JPH0510330A - Static pressure bearing device - Google Patents

Static pressure bearing device

Info

Publication number
JPH0510330A
JPH0510330A JP3159224A JP15922491A JPH0510330A JP H0510330 A JPH0510330 A JP H0510330A JP 3159224 A JP3159224 A JP 3159224A JP 15922491 A JP15922491 A JP 15922491A JP H0510330 A JPH0510330 A JP H0510330A
Authority
JP
Japan
Prior art keywords
air supply
porous member
bearing
pressurized fluid
supply hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3159224A
Other languages
Japanese (ja)
Inventor
Shinichi Chiba
伸一 千葉
Eiji Osanai
英司 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3159224A priority Critical patent/JPH0510330A/en
Publication of JPH0510330A publication Critical patent/JPH0510330A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0618Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0622Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/0666Details of hydrostatic bearings independent of fluid supply or direction of load of bearing pads

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To stabilize the dynamic attitude as well as the static attitude by supporting a moving body with high rigidity. CONSTITUTION:In a static pressure bearing device, a pressure fluid is fed to a bearing section B between a porous member 102 and a guide member 106, and a moving body 101 connected to the porous member 102 is supported and moved in no contact with the guide member 106. At least one or more air inlets 107 are provided on the porous member 102, and an exhaust groove 104 for exhausting the pressure fluid is provided around the air inlets 107 of the face on the guide member 106 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造装置のXYス
テージや精密工作機械、精密測定機器等に用いられる静
圧軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic bearing device used in XY stages of semiconductor manufacturing equipment, precision machine tools, precision measuring instruments and the like.

【0002】[0002]

【従来の技術】軸受部に加圧流体を供給し、その静圧力
により軸受部材どうしを非接触で支持する流体軸受を用
いた高精度の静圧軸受装置が従来より用いられている。
静圧軸受の静圧軸受パッドとしては表面絞り、自成絞り
およびオリフィス絞り等がある。
2. Description of the Related Art A high-precision hydrostatic bearing device using a hydrodynamic bearing which supplies pressurized fluid to a bearing portion and supports the bearing members in a non-contact manner by the static pressure thereof has been conventionally used.
As the hydrostatic bearing pad of the hydrostatic bearing, there are a surface diaphragm, a self-made diaphragm and an orifice diaphragm.

【0003】また、さらなる高剛性化および高精度化を
図った静圧軸受装置として、単一の多孔質部材により軸
受部を構成し、軸受部に加圧流体を供給してその静圧力
により軸受部材どうしを非接触で支持する静圧軸受装置
が特開昭58−025637号公報に記載されている。
この静圧軸受装置では、移動体が案内面の形状に追従し
て移動する構成であるために直進性が悪くなることがあ
り、これを防ぐために移動体の位置によって静圧力を変
化させて直進性を補償する方法がとられている。
Further, as a static pressure bearing device having a higher rigidity and a higher precision, the bearing portion is composed of a single porous member, a pressurized fluid is supplied to the bearing portion, and the static pressure is applied to the bearing portion. A static pressure bearing device for supporting members in a non-contact manner is described in Japanese Patent Application Laid-Open No. 58-025637.
In this hydrostatic bearing device, since the moving body follows the shape of the guide surface, the straightness may deteriorate.To prevent this, the static pressure is changed depending on the position of the moving body to go straight. The method of compensating for sex is taken.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、静圧軸
受の静圧軸受パッドとして表面絞り、自成絞りおよびオ
リフィス絞り等を用いたものは、主に移動体の静的な姿
勢の精度を補償しようとするものであり、多孔質絞りの
静圧軸受パッドを用いたものと比べるとガイドとして移
動体を支持する軸受部の剛性が低く、移動体の動的な姿
勢が安定化されないという問題点がある。
However, the static pressure bearing pad of the static pressure bearing using the surface diaphragm, the self-made diaphragm, and the orifice diaphragm mainly compensates the accuracy of the static attitude of the moving body. The rigidity of the bearing portion that supports the moving body as a guide is low compared to that using the static pressure bearing pad of the porous throttle, and the problem that the dynamic posture of the moving body is not stabilized is there.

【0005】また、上記のいずれの静圧軸受において
も、同一部分にガイドとアクチュエータの両方の機能を
持たせているため、移動体を高剛性で支持すること、動
的な姿勢をも精度よく制御するという2つの条件を同時
に満たすことが困難となっていた。本発明は上述したよ
うな従来の技術が有する問題点に鑑みてなされたもので
あって、移動体を高剛性で支持し、静的な姿勢とともに
動的な姿勢も安定化された静圧軸受装置を実現すること
を目的とする。
Further, in any of the above hydrostatic bearings, since the same portion has both the function of a guide and the function of an actuator, it is possible to support the moving body with high rigidity and accurately maintain a dynamic posture. It has been difficult to simultaneously satisfy the two conditions of controlling. The present invention has been made in view of the problems of the above-described conventional techniques, and is a static pressure bearing that supports a moving body with high rigidity and that stabilizes both a static posture and a dynamic posture. The purpose is to realize the device.

【0006】[0006]

【課題を解決するための手段】本発明の静圧軸受装置
は、多孔質部材とガイド部材との間の軸受部に加圧流体
を供給することにより前記多孔質部材と連結された移動
体をガイド部材と非接触に支持して移動させる静圧軸受
装置において、前記多孔質部材には、少なくとも1つ以
上の給気孔が設けられ、ガイド部材側の面の給気孔の周
囲には加圧流体を排気するための排気溝が設けられてい
る。
SUMMARY OF THE INVENTION A hydrostatic bearing device according to the present invention includes a moving body connected to a porous member by supplying a pressurized fluid to a bearing portion between the porous member and a guide member. In a hydrostatic bearing device that is supported and moved in a non-contact manner with a guide member, at least one air supply hole is provided in the porous member, and a pressurized fluid is provided around the air supply hole on the guide member side surface. An exhaust groove for exhausting the exhaust gas is provided.

【0007】[0007]

【作用】多孔質部材とガイド部材との間に供給される加
圧流体は、給気孔を通ったものと、多孔質部材を通った
ものの2通りとなる。これらの加圧流体は多孔質部材の
外縁部や排気溝から排気されるが、排気溝は給気孔の周
囲に設けられるので、給気孔を通って供給された加圧流
体のほとんどが排気溝から排気されることになり、各加
圧流体を選択的に用いることができる。
The pressurized fluid supplied between the porous member and the guide member comes in two types, one that has passed through the air supply hole and the other that has passed through the porous member. These pressurized fluids are exhausted from the outer edge of the porous member and the exhaust groove, but since the exhaust groove is provided around the air supply hole, most of the pressurized fluid supplied through the air supply hole is discharged from the exhaust groove. It will be evacuated and each pressurized fluid can be selectively used.

【0008】具体的には、給気孔を通った加圧流体の量
が多孔質部材を通った加圧流体の量よりも多いものとな
るように多孔質部材の材質や給気孔の径を選択すること
により、給気孔を通った加圧流体をアクチュエータとし
て用い、多孔質部材を通った加圧流体をガイドとして用
いることができる。
Specifically, the material of the porous member and the diameter of the air supply hole are selected so that the amount of the pressurized fluid passing through the air supply hole is larger than the amount of the pressurized fluid passing through the porous member. By doing so, the pressurized fluid that has passed through the air supply hole can be used as an actuator, and the pressurized fluid that has passed through the porous member can be used as a guide.

【0009】[0009]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の第1の実施例の要部構成を
示す図であり、(a)は断面図、(b)は底面図であ
る。本実施例はハウジング105に取り付けられた移動
体101を、ガイド部材106の案内面に対して浮上さ
せて、Z方向に支持するものである。この他のX方向お
よびY方向に対して設けられた静圧軸受による支持機構
については説明を簡単にするために省略した。
Embodiments of the present invention will now be described with reference to the drawings. 1A and 1B are views showing a configuration of a main part of a first embodiment of the present invention, wherein FIG. 1A is a sectional view and FIG. 1B is a bottom view. In this embodiment, the moving body 101 mounted on the housing 105 is floated with respect to the guide surface of the guide member 106 and is supported in the Z direction. The other supporting mechanisms by the hydrostatic bearings provided in the X and Y directions are omitted for the sake of simplicity.

【0010】ハウジング105のガイド部材106側の
面には、流体絞りとして作用する多孔質部材102が接
着等の手段によって取り付けられており、上記の移動体
101は反ガイド部材106側の面に設けられている。
円盤状の移動体101の略中央部には装置外部に設置さ
れた流体ポンプ(不図示)より排出される加圧流体を取
り入れるための主給気孔103が設けられている。ハウ
ジング105の内部には、主排気孔103と連通する給
気室108が形成されている。この給気室108は、移
動体101側では主排気孔103と同じ径であり、多孔
質部材102側では多孔質部材102の外径に拡げられ
たもので、主排気孔103より導入された加圧流体を多
孔質部材102に、その全面に拡散させて供給するもの
である。
A porous member 102 acting as a fluid throttle is attached to the surface of the housing 105 on the guide member 106 side by means such as adhesion, and the moving body 101 is provided on the surface on the side opposite to the guide member 106. Has been.
A main air supply hole 103 for taking in a pressurized fluid discharged from a fluid pump (not shown) installed outside the apparatus is provided at a substantially central portion of the disk-shaped moving body 101. An air supply chamber 108 that communicates with the main exhaust hole 103 is formed inside the housing 105. The air supply chamber 108 has the same diameter as the main exhaust hole 103 on the moving body 101 side, is expanded to the outer diameter of the porous member 102 on the porous member 102 side, and is introduced from the main exhaust hole 103. The pressurized fluid is supplied to the porous member 102 by diffusing it over the entire surface thereof.

【0011】多孔質部材102の略中央部には主給気孔
103から供給された流体を絞るための給気孔107が
設けられ、そのガイド部材106側の面には多孔質部材
102とガイド部材106との間の加圧流体を排気する
ための約50μm以上の深さの排気溝104が設けられ
ている。給気孔107は、移動体101側の径が主給気
孔103よりやや小さなものとされ、ガイド部材106
側の径は移動体101側の径よりもさらに小さなものと
されている。ガイド部材106側の面に設けられる排気
溝104は、図1(b)に示すように給気孔107を囲
む円形状の部分と、該円形状部分と多孔質部材102の
外周部とを直線的に結ぶ部分とから構成されている。な
お、図1(a)において、通常の矢印は流体の流れの向
きを示し、矢印fは軸受部に加わる力の向きを示してい
る。
An air supply hole 107 for restricting the fluid supplied from the main air supply hole 103 is provided in the substantially central portion of the porous member 102, and the surface of the guide member 106 side thereof has the porous member 102 and the guide member 106. An exhaust groove 104 having a depth of about 50 μm or more is provided for exhausting the pressurized fluid between and. The diameter of the air supply hole 107 on the moving body 101 side is slightly smaller than that of the main air supply hole 103.
The diameter of the side is smaller than the diameter of the moving body 101 side. As shown in FIG. 1B, the exhaust groove 104 provided on the surface of the guide member 106 has a circular portion surrounding the air supply hole 107 and a linear portion between the circular portion and the outer peripheral portion of the porous member 102. It is composed of a part connected to. In addition, in FIG. 1A, a normal arrow indicates the direction of fluid flow, and an arrow f indicates the direction of force applied to the bearing portion.

【0012】上記のような構成の本実施例において、主
給気孔103を介して給気室108に加圧流体が供給さ
れると、排気溝104と多孔質部材102の外周部との
間の第1の軸受部Aには、多孔質部材102を透過して
供給された加圧流体によって流体潤滑膜が形成され、多
孔質絞りと同様の軸受特性が得られる。排気溝104と
給気孔107との間の第2の軸受部Bには多孔質部材1
02を透過した加圧流体と給気孔107を通った加圧流
体とが供給される。これらの加圧流体は第2の軸受部B
に流体潤滑膜を形成した後に排気溝104より排気され
る。
In the present embodiment having the above-described structure, when the pressurized fluid is supplied to the air supply chamber 108 through the main air supply hole 103, the space between the exhaust groove 104 and the outer peripheral portion of the porous member 102 is increased. A fluid lubrication film is formed on the first bearing portion A by the pressurized fluid that has permeated the porous member 102 and is supplied, and the same bearing characteristics as those of the porous throttle can be obtained. The porous member 1 is provided in the second bearing portion B between the exhaust groove 104 and the air supply hole 107.
The pressurized fluid that has passed through 02 and the pressurized fluid that has passed through the air supply hole 107 are supplied. These pressurized fluids are used for the second bearing B
After the fluid lubrication film is formed on the surface, the gas is exhausted from the exhaust groove 104.

【0013】多孔質部材102の材質(主に流体透過
率)や給気孔107の径は、多孔質部材102を透過す
る加圧流体よりも給気孔107を流れる加圧流体の流量
が多くなるものが選択されている。このため、第2の軸
受部Bにおいては、給気孔107を介して供給される加
圧流体による流体潤滑膜が支配的に形成され、この部分
においては自成絞りまたはオリフィス絞りの軸受特性が
得られる。ここで、主給気孔101に供給される加圧流
体の流量を調節して圧力を変化させると移動体101は
力fの変化による影響を受けてZ方向に移動する。
The material (mainly fluid permeability) of the porous member 102 and the diameter of the air supply hole 107 are such that the flow rate of the pressurized fluid flowing through the air supply hole 107 is larger than that of the pressurized fluid passing through the porous member 102. Is selected. Therefore, in the second bearing portion B, the fluid lubrication film by the pressurized fluid supplied through the air supply hole 107 is predominantly formed, and in this portion, the bearing characteristic of the self-made throttle or the orifice throttle is obtained. Be done. Here, when the flow rate of the pressurized fluid supplied to the main air supply holes 101 is adjusted to change the pressure, the moving body 101 is affected by the change in the force f and moves in the Z direction.

【0014】したがって、多孔質部材102とガイド部
材106との間に形成される流体潤滑膜は、多孔質静圧
軸受の特性を有する第1の軸受部Aが、主に移動体10
1をZ方向に支持する高剛性のガイドとして作用し、自
成絞りまたはオリフィス絞りの軸受特性を有する第2の
軸受部Bでは、主に移動体101をガイド部材106に
相対するZ方向に動かすためのアクチュエータとして作
用する。
Therefore, in the fluid lubrication film formed between the porous member 102 and the guide member 106, the first bearing portion A having the characteristics of the porous hydrostatic bearing is mainly used for the moving body 10.
1 acts in the Z direction as a high-rigidity guide, and in the second bearing portion B having the bearing characteristics of the self-made throttle or the orifice throttle, the movable body 101 is mainly moved in the Z direction opposite to the guide member 106. Acts as an actuator for.

【0015】上記のように本実施例においては、給気孔
107の周囲に排気溝104を設けるという簡単な加工
で、供給された加圧流体による浮上力をガイドとして用
いる第1の軸受部Aと、アクチュエータとして用いる第
2の軸受部Bとに機能を分散させ、かつこれらの軸受部
を一体として構成することにより、ガイドとして移動体
を支持する軸受部の剛性を高くするとともにアクチュエ
ータとして移動体の動的な姿勢を精度よく制御すること
ができ、また、該姿勢制御の応答速度を向上することが
できた。
As described above, in this embodiment, the first bearing portion A that uses the levitation force of the supplied pressurized fluid as a guide is formed by a simple process of providing the exhaust groove 104 around the air supply hole 107. , The function is distributed to the second bearing portion B used as the actuator, and these bearing portions are integrally configured to increase the rigidity of the bearing portion that supports the moving body as a guide and It was possible to control the dynamic posture with high accuracy and to improve the response speed of the posture control.

【0016】図2は本発明の第2の実施例の要部構成を
示す断面図である。本実施例は図1に示した第1の実施
例の第2の軸受部Bに対し、数十μm程度の凹部201
を設けた軸受部Cとして第1の軸受部Aとの間に段差を
設けたものである。この他の構成は、図1に示した第1
の実施例と同様であるため、図1と同じ番号を付して説
明は省略する。
FIG. 2 is a sectional view showing the structure of the essential parts of the second embodiment of the present invention. In this embodiment, the concave portion 201 having a size of about several tens of μm is formed in the second bearing portion B of the first embodiment shown in FIG.
As the bearing portion C provided with, a step is provided between the bearing portion C and the first bearing portion A. The other structure is the same as the first structure shown in FIG.
Since it is similar to the embodiment of FIG.

【0017】軸受部Cでは給気孔107を介して供給さ
れる加圧流体によって流体潤滑膜が形成されるが、第1
の実施例と同様に多孔質部材102を透過して供給され
る加圧流体よりも給気孔107を介して供給される加圧
流体の流量が非常におおきなものとなるように多孔質部
材102の形状や給気孔107の径が定められているの
で、第1の軸受部Aに対して段差が設けられた軸受部C
においては、その下面全体を流体絞りとする面絞りの軸
受特性となる。
In the bearing portion C, a fluid lubrication film is formed by the pressurized fluid supplied through the air supply hole 107.
In the same manner as in the above embodiment, the flow rate of the pressurized fluid supplied through the air supply holes 107 is much larger than that of the pressurized fluid supplied through the porous member 102. Since the shape and the diameter of the air supply hole 107 are determined, the bearing portion C having a step with respect to the first bearing portion A is provided.
In the above, the bearing characteristics of the surface throttle having the entire lower surface thereof as the fluid throttle are obtained.

【0018】本実施例は上記のようにアクチュエータと
して機能する軸受部を、第1の実施例において自成絞り
またはオリフィス絞りの軸受特性であった第2の軸受部
Bから面絞りの軸受特性を示す軸受部Cに置き換えたこ
とにより、より広い面積で圧力変化を生じさせ、静圧軸
受の応答特性を向上することができた。図3は本発明の
第3の実施例の要部構成を示す図であり、(a)は断面
図、(b)は底面図である。
In this embodiment, as described above, the bearing portion functioning as an actuator is changed from the second bearing portion B which has the bearing characteristic of the self-made throttle or the orifice throttle in the first embodiment to the bearing characteristic of the face throttle. By replacing with the bearing portion C shown, it was possible to cause a pressure change in a wider area and improve the response characteristics of the hydrostatic bearing. 3A and 3B are diagrams showing a main part configuration of a third embodiment of the present invention, FIG. 3A being a sectional view and FIG. 3B being a bottom view.

【0019】第1の実施例においては1個の給気孔10
7が多孔質部材102の略中央部に設けられていたのに
対し、本実施例においては4個の給気孔307が多孔質
部材302の略中心から等しい位置に均等配置されてい
る。多孔質部材302のガイド部材106側の面の各給
気孔307の周囲には、多孔質部材302の外周部と連
通する約50μm以上の深さの排気溝304がそれぞれ
設けられている。この他の構成は、図1に示した第1の
実施例と同様であるため、図1と同じ番号を付して説明
は省略する。
In the first embodiment, one air supply hole 10 is provided.
7 is provided in the substantially central portion of the porous member 102, in the present embodiment, four air supply holes 307 are evenly arranged at substantially equal positions from the substantially center of the porous member 302. Around each air supply hole 307 on the surface of the porous member 302 on the guide member 106 side, an exhaust groove 304 having a depth of about 50 μm or more and communicating with the outer peripheral portion of the porous member 302 is provided. The other structure is similar to that of the first embodiment shown in FIG. 1, and therefore the same reference numerals as those in FIG.

【0020】本実施例においてはガイド部材106に対
する軸受部を、多孔質部材102の略中央部に設けられ
たガイドとして機能する第1の軸受部Aと、その周囲に
均等配置されたアクチュエータとして機能する4つの第
2の軸受部Bとに分けられている。このため、移動体1
01に加わるモーメントが4つの第2の軸受部Bに分散
できるので、第1および第2の実施例のものに比べてモ
ーメントに強い構造となっており、本実施例を単独で用
いたとしても移動体101にはローリングやピッチング
が生じにくいものとなっている。
In the present embodiment, the bearing portion for the guide member 106 functions as the first bearing portion A that functions as a guide provided in the substantially central portion of the porous member 102 and the actuators that are evenly arranged around the first bearing portion A. It is divided into four second bearing portions B that are used. Therefore, the moving body 1
Since the moment applied to 01 can be distributed to the four second bearing portions B, the structure is stronger against the moment than those of the first and second embodiments, and even if this embodiment is used alone. Rolling or pitching does not easily occur in the moving body 101.

【0021】なお、本実施例においては4つの第2の軸
受部Bには給気室108に貯えられた加圧流体が供給さ
れるものとして説明したが、各軸受部に給気室をそれぞ
れ独立に設け、流量を個々に制御して浮上力を調節する
ものとしてもよい。このような構成とすることにより、
単独の静圧軸受でローリングおよびピッチングを制御す
ることが可能となる。
In this embodiment, the explanation has been given on the assumption that the pressurized fluid stored in the air supply chamber 108 is supplied to the four second bearing portions B, but the air supply chambers are respectively provided to the respective bearing portions. It may be provided independently and the levitation force may be adjusted by individually controlling the flow rate. With this configuration,
It is possible to control rolling and pitching with a single hydrostatic bearing.

【0022】また、本実施例における第2の軸受部Bは
第1の実施例と同様の自成絞りまたはオリフィス絞りの
軸受特性のものであるが、これを第2の実施例のものと
同様に面絞りの軸受特性を示す軸受部Cに置き換えても
当然よい。図4は本発明の第4の実施例の要部構成を示
す図であり、(a)は断面図、(b)は底面図である。
Further, the second bearing portion B in this embodiment has the same bearing characteristics as the self-made throttle or the orifice throttle as in the first embodiment, but this is the same as that in the second embodiment. Needless to say, the bearing portion C may be replaced with the bearing portion C that exhibits the bearing characteristics of the surface stop. 4A and 4B are diagrams showing a configuration of a main part of a fourth embodiment of the present invention, wherein FIG. 4A is a sectional view and FIG. 4B is a bottom view.

【0023】第1乃至第3の各実施例においては加圧流
体を貯える給気室が1つのものであったのに対し、本実
施例はガイドとして機能する軸受部に供給される加圧流
体のみを貯える主給気室410を設けたものである。本
実施例も第1乃至第3の各実施例と同様にハウジング4
05に取り付けられた移動体401を、ガイド部材40
6の案内面に対して浮上させて、Z方向に移動させるも
のである。
In each of the first to third embodiments, there is one air supply chamber for storing the pressurized fluid, but in the present embodiment, the pressurized fluid supplied to the bearing portion functioning as a guide. A main air supply chamber 410 for storing only the gas is provided. In this embodiment as well, as in the first to third embodiments, the housing 4 is used.
The moving member 401 attached to the guide member 40
6 is levitated against the guide surface and moved in the Z direction.

【0024】ハウジング405のガイド部材406側の
面には、多孔質部材402が接着等の手段によって取り
付けられており、上記の移動体401は反ガイド部材4
06側の面に設けられている。円盤状の移動体401の
略中央部には装置外部に設置された流体ポンプ(不図
示)より排出される加圧流体を取り入れるための主給気
孔403が設けられている。ハウジング405の内部に
は主給気室408が形成されている。この主給気室40
8は、ハウジング405の外周部に設けられた副給気孔
409より供給される加圧流体を貯えるものである。
A porous member 402 is attached to the surface of the housing 405 on the side of the guide member 406 by means of adhesion or the like, and the moving body 401 is opposite to the guide member 4.
It is provided on the 06-side surface. A main air supply hole 403 for taking in a pressurized fluid discharged from a fluid pump (not shown) installed outside the apparatus is provided at a substantially central portion of the disk-shaped moving body 401. A main air supply chamber 408 is formed inside the housing 405. This main air supply room 40
Reference numeral 8 stores the pressurized fluid supplied from the auxiliary air supply hole 409 provided on the outer peripheral portion of the housing 405.

【0025】多孔質部材402の略中央部には主給気孔
403から供給された流体を絞るための給気孔407が
設けられ、そのガイド部材406側の面には図4(b)
に示すように給気孔407を囲む円形状の約50μm以
上の深さの排気溝404が設けられている。給気孔40
7は、移動体401側の径が主給気孔403よりやや小
さなものとされ、ガイド部材406側の径は移動体40
1側の径よりもさらに小さなものとされている。主給気
孔103の周囲には、移動体401,ハウジング405
および多孔質部材402を貫く4つの排気孔411が均
等に配設されている。これらの各排気孔411の間は上
記の排気溝404によって結ばれている。
An air supply hole 407 for restricting the fluid supplied from the main air supply hole 403 is provided in the substantially central portion of the porous member 402, and the surface on the guide member 406 side is shown in FIG. 4 (b).
As shown in FIG. 3, a circular exhaust groove 404 having a depth of about 50 μm or more is provided surrounding the air supply hole 407. Air supply hole 40
7, the diameter of the moving body 401 side is slightly smaller than that of the main air supply hole 403, and the diameter of the guide member 406 side is 7
It is smaller than the diameter on the 1st side. Around the main air supply hole 103, a moving body 401 and a housing 405 are provided.
The four exhaust holes 411 that penetrate the porous member 402 are evenly arranged. The exhaust grooves 404 connect the exhaust holes 411.

【0026】上記のような構成の本実施例において、排
気溝404と多孔質部材402の外周部との間の第1の
軸受部Aには、副給気孔409を介して導入されて主給
気室410に貯えられ、多孔質部材402を透過して供
給された加圧流体によって流体潤滑膜が形成され、多孔
質絞りと同様の軸受特性が得られる。排気溝404と給
気孔407との間の第2の軸受部Bには、主給気孔40
3を介して導入され、多孔質部材402を透過した加圧
流体と給気孔407を通った加圧流体とが供給される。
これらの加圧流体は第2の軸受部Bに流体潤滑膜を形成
した後に排気溝404より排気される。
In the present embodiment having the above-mentioned structure, the main bearing is introduced into the first bearing portion A between the exhaust groove 404 and the outer peripheral portion of the porous member 402 through the auxiliary air supply hole 409. A fluid lubrication film is formed by the pressurized fluid stored in the air chamber 410 and transmitted through the porous member 402, and the same bearing characteristics as the porous throttle can be obtained. The main air supply hole 40 is provided in the second bearing portion B between the exhaust groove 404 and the air supply hole 407.
3, the pressurized fluid that has been introduced through the porous member 402 and has passed through the porous member 402 and the pressurized fluid that has passed through the air supply holes 407 are supplied.
These pressurized fluids are exhausted from the exhaust groove 404 after forming a fluid lubrication film on the second bearing portion B.

【0027】このように、主給気室410および排気溝
404を設けたことにより、ガイドとして機能する第1
の軸受部Aに供給される加圧流体とアクチュエータとし
て機能する第2の軸受部Bに供給される加圧流体とがほ
ぼ完全に分けられるので、移動体401のZ方向に関す
る移動量は、主給気孔403を介して軸受部Bに供給さ
れる加圧流体の流量によって精度よく調節することがで
き、またその際の応答速度も向上することができた。
As described above, by providing the main air supply chamber 410 and the exhaust groove 404, the first air supply chamber functions as a guide.
Since the pressurized fluid supplied to the bearing portion A of the above and the pressurized fluid supplied to the second bearing portion B functioning as an actuator are almost completely separated, the moving amount of the moving body 401 in the Z direction is mainly The flow rate of the pressurized fluid supplied to the bearing portion B via the air supply hole 403 could be adjusted with high accuracy, and the response speed at that time could be improved.

【0028】[0028]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。多孔質
部材に、少なくとも1つ以上の給気孔を設け、ガイド部
材側の面の給気孔の周囲に加圧流体を排気するための排
気溝を設けるという簡単な囲を施すことにより、軸受部
をアクチュエータとして機能する部分とガイドとして機
能する部分とに分けることを一体化構造で実現すること
ができた。これにより、移動体を高剛性で支持すること
ができ、動的な姿勢が安定化された静圧軸受装置とする
ことができる効果がある。
Since the present invention is constructed as described above, it has the following effects. By providing at least one or more air supply holes in the porous member and providing an exhaust groove for exhausting the pressurized fluid around the air supply hole on the surface on the guide member side, the bearing portion is provided. It was possible to realize with an integrated structure the division into a part that functions as an actuator and a part that functions as a guide. As a result, there is an effect that the moving body can be supported with high rigidity, and the hydrostatic bearing device can have a stable dynamic posture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の要部構成を示す図であ
り、(a)は断面図、(b)は底面図である。
FIG. 1 is a diagram showing a configuration of a main part of a first embodiment of the present invention, in which (a) is a sectional view and (b) is a bottom view.

【図2】本発明の第2の実施例の要部構成を示す断面図
である。
FIG. 2 is a cross-sectional view showing the structure of a main part of a second embodiment of the present invention.

【図3】本発明の第3の実施例の要部構成を示す図であ
り、(a)は断面図、(b)は底面図である。
3A and 3B are diagrams showing a configuration of a main part of a third embodiment of the present invention, in which FIG. 3A is a sectional view and FIG. 3B is a bottom view.

【図4】本発明の第4の実施例の要部構成を示す図であ
り、(a)は断面図、(b)は底面図である。
FIG. 4 is a diagram showing a configuration of a main part of a fourth embodiment of the present invention, in which (a) is a sectional view and (b) is a bottom view.

【符号の説明】[Explanation of symbols]

101,401 移動体 102,302,402 多孔質部材 103,403 主給気孔 104,304 排気溝 105,405 ハウジング 106,406 ガイド部材 107,307,407 給気孔 108 給気室 201 凹部 409 副給気孔 410 主給気室 411 排気孔 101, 401 Moving body 102, 302, 402 Porous member 103, 403 Main air supply hole 104, 304 Exhaust groove 105, 405 Housing 106, 406 Guide member 107, 307, 407 Air supply hole 108 Air supply chamber 201 Recessed portion 409 Sub air supply hole 410 Main air supply chamber 411 Exhaust hole

Claims (1)

【特許請求の範囲】 【請求項1】 多孔質部材とガイド部材との間の軸受部
に加圧流体を供給することにより前記多孔質部材と連結
された移動体をガイド部材と非接触に支持して移動させ
る静圧軸受装置において、 前記多孔質部材には、少なくとも1つ以上の給気孔が設
けられ、ガイド部材側の面の給気孔の周囲には加圧流体
を排気するための排気溝が設けられていることを特徴と
する静圧軸受装置。
1. A moving body connected to the porous member is supported in a non-contact manner with the guide member by supplying a pressurized fluid to a bearing portion between the porous member and the guide member. In the static pressure bearing device, the porous member is provided with at least one or more air supply holes, and an exhaust groove for exhausting the pressurized fluid is provided around the air supply holes on the guide member side surface. A hydrostatic bearing device is provided.
JP3159224A 1991-06-29 1991-06-29 Static pressure bearing device Pending JPH0510330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159224A JPH0510330A (en) 1991-06-29 1991-06-29 Static pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159224A JPH0510330A (en) 1991-06-29 1991-06-29 Static pressure bearing device

Publications (1)

Publication Number Publication Date
JPH0510330A true JPH0510330A (en) 1993-01-19

Family

ID=15689053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159224A Pending JPH0510330A (en) 1991-06-29 1991-06-29 Static pressure bearing device

Country Status (1)

Country Link
JP (1) JPH0510330A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030119A (en) * 2004-07-21 2006-02-02 Hidetada Kawaguchi Instrument support stand using static pressure gas bearing, and instrument
JP2007315611A (en) * 2007-09-06 2007-12-06 Nsk Ltd Thrust hydrostatic bearing pad
CN102135137A (en) * 2010-01-22 2011-07-27 新东工业株式会社 Static pressure bearing device and stage provided with same
WO2013073166A1 (en) * 2011-11-18 2013-05-23 オイレス工業株式会社 Aerostatic bearing and linear motion guiding device using said aerostatic bearing
CN110094425A (en) * 2019-06-04 2019-08-06 中国工程物理研究院机械制造工艺研究所 A kind of static pressure air-bearing axial bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030119A (en) * 2004-07-21 2006-02-02 Hidetada Kawaguchi Instrument support stand using static pressure gas bearing, and instrument
JP2007315611A (en) * 2007-09-06 2007-12-06 Nsk Ltd Thrust hydrostatic bearing pad
CN102135137A (en) * 2010-01-22 2011-07-27 新东工业株式会社 Static pressure bearing device and stage provided with same
US8608382B2 (en) 2010-01-22 2013-12-17 Sintokogio Ltd. Static-pressure bearing apparatus and stage comprising static-pressure bearing apparatus
WO2013073166A1 (en) * 2011-11-18 2013-05-23 オイレス工業株式会社 Aerostatic bearing and linear motion guiding device using said aerostatic bearing
JP2013108557A (en) * 2011-11-18 2013-06-06 Oiles Corp Aerostatic bearing and linear motion guiding device using the same
TWI491815B (en) * 2011-11-18 2015-07-11 Oiles Industry Co Ltd Static pressure gas bearings and the use of the static pressure gas bearing linear motion guide device
CN110094425A (en) * 2019-06-04 2019-08-06 中国工程物理研究院机械制造工艺研究所 A kind of static pressure air-bearing axial bearing

Similar Documents

Publication Publication Date Title
US8333512B2 (en) Self-compensating hydrostatic planar bearing device and method thereof
US7290931B2 (en) Vacuum pre-loaded pneumatic bearing with onboard vacuum generator
US5800066A (en) Mechanical assembly of shaft and static pressure bearing
JPH0510330A (en) Static pressure bearing device
KR20060069362A (en) Supporting unit, and moving table device and linear-motion guiding device using the supporting unit
US6735867B2 (en) Method of making a static pressure air bearing
JP4877690B2 (en) Static pressure slider
JP2001241439A (en) Moving device provided with hydrostatic bearing
US3719405A (en) Gas bearing
JP3963805B2 (en) Fine movement device
CN111188834B (en) Air bearing
JP3106189B1 (en) Hydrostatic bearing
JP3089270B2 (en) Hydrostatic gas bearing
JP2001140883A (en) Hydrostatic pressure bearing device
JP3143582B2 (en) Hydrostatic bearing device and positioning stage using the same
JP2004060833A (en) Static pressure gas linear guide device
JP4031867B2 (en) Hydrostatic air bearing device
JP4496678B2 (en) Positioning device
JPH10169654A (en) Gas hydrostatic pressure bearing device
JP5705566B2 (en) Static pressure slider
JP2004019760A (en) Hydrostatic bearing
JP2005351312A (en) Moving mechanism
JPH10103354A (en) Hydrostatic gas bearing
JP3989342B2 (en) Air bearing device
JP2968415B2 (en) Static pressure constant pressure proportional control valve type static pressure device