JPH05102473A - Manufacture of mos type semiconductor device - Google Patents

Manufacture of mos type semiconductor device

Info

Publication number
JPH05102473A
JPH05102473A JP28390191A JP28390191A JPH05102473A JP H05102473 A JPH05102473 A JP H05102473A JP 28390191 A JP28390191 A JP 28390191A JP 28390191 A JP28390191 A JP 28390191A JP H05102473 A JPH05102473 A JP H05102473A
Authority
JP
Japan
Prior art keywords
film
gate electrode
silicon film
polycrystalline silicon
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28390191A
Other languages
Japanese (ja)
Inventor
Yugo Tomioka
雄吾 富岡
Kohei Eguchi
公平 江口
Yasuo Sato
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28390191A priority Critical patent/JPH05102473A/en
Publication of JPH05102473A publication Critical patent/JPH05102473A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent the drop of threshold voltage and punch-through breakdown voltage by carrying out ion implantation using a masking layer whose opening pattern corresponding to that of the gate electrode. CONSTITUTION:On a polycrystalline Si film 13 formed are SiO2 films 14 and an opening 14a whose pattern corresponds to that of the gate electrode. Then p-type impurities are ion-implanted into the Si substrate 11 with the SiO2 films 14 as masks to form a p<+>-type high concentration region 15 with an impurity concentration higher than that of the Si substrate 11. The second polycrystalline Si film is selectively grown only within the opening 14a using the polycrystalline Si film 13 exposed there as a seed crystal. The SiO2 films 14 are removed by etching and the polycrystalline Si film 13 is partially removed by etching as well, the remainder being left as a gate electrode 16. Finally the Si substrate 11 is lightly doped with n-type impurities, using the gate electrode 16 as a mask to form an n<-> layer 17. Thereafter an n<+> layer is formed at a desired depth, the source and drain regions thus being formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、短チャネルM
OSトランジスタにおけるしきい値電圧の低下やパンチ
スルー耐圧の低下を防止した構造のMOS型半導体装置
の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to, for example, a short channel M.
The present invention relates to a method for manufacturing a MOS semiconductor device having a structure that prevents a decrease in threshold voltage and a decrease in punch-through breakdown voltage in an OS transistor.

【0002】[0002]

【従来の技術】MOS型半導体装置の微細化に伴って、
例えばMOSトランジスタのチャネル長が短くなると、
ドレイン領域からの空乏層がソース領域にまで達し易く
なり、しきい値電圧の低下やパンチスルー耐圧の低下が
生じる。
2. Description of the Related Art With the miniaturization of MOS semiconductor devices,
For example, if the channel length of a MOS transistor becomes short,
The depletion layer from the drain region easily reaches the source region, and the threshold voltage and punch-through breakdown voltage are reduced.

【0003】このようなしきい値電圧の低下やパンチス
ルー耐圧の低下を防止するために、半導体基板自体の不
純物濃度を高くしてドレイン領域からの空乏層の伸びを
抑制することが考えられるが、半導体基板自体の不純物
濃度を高くすると、半導体基板内に形成したソース・ド
レイン領域での接合容量が増大して、素子の動作速度が
低下するという問題が生じる。
In order to prevent such a decrease in threshold voltage and a decrease in punch-through breakdown voltage, it is considered that the impurity concentration of the semiconductor substrate itself is increased to suppress the extension of the depletion layer from the drain region. When the impurity concentration of the semiconductor substrate itself is increased, the junction capacitance in the source / drain regions formed in the semiconductor substrate increases, which causes a problem that the operating speed of the device decreases.

【0004】そこで、特開平1−123474号公報に
は、ゲート電極直下のチャネル領域下に、半導体基板の
不純物濃度が高い高濃度領域を部分的に形成することが
提案されている。
Therefore, Japanese Unexamined Patent Publication (Kokai) No. 1-123474 proposes to partially form a high-concentration region having a high impurity concentration in the semiconductor substrate under the channel region immediately below the gate electrode.

【0005】この公報に記載の製造方法では、まず、図
2(a)に示すように、p型のSi基板21の表面にゲ
ート酸化膜であるSiO2 膜22を形成した後、Si基
板21の全面からp型の不純物をイオン注入して、Si
基板21の比較的深い位置に高濃度のp+ 層23を形成
する。
In the manufacturing method described in this publication, first, as shown in FIG. 2A, a SiO 2 film 22 as a gate oxide film is formed on the surface of a p-type Si substrate 21, and then the Si substrate 21 is formed. P-type impurities are ion-implanted from the entire surface of the
A high concentration p + layer 23 is formed at a relatively deep position of the substrate 21.

【0006】次いで、図2(b)に示すように、多結晶
Si膜24でゲート電極を形成した後、この多結晶Si
膜24をマスクとしてn型の不純物をイオン注入し、p
+ 層23のうちで多結晶Si膜24の直下の部分以外の
部分を補償層25とする。この結果、ゲート電極直下の
チャネル領域下にのみ高濃度のp+ 層23が残る。
Next, as shown in FIG. 2B, after a gate electrode is formed of the polycrystalline Si film 24, this polycrystalline Si film 24 is formed.
N-type impurities are ion-implanted using the film 24 as a mask, and p
A portion of the + layer 23 other than the portion immediately below the polycrystalline Si film 24 is used as the compensation layer 25. As a result, the high-concentration p + layer 23 remains only under the channel region immediately below the gate electrode.

【0007】そこで、この高濃度のp+ 層23と直接接
触しないようにソース・ドレイン領域を形成することが
でき、しかも、この高濃度のp+ 層23の存在によって
ドレイン領域からの空乏層の伸びを抑制することができ
るので、ソース・ドレイン領域での接合容量を増大させ
ることなく、しきい値電圧の低下やパンチスルー耐圧の
低下を防止することができる。
[0007] Therefore, it is possible to form the source and drain regions so as not to directly contact with the high concentration p + layer 23, moreover, the depletion layer from the drain region by the presence of the high concentration p + layer 23 Since the elongation can be suppressed, it is possible to prevent the threshold voltage and the punch-through breakdown voltage from decreasing without increasing the junction capacitance in the source / drain regions.

【0008】[0008]

【発明が解決しようとする課題】ところが、上述した従
来の製造方法では、ゲート電極を形成する前に、Si基
板21の全面からイオン注入を行って、p+ 層23を形
成するため、ゲート電極形成後に、n型不純物のイオン
注入を行って、ゲート電極直下の部分以外のp+ 層23
の部分を補償層25とする必要がある。
However, in the above-described conventional manufacturing method, since the p + layer 23 is formed by performing ion implantation from the entire surface of the Si substrate 21 before forming the gate electrode, the gate electrode is formed. After the formation, ion implantation of n-type impurities is performed to form the p + layer 23 other than the portion immediately below the gate electrode.
It is necessary to make the part of the compensation layer 25.

【0009】しかし、このような逆導電型のイオン注入
による不純物補償では、その逆導電型イオン注入の条件
制御が非常に難しく、その結果、不純物補償を高い精度
で行うことができないので、信頼性の高いMOSトラン
ジスタを得ることができなかった。
However, in the impurity compensation by the reverse conductivity type ion implantation as described above, it is very difficult to control the conditions of the reverse conductivity type ion implantation, and as a result, the impurity compensation cannot be performed with high accuracy, so that the reliability is high. It was not possible to obtain a high MOS transistor.

【0010】また、上述した従来の製造方法では、不純
物のイオン注入を、ゲート電極形成前と形成後で、2回
行わなければならないために、Si基板21の受けるダ
メージが大きくなり、MOSトランジスタの特性の点で
も問題があった。
Further, in the above-described conventional manufacturing method, since the ion implantation of the impurity has to be performed twice before and after the gate electrode is formed, the Si substrate 21 is greatly damaged and the MOS transistor is damaged. There was also a problem in terms of characteristics.

【0011】そこで、本発明の目的は、ゲート電極直下
の半導体基板内に高濃度領域を形成することによって、
例えばMOSトランジスタのしきい値電圧の低下やパン
チスルー耐圧の低下を防止する構造を、信頼性が高く且
つ特性の劣化も少ない方法で製造することができるMO
S型半導体装置の製造方法を提供することである。
Therefore, an object of the present invention is to form a high-concentration region in the semiconductor substrate just below the gate electrode,
For example, a structure that prevents the threshold voltage of a MOS transistor from decreasing and the punch-through breakdown voltage from decreasing can be manufactured by a method with high reliability and little deterioration in characteristics.
A method of manufacturing an S-type semiconductor device is provided.

【0012】[0012]

【課題を解決するための手段】上述した課題を解決する
ために、本発明のMOS型半導体装置の製造方法は、半
導体基板上に形成されたゲート絶縁膜上に第1の多結晶
シリコン膜を形成する工程と、ゲート電極のパターンに
対応したパターンの開口を有するマスク層を前記第1の
多結晶シリコン膜上に形成する工程と、前記マスク層を
マスクとしてイオン注入を行い、前記半導体基板の内部
の所定深さ位置に、前記半導体基板と同一の導電型で且
つ不純物濃度の高い高濃度領域を形成する工程と、前記
マスク層の前記開口の内部の前記第1の多結晶シリコン
膜上に、この第1の多結晶シリコン膜を種結晶として第
2の多結晶シリコン膜を選択成長させる工程と、前記マ
スク層、並びに、前記第2の多結晶シリコン膜直下の部
分を除いた前記第1の多結晶シリコン膜の部分を除去す
る工程と、残った前記第1の多結晶シリコン膜の部分及
び前記第2の多結晶シリコン膜から構成されるゲート電
極をイオン注入のマスクとして用い、前記半導体基板内
に所定深さのソース・ドレイン領域を形成する工程とを
有している。
In order to solve the above-mentioned problems, a method for manufacturing a MOS type semiconductor device according to the present invention comprises a first polycrystalline silicon film formed on a gate insulating film formed on a semiconductor substrate. A step of forming, a step of forming a mask layer having an opening of a pattern corresponding to the pattern of the gate electrode on the first polycrystalline silicon film, ion implantation using the mask layer as a mask, Forming a high-concentration region of the same conductivity type as the semiconductor substrate and having a high impurity concentration at a predetermined depth position inside, and on the first polycrystalline silicon film inside the opening of the mask layer. , A step of selectively growing the second polycrystalline silicon film by using the first polycrystalline silicon film as a seed crystal, the mask layer, and the first portion excluding the portion immediately below the second polycrystalline silicon film. Removing the part of the polycrystalline silicon film, and using the gate electrode composed of the remaining part of the first polycrystalline silicon film and the remaining part of the second polycrystalline silicon film as a mask for ion implantation, Forming a source / drain region having a predetermined depth in the substrate.

【0013】[0013]

【作用】本発明のMOS型半導体装置の製造方法におい
ては、ゲート電極のパターンに対応したパターンの開口
を有するマスク層をマスクとして用いてイオン注入を行
い、これによって、ゲート電極直下の半導体基板内に、
その半導体基板と同一導電型の高濃度領域を形成し、し
かる後、そのマスク層の開口内で多結晶シリコンを選択
成長させることにより、ゲート電極を形成する。
In the method of manufacturing a MOS type semiconductor device according to the present invention, ion implantation is performed using a mask layer having a pattern opening corresponding to the pattern of the gate electrode as a mask, whereby the semiconductor substrate immediately below the gate electrode is formed. To
A high-concentration region of the same conductivity type as that of the semiconductor substrate is formed, and then, polycrystalline silicon is selectively grown in the opening of the mask layer to form a gate electrode.

【0014】従って、1回のイオン注入によって、ゲー
ト電極直下の所定位置にのみ高濃度領域を形成すること
ができ、従来のような不純物補償を行う必要はない。
Therefore, the high-concentration region can be formed only at a predetermined position just below the gate electrode by one-time ion implantation, and it is not necessary to perform impurity compensation as in the conventional case.

【0015】しかも、イオン注入の際に用いたマスク層
を、ゲート電極形成の際にも利用するので、工程数の増
加はなく、また、高濃度領域とゲート電極との位置合わ
せも自己整合的に行われる。
Moreover, since the mask layer used for the ion implantation is also used for forming the gate electrode, the number of steps is not increased, and the alignment between the high concentration region and the gate electrode is self-aligned. To be done.

【0016】[0016]

【実施例】以下、本発明をMOSトランジスタの製造方
法に適用した一実施例を図1を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a method for manufacturing a MOS transistor will be described below with reference to FIG.

【0017】まず、図1(a)に示すように、p型のS
i基板11の表面にゲート酸化膜であるSiO2 膜12
を形成する。
First, as shown in FIG. 1A, p-type S
A SiO 2 film 12 as a gate oxide film is formed on the surface of the i substrate 11.
To form.

【0018】次に、図1(b)に示すように、このSi
2 膜12の上に薄い多結晶Si膜13を形成する。な
お、この多結晶Si膜13は、後述する如く、その上に
第2の多結晶Si膜を選択成長させる時に、その種結晶
となるに充分な膜厚であれば良い。一方、この多結晶S
i膜13のゲート電極部分以外の部分は後に全てエッチ
ング除去されるので、そのエッチングを考慮すると、そ
の膜厚は、できるだけ薄いのが好ましい。
Next, as shown in FIG.
A thin polycrystalline Si film 13 is formed on the O 2 film 12. As will be described later, the polycrystalline Si film 13 may have a film thickness sufficient to become a seed crystal when the second polycrystalline Si film is selectively grown thereon. On the other hand, this polycrystalline S
Since the i-film 13 except the gate electrode part is etched away later, it is preferable that the film thickness is as thin as possible in consideration of the etching.

【0019】次に、図1(c)に示すように、この多結
晶Si膜13の上にSiO2 膜14を形成し、このSi
2 膜14に、ゲート電極のパターンに対応したパター
ンの開口14aを形成する。即ち、SiO2 膜14を、
ゲート電極のパターンを反転させたパターンのマスクを
用いてエッチングし、開口14aを形成する。
Next, as shown in FIG. 1C, a SiO 2 film 14 is formed on the polycrystalline Si film 13, and the Si 2 film 14 is formed.
An opening 14a having a pattern corresponding to the pattern of the gate electrode is formed in the O 2 film 14. That is, the SiO 2 film 14 is
Etching is performed using a mask having a pattern obtained by inverting the pattern of the gate electrode to form the opening 14a.

【0020】次に、図1(d)に示すように、このSi
2 膜14をマスクとして用い、p型の不純物であるホ
ウ素を所定のエネルギーでSi基板11にイオン注入す
ることにより、Si基板11よりも不純物濃度が高いp
+ 型の高濃度領域15を、Si基板11の所定の深さ位
置に形成する。
Next, as shown in FIG.
Using the O 2 film 14 as a mask, boron, which is a p-type impurity, is ion-implanted into the Si substrate 11 with a predetermined energy, so that the impurity concentration of p is higher than that of the Si substrate 11.
The + type high concentration region 15 is formed at a predetermined depth position of the Si substrate 11.

【0021】次に、図1(e)に示すように、SiO2
膜の開口14a内に露出している多結晶Si膜13を種
結晶として、開口14a内にのみ第2の多結晶Si膜を
選択成長させる。
Next, as shown in FIG. 1 (e), SiO 2
With the polycrystalline Si film 13 exposed in the opening 14a of the film as a seed crystal, the second polycrystalline Si film is selectively grown only in the opening 14a.

【0022】次に、図1(f)に示すように、SiO2
膜14をエッチング除去し、更に、SiO2 膜14の下
にあった多結晶Si膜13の部分もエッチング除去す
る。これにより、開口14aのパターンに対応したパタ
ーンの第2の多結晶Si膜とその下の多結晶Si膜13
の部分がゲート電極16として残る。
Next, as shown in FIG. 1 (f), SiO 2
The film 14 is removed by etching, and the portion of the polycrystalline Si film 13 under the SiO 2 film 14 is also removed by etching. As a result, the second polycrystalline Si film having a pattern corresponding to the pattern of the opening 14a and the polycrystalline Si film 13 thereunder are formed.
Remains as the gate electrode 16.

【0023】次に、同図に示すように、このゲート電極
16をマスクとしてn型の不純物をSi基板11に低濃
度にイオン注入することにより、n- 層17を、p+
の高濃度領域15よりも浅い位置まで形成する。
Next, as shown in the same figure, by using this gate electrode 16 as a mask, n-type impurities are ion-implanted into the Si substrate 11 at a low concentration, so that the n layer 17 is made into a p + -type high concentration. It is formed to a position shallower than the region 15.

【0024】その後、SiO2 からなるサイドウォール
18をゲート電極16の側部に形成し、このサイドウォ
ール18とゲート電極16をマスクとして、n型の不純
物をSi基板11に高濃度にイオン注入することによ
り、n+ 層19を形成する。
After that, a side wall 18 made of SiO 2 is formed on the side portion of the gate electrode 16, and n-type impurities are ion-implanted into the Si substrate 11 at a high concentration using the side wall 18 and the gate electrode 16 as a mask. As a result, the n + layer 19 is formed.

【0025】このようにして、n- 層17とn+ 層19
とからなるソース・ドレイン領域を形成し、LDD構造
のMOSトランジスタを形成する。
In this way, the n layer 17 and the n + layer 19 are formed.
A source / drain region composed of and is formed to form a MOS transistor having an LDD structure.

【0026】なお、既述した如く、p+ 型の高濃度領域
15は、ゲート電極のパターンに対応したパターンの開
口14aを通じて、Si基板11の比較的深い位置に形
成される。一方、n- 層17は、ゲート電極16をマス
クとして形成されるが、p+ 型の高濃度領域15よりも
浅い位置までしか形成されず、また、n+ 層19は、ゲ
ート電極16とサイドウォール18をマスクとして形成
される。従って、n- 層17及びn+ 層19の何れも
が、p+ 型の高濃度領域15から離間した状態で形成さ
れ、ソース・ドレイン領域での接合容量の増大は生じな
い。
As described above, the p + -type high concentration region 15 is formed at a relatively deep position of the Si substrate 11 through the opening 14a having a pattern corresponding to the pattern of the gate electrode. On the other hand, the n layer 17 is formed using the gate electrode 16 as a mask, but is formed only to a position shallower than the p + type high-concentration region 15, and the n + layer 19 is formed on the gate electrode 16 and the side. The wall 18 is formed as a mask. Therefore, both the n layer 17 and the n + layer 19 are formed apart from the p + -type high concentration region 15, and the junction capacitance in the source / drain region does not increase.

【0027】[0027]

【発明の効果】本発明のMOS型半導体装置の製造方法
によれば、ゲート電極直下の半導体基板内に形成する高
濃度領域を、ゲート電極形成前の1回のイオン注入工程
で形成することができ、従来のような不純物補償を行う
必要がない。従って、不純物補償による信頼性の低下が
なく、また、不純物補償のためのイオン注入による半導
体基板の損傷も生じない。
According to the method of manufacturing a MOS semiconductor device of the present invention, the high concentration region formed in the semiconductor substrate immediately below the gate electrode can be formed by one ion implantation step before the gate electrode is formed. Therefore, it is not necessary to perform the impurity compensation as in the conventional case. Therefore, the reliability is not lowered by the impurity compensation, and the semiconductor substrate is not damaged by the ion implantation for the impurity compensation.

【0028】この結果、しきい値電圧の低下やパンチス
ルー耐圧の低下が防止されたMOS型半導体装置を、信
頼性が高く且つ特性の劣化も少ない方法で製造すること
ができる。
As a result, it is possible to manufacture the MOS type semiconductor device in which the lowering of the threshold voltage and the lowering of the punch-through breakdown voltage are prevented by a method having high reliability and less deterioration in characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるMOSトランジスタの
製造方法を工程順に示す断面図である。
FIG. 1 is a cross-sectional view showing a method of manufacturing a MOS transistor according to an embodiment of the present invention in the order of steps.

【図2】従来の製造方法を工程順に示す断面図である。FIG. 2 is a cross-sectional view showing a conventional manufacturing method in process order.

【符号の説明】[Explanation of symbols]

11 Si基板 12 SiO2 膜 13 多結晶Si膜 14 SiO2 膜 14a 開口 15 p+ 型高濃度領域 16 ゲート電極 17 n- 層 18 サイドウォール 19 n+ Reference Signs List 11 Si substrate 12 SiO 2 film 13 Polycrystalline Si film 14 SiO 2 film 14a Opening 15 p + type high concentration region 16 Gate electrode 17 n layer 18 Sidewall 19 n + layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成されたゲート絶縁膜
上に第1の多結晶シリコン膜を形成する工程と、 ゲート電極のパターンに対応したパターンの開口を有す
るマスク層を前記第1の多結晶シリコン膜上に形成する
工程と、 前記マスク層をマスクとしてイオン注入を行い、前記半
導体基板の内部の所定深さ位置に、前記半導体基板と同
一の導電型で且つ不純物濃度の高い高濃度領域を形成す
る工程と、 前記マスク層の前記開口の内部の前記第1の多結晶シリ
コン膜上に、この第1の多結晶シリコン膜を種結晶とし
て第2の多結晶シリコン膜を選択成長させる工程と、 前記マスク層、並びに、前記第2の多結晶シリコン膜直
下の部分を除いた前記第1の多結晶シリコン膜の部分を
除去する工程と、 残った前記第1の多結晶シリコン膜の部分及び前記第2
の多結晶シリコン膜から構成されるゲート電極をイオン
注入のマスクとして用い、前記半導体基板内に所定深さ
のソース・ドレイン領域を形成する工程とを有すること
を特徴とするMOS型半導体装置の製造方法。
1. A step of forming a first polycrystalline silicon film on a gate insulating film formed on a semiconductor substrate, and a mask layer having an opening of a pattern corresponding to a pattern of a gate electrode is formed on the first polycrystalline silicon film. A step of forming on the crystalline silicon film, and ion implantation using the mask layer as a mask to form a high-concentration region having the same conductivity type as the semiconductor substrate and a high impurity concentration at a predetermined depth position inside the semiconductor substrate. And a step of selectively growing a second polycrystalline silicon film on the first polycrystalline silicon film inside the opening of the mask layer using the first polycrystalline silicon film as a seed crystal. And a step of removing the mask layer and the portion of the first polycrystalline silicon film excluding the portion immediately below the second polycrystalline silicon film, and the remaining portion of the first polycrystalline silicon film Fine the second
Forming a source / drain region of a predetermined depth in the semiconductor substrate by using the gate electrode composed of the polycrystalline silicon film as a mask for ion implantation. Method.
JP28390191A 1991-10-04 1991-10-04 Manufacture of mos type semiconductor device Withdrawn JPH05102473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28390191A JPH05102473A (en) 1991-10-04 1991-10-04 Manufacture of mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28390191A JPH05102473A (en) 1991-10-04 1991-10-04 Manufacture of mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPH05102473A true JPH05102473A (en) 1993-04-23

Family

ID=17671654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28390191A Withdrawn JPH05102473A (en) 1991-10-04 1991-10-04 Manufacture of mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPH05102473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955937B1 (en) * 2008-01-18 2010-05-03 주식회사 하이닉스반도체 Method of manufacturing MOSET device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955937B1 (en) * 2008-01-18 2010-05-03 주식회사 하이닉스반도체 Method of manufacturing MOSET device

Similar Documents

Publication Publication Date Title
KR100246602B1 (en) A mosfet and method for fabricating the same
US5087581A (en) Method of forming vertical FET device with low gate to source overlap capacitance
US6191446B1 (en) Formation and control of a vertically oriented transistor channel length
JPH0878672A (en) Mos type of semiconductor device and its manufacture
US5552329A (en) Method of making metal oxide semiconductor transistors
KR19990069048A (en) Semiconductor device and manufacturing method
US4553314A (en) Method for making a semiconductor device
EP0023528A1 (en) Double diffused transistor structure and method of making same
JPH05267331A (en) Manufacture of mos semiconductor device
KR0151053B1 (en) Fabrication method of semiconductor device with soi structure
KR0156156B1 (en) Method of fabricating semiconductor device
JPH0878692A (en) Soi type semiconductor device and its manufacture
JPH05102473A (en) Manufacture of mos type semiconductor device
JP4170270B2 (en) MOS transistor and manufacturing method thereof
US20030124824A1 (en) High yield and high speed CMOS process
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JPH05206454A (en) Manufacture of mis-type semiconductor device
JPH05136403A (en) Manufacture of mos type semiconductor device
US5496742A (en) Method for manufacturing semiconductor device enabling gettering effect
KR940004415B1 (en) Making method and structure of mosfet
US6720224B2 (en) Method for forming transistor of semiconductor device
GB1595546A (en) Method for making a semiconductor device
KR20030001787A (en) Method for manufacturing a transistor
KR100665829B1 (en) Gate structure of semiconductor devices
KR910009742B1 (en) High voltage semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107