号の説明】[Explanation of symbols]

10 …隙間測定装置 12 …大腿骨 14 …人工関節ステム 18 …隙間 24 …探触素子 26 …探触子 30 …発振器 32 …送波パルスドライバ 34 …反射パルスレシーバ 44 …CRT表示器 50 …CPU 10 ... Gap measuring device 12 ... Femur 14 ... Artificial joint stem 18 ... Gap 24 ... Probe element 26 ... Probe 30 ... Oscillator 32 ... Transmission pulse driver 34 ... Reflection pulse receiver 44 ... CRT display 50 ... CPU

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井手 隆俊 山梨県中巨摩郡玉穂村下河東1110 山梨医 科大学内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takatoshi Ide 1110 Shimogahito, Tamabo-mura, Nakakoma-gun, Yamanashi Yamanashi Medical University

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】骨の内部に挿入された人工関節ステムと前
記骨との間に生じる隙間を測定するための隙間測定装置
であって、 前記骨の内部に超音波パルスを送信する送信手段、 前記超音波パルスを送信したときの前記骨の内面で反射
する第1反射パルスおよび前記人工関節ステムの外面で
反射する第2反射パルスのそれぞれを受信する受信手
段、および前記第1反射パルスと前記第2反射パルスと
の時間間隔に基づいて前記隙間を測定する測定手段を備
える、骨と人工関節ステムとの隙間測定装置。
1. A gap measuring device for measuring a gap between an artificial joint stem inserted into a bone and the bone, the transmitting means transmitting an ultrasonic pulse to the inside of the bone. Receiving means for receiving each of the first reflected pulse reflected on the inner surface of the bone and the second reflected pulse reflected on the outer surface of the artificial joint stem when the ultrasonic pulse is transmitted, and the first reflected pulse and the A gap measuring device between a bone and an artificial joint stem, comprising a measuring means for measuring the gap based on a time interval between the second reflected pulse and the second reflected pulse.
【請求項2】前記測定手段は前記第1反射パルスおよび
前記第2反射パルスのそれぞれの波形を表示する表示手
段を含む、請求項1記載の骨と人工関節ステムとの隙間
測定装置。
2. The gap measuring device between a bone and an artificial joint stem according to claim 1, wherein said measuring means includes display means for displaying respective waveforms of said first reflected pulse and said second reflected pulse.
【請求項3】前記測定手段は前記第1反射パルスと前記
第2反射パルスとの時間間隔と前記隙間における音速と
に基づいて前記隙間を演算する演算手段を含む、請求項
1または2記載の骨と人工関節ステムとの隙間測定装
置。
3. The measuring device according to claim 1, wherein the measuring device includes a calculating device for calculating the gap based on a time interval between the first reflection pulse and the second reflection pulse and a sound velocity in the gap. Gaps between bone and artificial joint stem.
【請求項4】骨の内部に挿入された人工関節ステムと前
記骨との間に生じる隙間を測定する、隙間測定方法であ
って、 (a) 前記骨の内部に超音波パルスを送信し、 (b) 前記骨の内面で反射する第1反射パルスと前記人工
関節ステムの外面で反射する第2反射パルスとの時間間
隔を求め、そして (c) 前記時間間隔と前記隙間における音速とに基づいて
前記隙間を測定する、骨と人工関節ステムとの隙間測定
方法。
4. A gap measuring method for measuring a gap generated between an artificial joint stem inserted into a bone and the bone, comprising: (a) transmitting an ultrasonic pulse to the inside of the bone; (b) The time interval between the first reflected pulse reflected on the inner surface of the bone and the second reflected pulse reflected on the outer surface of the artificial joint stem is determined, and (c) based on the time interval and the speed of sound in the gap. A method for measuring a gap between a bone and an artificial joint stem, which measures the gap.
JP27094791A 1991-10-18 1991-10-18 Apparatus and method for measuring gap between bone and artificial joint stem Expired - Fee Related JP3274694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27094791A JP3274694B2 (en) 1991-10-18 1991-10-18 Apparatus and method for measuring gap between bone and artificial joint stem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27094791A JP3274694B2 (en) 1991-10-18 1991-10-18 Apparatus and method for measuring gap between bone and artificial joint stem

Publications (2)

Publication Number Publication Date
JPH05103804A true JPH05103804A (en) 1993-04-27
JP3274694B2 JP3274694B2 (en) 2002-04-15

Family

ID=17493233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27094791A Expired - Fee Related JP3274694B2 (en) 1991-10-18 1991-10-18 Apparatus and method for measuring gap between bone and artificial joint stem

Country Status (1)

Country Link
JP (1) JP3274694B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028316A1 (en) * 1998-11-08 2000-05-18 Sunlight Medical, Ltd. Bone velocity determination
US7022076B1 (en) 1998-11-08 2006-04-04 Sunlight Medical Ltd. Bone velocity determination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739931B2 (en) 2000-09-18 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028316A1 (en) * 1998-11-08 2000-05-18 Sunlight Medical, Ltd. Bone velocity determination
US7022076B1 (en) 1998-11-08 2006-04-04 Sunlight Medical Ltd. Bone velocity determination
CN100406884C (en) * 1998-11-08 2008-07-30 阳光医学有限公司 Bone velocity determination

Also Published As

Publication number Publication date
JP3274694B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
JPH06510598A (en) Ultrasonic testing method and device using audible output
CN102724917B (en) By propagating the method and apparatus that shearing wave measures mammalian soft tissue physical parameter
US6328695B1 (en) Method and an apparatus for investigating material properties of bone using ultrasound
JPH05506371A (en) Ultrasonic testing method and device for determining tubular body position and dimensions
JPS627856B2 (en)
WO1990001903A1 (en) Method and apparatus for ultrasonic bone analysis
Moilanen et al. Thickness sensitivity of ultrasound velocity in long bone phantoms
Mano et al. Development of novel ultrasonic bone densitometry using acoustic parameters of cancellous bone for fast and slow waves
CA1137616A (en) Ultrasonic diagnostic apparatus
Kelsey et al. Applications of ultrasound in speech research
WO1997026826A1 (en) Method and apparatus for detecting foreign bodies in the medullary cavity
JP4381118B2 (en) Ultrasonic diagnostic equipment
JP3274694B2 (en) Apparatus and method for measuring gap between bone and artificial joint stem
JP2006334273A (en) Ultrasonic diagnostic equipment
KR20230124893A (en) Systems and methods for tissue characterization using multi-aperture ultrasound
JP3404077B2 (en) Intramedullary nail lateral stop hole detection device
JP3280473B2 (en) Ultrasound diagnostic equipment
Yoshizawa et al. Transducer vibration method for interference-based reflection-type in vivo measurement for acoustic impedance of bone
KR840002100B1 (en) Ultrasonic diagnosing apparatus
Laugier et al. Ultrasound parametric imaging of bone in vivo
Lee Dependencies of phase velocities of ultrasonic guided waves on cortical thickness in soft tissue-bone mimicking phantoms
JPH0548130B2 (en)
Lee Ultrasonic methods for measuring the cortical bone thickness in bovine tibia in vitro
JP3335687B2 (en) Ultrasound diagnostic equipment
Saïed et al. High-resolution ultrasonography for analysis of age-and disease-related cartilage changes

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020122

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees