JPH05101836A - Fuel cell with solid electrolyte - Google Patents

Fuel cell with solid electrolyte

Info

Publication number
JPH05101836A
JPH05101836A JP3261494A JP26149491A JPH05101836A JP H05101836 A JPH05101836 A JP H05101836A JP 3261494 A JP3261494 A JP 3261494A JP 26149491 A JP26149491 A JP 26149491A JP H05101836 A JPH05101836 A JP H05101836A
Authority
JP
Japan
Prior art keywords
gas flow
oxygen
cell
conductive felt
felt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3261494A
Other languages
Japanese (ja)
Inventor
Isanori Akagi
功典 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3261494A priority Critical patent/JPH05101836A/en
Publication of JPH05101836A publication Critical patent/JPH05101836A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enhance the performance of a fuel cell by lowering its internal resistance. CONSTITUTION:A plurality of cells are installed in lines vertically and horizontally at certain spacings so as to form fuel gas lines or oxygen-containing gas lines, and between these cells an electroconductive felt-form material configured so as to admit passage of gas is installed in such a condition as to generate electrical continuity of the adjoining cells with one another. A resilient member 13 to press those outer portions 6a, 6a in pair of the felt material 6 which are adjacent to cell C, to the same C is accommodated in the felt material 6. It is so arranged that the filling density of the outer portions 6a of the felt material 6 is greater than that of the inner portion 6b of the material 6 and also that the outer portions 6a and inner portion 6b are fused through heating. The resilient member 13 is equipped with electroconductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一方の面に酸素極を備
えかつ他方の面に燃料極を備えた板状固体電解質層と、
前記酸素極に臨む側と前記燃料極に臨む側のいずれか一
方側に酸素含有ガス流路又は燃料ガス流路を形成すべく
配置されかつ導電性を備えたガス流路構成部とから固体
電解質型燃料電池のセルが構成され、そのセルの複数個
が、燃料ガス流路又は酸素含有ガス流路を形成すべく互
いに間隔を隔てて上下方向に並置されるとともに、前記
セル間に、隣合う前記セル同士を導電状態に接続する状
態で、気体の通流を許容する形状に形成された導電性フ
ェルト状材が配置されている固体電解質型燃料電池に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a plate-like solid electrolyte layer having an oxygen electrode on one surface and a fuel electrode on the other surface,
Solid electrolyte from a gas flow path constituent part having conductivity and arranged to form an oxygen-containing gas flow path or a fuel gas flow path on either one of the side facing the oxygen electrode and the side facing the fuel electrode Cells of a type fuel cell are configured, and a plurality of the cells are vertically juxtaposed at intervals to form a fuel gas channel or an oxygen-containing gas channel, and are adjacent to each other between the cells. The present invention relates to a solid oxide fuel cell in which a conductive felt-like material formed in a shape that allows gas flow is arranged in a state where the cells are electrically connected.

【0002】[0002]

【従来の技術】従来、固体電解質型燃料電池のセルC
は、例えば、図6及び図7に示すように、一方の面に酸
素極2を備えかつ他方の面に燃料極3を備えた板状電解
質層1の酸素極2を臨む側に、酸素含有ガス流路sを形
成すべく導電性を備えたガス流路構成部4を配置して構
成していた。又、前述の如く構成されたセルCの複数個
を、燃料ガス流路fを形成すべく互いに間隔を隔てて上
下方向に並置するとともに、セルC,C間に気体の通流
を許容する形状に形成された導電性フェルト状材6を配
置し、導電性フェルト状材6の一対の外側部分6a,6
aと隣接セルC,Cとを夫々接触させることにより、隣
合うセルC,C同士を導電性フェルト状材6を介して導
電状態に接続し、もって、上下方向に並置した複数個の
セルCを電気的に直列接続して固体電解質型燃料電池を
構成していた。ところで、従来は、導電性フェルト状材
6を、全体にわたり均質(フェルト状材の充填密度が全
体にわたり均一)状態に構成していた。
2. Description of the Related Art Conventionally, a cell C of a solid oxide fuel cell
For example, as shown in FIG. 6 and FIG. 7, the oxygen-containing material is provided on the side of the plate-like electrolyte layer 1 having the oxygen electrode 2 on one surface and the fuel electrode 3 on the other surface facing the oxygen electrode 2. In order to form the gas flow path s, the gas flow path constituent portion 4 having conductivity is arranged and configured. In addition, a plurality of cells C configured as described above are arranged side by side in the vertical direction at intervals to form a fuel gas passage f, and a shape that allows gas to flow between the cells C and C. The conductive felt-like material 6 formed on the inner surface of the conductive felt-like material 6 and the pair of outer portions 6a, 6 of the conductive felt-like material 6 are arranged.
By bringing a into contact with the adjacent cells C and C, the adjacent cells C and C are connected to each other in a conductive state via the conductive felt-like material 6, and thus a plurality of cells C arranged in the vertical direction are arranged. Were electrically connected in series to form a solid oxide fuel cell. By the way, conventionally, the conductive felt-like material 6 has been configured in a homogeneous state throughout (the filling density of the felt-like material is uniform throughout).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、導電性
フェルト状材は延性が高いため、セル間に配置されて横
方向に押し延ばされると元の形状に完全に復帰しなくな
り(すなわち、導電性フェルト状材の上下方向の厚さが
薄くなる)、導電性フェルト状材の外側部分を隣接セル
に対して押圧する力が弱くなって、導電性フェルト状材
の外側部分と隣接セルとの接触面積が減少することによ
り接触抵抗が増大し、その結果、隣合うセル間を導電状
態に接続する接続抵抗が大きなものとなり、ひいては、
燃料電池の内部抵抗が大きくなるという問題があった。
本発明は、かかる実情に鑑みてなされたものであり、そ
の目的は、内部抵抗が低く性能が優れた固体電解質型燃
料電池を提供する点にある。
However, since the conductive felt-like material has a high ductility, it does not completely return to its original shape when it is placed between cells and stretched in the lateral direction (ie, the conductive felt-like material). The vertical thickness of the sheet material becomes thin), and the force that presses the outer part of the conductive felt material against the adjacent cell becomes weaker, and the contact area between the outer part of the conductive felt material and the adjacent cell becomes smaller. Decrease in contact resistance increases, resulting in a large connection resistance that connects adjacent cells in a conductive state.
There is a problem that the internal resistance of the fuel cell increases.
The present invention has been made in view of such circumstances, and an object thereof is to provide a solid oxide fuel cell having low internal resistance and excellent performance.

【0004】[0004]

【課題を解決するための手段】本発明による固体電解質
型燃料電池の第1の特徴構成は、前記導電性フェルト状
材の前記セルに隣接する一対の外側部分を、前記セルに
押圧する弾性体が、前記導電性フェルト状材に収納され
ている点にある。第2の特徴構成は、前記導電性フェル
ト状材の前記外側部分の充填密度が、前記導電性フェル
ト状材の内側部分の充填密度よりも大きくなるように構
成され、前記外側部分と前記内側部分とが加温により融
着するように構成されている点にある。第3の特徴構成
は、前記弾性体が、導電性を備えたものである点にあ
る。
A first characteristic configuration of a solid oxide fuel cell according to the present invention is an elastic body for pressing a pair of outer portions of the conductive felt-like material adjacent to the cell against the cell. Is contained in the conductive felt-like material. A second characteristic configuration is configured such that a packing density of the outer portion of the conductive felt-like material is higher than a packing density of an inner portion of the conductive felt-like material, and the outer portion and the inner portion. And are configured to be fused by heating. A third characteristic configuration is that the elastic body has conductivity.

【0005】[0005]

【作用】第1の特徴構成によれば、導電性フェルト状材
に収納されている弾性体が、導電性フェルト状材の外側
部分を隣接するセルに対して押圧するので、導電性フェ
ルト状材の外側部分と隣接セルとの接触面積を常に大き
く維持することができて接触抵抗を小さくすることがで
き、その結果、隣合うセル間の接続抵抗を小さくするこ
とができる。第2の特徴構成によれば、導電性フェルト
状材の外側部分と内側部分とを、外側部分の充填密度が
内側部分の充填密度よりも大きくなるように各別に構成
しながらも、燃料電池の運転状態での温度上昇による加
温により、外側部分と内側部分とが融着することによ
り、外側部分と内側部分にわたる電流の通流が可能とな
る。そして、外側部分の充填密度を大きくすることによ
り、外側部分が押圧されても縮みにくくなって、導電性
フェルト状材に収納されている弾性体が、外側部分を隣
接するセルに対して一層強く押圧することができること
となり、導電性フェルト状材の外側部分と隣接セルとの
接触抵抗を一層小さくすることができ、その結果、隣合
うセル間の接続抵抗を一層小さくすることができる。し
かも、導電性フェルト状材を燃料ガス又は酸素含有ガス
が通流するが、導電性フェルト状材の内側部分の充填密
度を小さくすることにより通気性が良くなるので、導電
性フェルト状材を通流する燃料ガス又は酸素含有ガスの
圧力損失を小さくすることができる。第3の特徴構成に
よれば、導電性フェルト状材を隣合うセル間の電気導通
路とするに加えて、導電性フェルト状材に収納されてい
る弾性体をも電気導通路とすることができるので、尚一
層、隣合うセル間の接続抵抗を小さくすることができ
る。
According to the first characteristic configuration, the elastic body housed in the conductive felt-like material presses the outer portion of the conductive felt-like material against the adjacent cell, so that the conductive felt-like material is The contact area between the outer portion of the cell and the adjacent cell can always be kept large, and the contact resistance can be reduced. As a result, the connection resistance between adjacent cells can be reduced. According to the second characteristic configuration, the outer portion and the inner portion of the conductive felt-like material are separately configured so that the packing density of the outer portion is higher than the packing density of the inner portion, but Due to the heating caused by the temperature rise in the operating state, the outer portion and the inner portion are fused and the electric current can flow through the outer portion and the inner portion. By increasing the packing density of the outer part, the outer part is less likely to contract even when pressed, and the elastic body housed in the conductive felt-like material makes the outer part stronger against adjacent cells. Since it can be pressed, the contact resistance between the outer portion of the conductive felt-like material and the adjacent cell can be further reduced, and as a result, the connection resistance between the adjacent cells can be further reduced. Moreover, although the fuel gas or the oxygen-containing gas flows through the conductive felt-like material, the air permeability is improved by reducing the packing density of the inner part of the conductive felt-like material, so that the conductive felt-like material can be passed through. The pressure loss of the flowing fuel gas or oxygen-containing gas can be reduced. According to the third characteristic configuration, in addition to using the conductive felt-like material as the electric conduction path between the adjacent cells, the elastic body housed in the conductive felt-like material can also be used as the electric conduction path. Therefore, the connection resistance between adjacent cells can be further reduced.

【0006】[0006]

【発明の効果】第1の特徴構成によれば、内部抵抗が低
く性能が優れた固体電解質型燃料電池を提供し得るに至
った。第2の特徴構成によれば、内部抵抗を一層低くで
きるようになった。しかも、導電性フェルト状材を通流
する燃料ガス又は酸素含有ガスの圧力損失が小さいので
ガス供給圧を低くすることができ、ひいては、酸素含有
ガス(空気)を供給するファンの小型化、あるいは、燃
料ガス供給源からより多くの燃料電池に燃料ガスを供給
できるので発電効率の向上が図れるようになった。第3
の特徴構成によれば、内部抵抗を尚一層低くできるよう
になった。
According to the first characteristic constitution, a solid oxide fuel cell having low internal resistance and excellent performance can be provided. According to the second characteristic configuration, the internal resistance can be further reduced. Moreover, since the pressure loss of the fuel gas or the oxygen-containing gas flowing through the conductive felt-like material is small, it is possible to lower the gas supply pressure, which in turn reduces the size of the fan that supplies the oxygen-containing gas (air), or Since the fuel gas can be supplied from the fuel gas supply source to more fuel cells, the power generation efficiency can be improved. Third
According to the characteristic configuration of, the internal resistance can be further reduced.

【0007】[0007]

【実施例】次に、図1ないし図4に基づいて実施例を説
明する。
EXAMPLES Next, examples will be described with reference to FIGS.

【0008】図中、1は、一方の面に酸素極2を備えか
つ他方の面に燃料極3を備えた板状電解質層であり、こ
れら、電解質層1、酸素極2、及び、燃料極3をもっ
て、3層構造の起電部を構成してある。4は、酸素極2
に臨む側に酸素含有ガス流路sを形成すべく配置されか
つ導電性を備えたガス流路構成部であり、前記の電解質
層1、酸素極2、及び、燃料極3からなる3層構造の起
電部とガス流路構成部4とをもって、固体電解質型燃料
電池のセルCを構成してある。
In the figure, reference numeral 1 denotes a plate-like electrolyte layer having an oxygen electrode 2 on one surface and a fuel electrode 3 on the other surface, and these electrolyte layer 1, the oxygen electrode 2 and the fuel electrode. 3 constitutes a three-layer electromotive section. 4 is the oxygen electrode 2
Is a gas flow path constituent part having conductivity and arranged so as to form an oxygen-containing gas flow path s on the side facing the surface, and has a three-layer structure consisting of the electrolyte layer 1, the oxygen electrode 2, and the fuel electrode 3. The electromotive section and the gas flow path forming section 4 constitute a cell C of the solid oxide fuel cell.

【0009】ガス流路構成部4の両側縁部には、対向す
る酸素極2の両側縁部に連結させる帯状突起4aを一体
形成してあり、これら帯状突起4aにより酸素含有ガス
流路sの両側縁を閉塞することで、酸素含有ガス流路s
の流路方向視においてセルCの周部全体を酸素含有ガス
流路sとは仕切られた燃料ガス流路fとするようにして
ある。
Strip-shaped projections 4a are formed integrally on both side edges of the gas flow path forming section 4 so as to be connected to both side edges of the opposing oxygen electrode 2, and the oxygen-containing gas flow path s is formed by these strip-shaped projections 4a. By closing both edges, the oxygen-containing gas flow path s
When viewed in the flow path direction, the entire circumference of the cell C is a fuel gas flow path f which is separated from the oxygen-containing gas flow path s.

【0010】ガス流路構成部4は、酸素含有ガス流路s
を仕切り形成するものであるとともに、酸素含有ガス流
路sに臨む酸素極2から電流を導出するための端子を兼
ねており、酸素含有ガス流路sには、ガス流路構成部4
と酸素極2とを部分的に連結する帯状導電体5の複数を
酸素含有ガス流路sの流路方向に沿う平行姿勢で分散配
置してあり、これら帯状導電体5により、ガス流路構成
部4と酸素極2とを複数箇所で連結することで、酸素極
2とガス流路構成部4との間の電流通路を面積的に大き
く確保するようにしてある。
The gas flow path forming section 4 includes an oxygen-containing gas flow path s.
And also serves as a terminal for deriving a current from the oxygen electrode 2 which faces the oxygen-containing gas flow passage s.
And a plurality of strip-shaped conductors 5 that partially connect the oxygen electrodes 2 to each other are arranged in a parallel posture along the flow direction of the oxygen-containing gas passage s. By connecting the portion 4 and the oxygen electrode 2 at a plurality of locations, a large current passage is secured between the oxygen electrode 2 and the gas flow path forming portion 4 in terms of area.

【0011】帯状導電体5には、酸素含有ガス流路s中
の酸化雰囲気に対する耐性を確保する観点からLaMn
3 のフェルト状材を適用してある。又、内部の酸素含
有ガス流路sと周部の燃料ガス流路fとの両方に臨むガ
ス流路構成部4には、酸素含有ガスによる酸化雰囲気に
対する耐性と燃料ガスによる還元雰囲気に対する耐性と
の両方を確保し、かつ、セル端子として高い導電性を必
要とする観点からLaCrO3 を適用してある。
The strip-shaped conductor 5 is made of LaMn from the viewpoint of ensuring resistance to the oxidizing atmosphere in the oxygen-containing gas flow channel s.
A felt material of O 3 is applied. Further, the gas flow path constituting portion 4 facing both the internal oxygen-containing gas flow path s and the peripheral fuel gas flow path f has resistance to an oxidizing atmosphere due to the oxygen-containing gas and resistance to a reducing atmosphere due to the fuel gas. Both are ensured and LaCrO 3 is applied from the viewpoint of requiring high conductivity as a cell terminal.

【0012】上述の如く構成されたセルCの複数個を、
セルCの酸素含有ガス流路s入口側端部に、枠材7を配
置し、セルCの酸素含有ガス流路s出口側端部に、枠材
8を配置して燃料ガス流路fを形成すべく互いに前記所
定間隔を隔てて上下方向に並置するとともに、セルC,
C間に、隣合うセルC,C同士を導電状態に接続する状
態で、気体の通流を許容する形状に形成された導電性フ
ェルト状材6を配置してあり、もって、隣合うセルC,
C同士を導電性フェルト状材6を介して導電状態に接続
して、上下方向に並置した複数個のセルCを電気的に直
列接続して固体電解質型燃料電池を構成してある。
A plurality of cells C configured as described above are
The frame member 7 is arranged at the oxygen-containing gas flow channel s inlet side end of the cell C, and the frame member 8 is arranged at the oxygen-containing gas flow channel s outlet side end of the cell C to form the fuel gas flow channel f. In order to form the cells C, the cells C,
A conductive felt-like material 6 formed in a shape that allows gas flow is arranged between C and adjacent cells C and C in a conductive state. ,
Cs are connected in a conductive state via the conductive felt-like material 6, and a plurality of cells C arranged in the vertical direction are electrically connected in series to form a solid oxide fuel cell.

【0013】枠材7側には酸素含有ガス供給路S1を形
成するガス流路形成材9を、枠材8側には酸素含有ガス
排出路S2を形成するガス流路形成材10を夫々配置
し、セルCの燃料ガス流路f入口側端部には燃料ガス供
給路F1を形成するガス流路形成材11を、セルCの燃
料ガス流路f出口側端部には燃料ガス排出路F2を形成
するガス流路形成材12を夫々配置し、もって、セルC
の複数個を集積した固体電解質型燃料電池において、酸
素含有ガス供給路S1、酸素含有ガス排出路S2、燃料
ガス供給路F1、及び、燃料ガス排出路F2夫々を仕切
り形成してある。
A gas flow path forming material 9 forming an oxygen-containing gas supply path S1 is arranged on the frame material 7 side, and a gas flow path forming material 10 forming an oxygen-containing gas discharge path S2 is arranged on the frame material 8 side. The gas flow path forming material 11 forming the fuel gas supply path F1 is provided at the end of the fuel gas flow path f of the cell C, and the fuel gas discharge path is provided at the end of the fuel gas flow path f of the cell C. The gas flow path forming materials 12 forming F2 are arranged respectively, and the cell C
In the solid oxide fuel cell in which a plurality of the above are integrated, the oxygen-containing gas supply passage S1, the oxygen-containing gas discharge passage S2, the fuel gas supply passage F1, and the fuel gas discharge passage F2 are formed by partitions.

【0014】次に、導電性フェルト状材6の構成につい
て説明する。導電性フェルト状材6におけるセルCのガ
ス流路構成部4と燃料極3とに隣接する一対の外側部分
6a,6aの充填密度を、例えば1.5g/cm3 以上
として、導電性フェルト状材6の内側部分6bの充填密
度(例えば1.0g/cm3 以下)よりも大きくなるよ
うに構成し、かつ、前記一対の外側部分6a,6a夫々
を隣接するセルCのガス流路構成部4と燃料極3とに押
圧する弾性体13の複数個を、導電性フェルト状材6に
分散して収納してある。
Next, the structure of the conductive felt-like material 6 will be described. The filling density of the pair of outer portions 6a, 6a adjacent to the gas flow path constituting portion 4 of the cell C and the fuel electrode 3 in the conductive felt-like material 6 is set to, for example, 1.5 g / cm 3 or more, and the conductive felt-like material is formed. The gas flow path forming part of the cell C, which is configured to have a packing density higher than the packing density of the inner part 6b of the material 6 (for example, 1.0 g / cm 3 or less) and in which the pair of outer parts 6a and 6a are adjacent to each other 4 and a plurality of elastic bodies 13 pressed against the fuel electrode 3 and the fuel electrode 3 are dispersed and accommodated in the conductive felt-like material 6.

【0015】導電性フェルト状材6の外側部分6aと内
側部分6bとを、外側部分6aの充填密度が内側部分6
bの充填密度よりも大きくなるように各別に構成してあ
るが、燃料電池の運転状態での温度上昇による加温によ
り、外側部分6aと内側部分6bとが融着することによ
り、外側部分6aと内側部分6bにわたる電流の通流が
可能となる。そして、外側部分6aの充填密度を大きく
することにより、外側部分6aが押圧されても縮みにく
くなって、導電性フェルト状材6に収納されている弾性
体13が、外側部分6a,6a夫々を隣接するセルCの
ガス流路構成部4と燃料極3とに対して強く押圧するこ
とができることとなり、導電性フェルト状材6の外側部
分6aとガス流路構成部4及び導電性フェルト状材の外
側部分6aと燃料極3との接触抵抗が小さくなり、その
結果、隣合うセルC,C間の接続抵抗が小さくなる。し
かも、導電性フェルト状材6を燃料ガスが通流するが、
導電性フェルト状材6の内側部分6bの充填密度を小さ
くすることにより通気性が良くなるので、導電性フェル
ト状材6を通流する燃料ガスの圧力損失が小さくなる。
The outer portion 6a and the inner portion 6b of the conductive felt-like material 6 have a packing density of the outer portion 6a and the inner portion 6a.
Although each is configured to be larger than the packing density of b, the outer portion 6a and the inner portion 6b are fused by heating due to temperature rise in the operating state of the fuel cell, and thus the outer portion 6a. Therefore, the electric current can flow through the inner portion 6b. Then, by increasing the packing density of the outer portion 6a, even if the outer portion 6a is pressed, it does not easily shrink, and the elastic body 13 housed in the conductive felt-like material 6 causes the outer portions 6a and 6a to be separated. It is possible to strongly press against the gas flow path forming section 4 and the fuel electrode 3 of the adjacent cells C, and the outer portion 6a of the conductive felt-like material 6 and the gas flow path forming section 4 and the conductive felt-like material. The contact resistance between the outer portion 6a and the fuel electrode 3 is reduced, and as a result, the connection resistance between the adjacent cells C and C is reduced. Moreover, although the fuel gas flows through the conductive felt-like material 6,
Since the air permeability is improved by reducing the packing density of the inner portion 6b of the conductive felt-like material 6, the pressure loss of the fuel gas flowing through the conductive felt-like material 6 is reduced.

【0016】燃料ガス流路f内に配置することから、導
電性フェルト状材6は、燃料ガスによる還元雰囲気に対
する耐性を確保するため、Niのフェルト状材を適用し
てあり、弾性体13は、アルミナ繊維あるいはシリカ・
アルミナ繊維等のセラミックスの繊維を弾性を付加する
状態にフェルト状に加工したものを適用してある。
Since the conductive felt-like material 6 is arranged in the fuel gas flow path f, the felt-like material of Ni is applied to the conductive felt-like material 6 in order to secure the resistance to the reducing atmosphere by the fuel gas, and the elastic body 13 is , Alumina fiber or silica
A ceramic fiber such as alumina fiber processed into a felt shape in a state of adding elasticity is applied.

【0017】〔別実施例〕次に別実施例を列記する[Other Embodiments] Next, other embodiments will be listed.

【0018】 図5に示すように、弾性体13として
金属のコイル状材の複数個を、導電性フェルト状材6に
互いに平行姿勢で分散して収納するようにしても良い。
As shown in FIG. 5, as the elastic body 13, a plurality of metal coil-shaped materials may be accommodated in the conductive felt-shaped material 6 in a parallel posture while being dispersed.

【0019】 上記実施例で、酸素含有ガス流路sに
配置してある帯状導電体5を、帯状導電体5のガス流路
構成部4と酸素極2とに隣接する一対の外側部分の充填
密度を、帯状導電体5の内側部分の充填密度よりも大き
くなるように構成し、かつ、前記一対の外側部分夫々を
隣接するガス流路構成部4と酸素極2とに押圧する弾性
体を、帯状導電体5に収納しても良い。
In the above embodiment, the strip-shaped conductor 5 arranged in the oxygen-containing gas flow channel s is filled with a pair of outer portions adjacent to the gas flow channel constituent portion 4 of the strip-shaped conductor 5 and the oxygen electrode 2. An elastic body configured to have a density higher than the filling density of the inner portion of the strip-shaped conductor 5 and pressing the pair of outer portions to the adjacent gas flow path forming portion 4 and the oxygen electrode 2 is provided. Alternatively, they may be housed in the strip conductor 5.

【0020】 一方の面に酸素極2を備えかつ他方の
面に燃料極3を備えた板状電解質層1の燃料極3に臨む
側に、燃料ガス流路fを形成すべく導電性を備えたガス
流路構成部4を配置して固体電解質型燃料電池のセルC
を構成し、このように構成されたセルCの複数個を、酸
素含有ガス流路sを形成すべく互いに所定間隔を隔てて
上下方向に並置するとともに、セルC,C間に、隣合う
セルC,C同士を導電状態に接続する状態で、気体の通
流を許容する形状に形成された導電性フェルト状材6を
配置し,もって、隣合うセルC,C同士を導電性フェル
ト状材6を介して導電状態に接続して、上下方向に並置
した複数個のセルCを電気的に直列接続して固体電解質
型燃料電池を構成しても良い。この場合、燃料ガス流路
fに配置してガス流路構成部4と燃料極3とを部分的に
連結する帯状導電体5は、還元雰囲気中での耐性が優れ
たもの(例えば、Niのフェルト状材)を適用するのが
好ましい。又、導電性フェルト状材6には酸化雰囲気中
での耐性が優れたもの(例えば、LaMnO3 やLaC
rO3 のフェルト状材)を適用し、弾性体13には、ア
ルミナ繊維あるいはシリカ・アルミナ繊維等のセラミッ
クスの繊維を弾性を付加する状態にフェルト状に加工し
たものを適用するのが好ましい。
On the side of the plate-like electrolyte layer 1 having the oxygen electrode 2 on one surface and the fuel electrode 3 on the other surface, facing the fuel electrode 3, conductivity is provided to form a fuel gas flow path f. With the gas flow path forming section 4 disposed therein, the cell C of the solid oxide fuel cell
And a plurality of cells C configured as described above are juxtaposed in the vertical direction at predetermined intervals to form an oxygen-containing gas flow path s, and adjacent cells are provided between the cells C and C. In a state where C and C are connected to each other in a conductive state, the conductive felt-like material 6 formed in a shape that allows the flow of gas is arranged, so that the adjacent cells C and C are made into a conductive felt-like material. A solid oxide fuel cell may be constructed by connecting a plurality of cells C arranged in the vertical direction electrically in series by connecting them in a conductive state via 6. In this case, the strip-shaped conductor 5 that is arranged in the fuel gas flow channel f and partially connects the gas flow channel constituent portion 4 and the fuel electrode 3 has excellent resistance in a reducing atmosphere (for example, Ni It is preferable to apply a felt-like material. Further, the conductive felt-like material 6 has excellent resistance in an oxidizing atmosphere (for example, LaMnO 3 or LaC).
It is preferable that a felt-like material of rO 3 ) is applied, and that the elastic body 13 is a fiber of ceramics such as alumina fiber or silica-alumina fiber processed into a felt shape in a state of adding elasticity.

【0021】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体電解質型燃料電池の正面断面図FIG. 1 is a front sectional view of a solid oxide fuel cell.

【図2】固体電解質型燃料電池の側面断面図FIG. 2 is a side sectional view of a solid oxide fuel cell.

【図3】図1におけるA−A矢視図FIG. 3 is a view on arrow AA in FIG.

【図4】固体電解質型燃料電池の要部の一部破断斜視図FIG. 4 is a partially cutaway perspective view of a main part of a solid oxide fuel cell.

【図5】別実施例を示す固体電解質型燃料電池の要部の
一部破断斜視図
FIG. 5 is a partially cutaway perspective view of a main part of a solid oxide fuel cell showing another embodiment.

【図6】従来の固体電解質型燃料電池の正面断面図FIG. 6 is a front sectional view of a conventional solid oxide fuel cell.

【図7】従来の固体電解質型燃料電池の側面断面図FIG. 7 is a side sectional view of a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 板状固体電解質層 2 酸素極 3 燃料極 4 ガス流路構成部 6 導電性フェルト状材 6a 外側部分 6b 内側部分 13 弾性体 f 燃料ガス流路 s 酸素含有ガス流路 C セル DESCRIPTION OF SYMBOLS 1 Plate-shaped solid electrolyte layer 2 Oxygen electrode 3 Fuel electrode 4 Gas flow path constituent part 6 Conductive felt-like material 6a Outer part 6b Inner part 13 Elastic body f Fuel gas flow path s Oxygen-containing gas flow path C cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一方の面に酸素極(2)を備えかつ他方
の面に燃料極(3)を備えた板状固体電解質層(1)
と、前記酸素極(2)に臨む側と前記燃料極(3)に臨
む側のいずれか一方側に酸素含有ガス流路(s)又は燃
料ガス流路(f)を形成すべく配置されかつ導電性を備
えたガス流路構成部(4)とから固体電解質型燃料電池
のセル(C)が構成され、そのセル(C)の複数個が、
燃料ガス流路(f)又は酸素含有ガス流路(s)を形成
すべく互いに間隔を隔てて上下方向に並置されるととも
に、前記セル(C),(C)間に、隣合う前記セル
(C),(C)同士を導電状態に接続する状態で、気体
の通流を許容する形状に形成された導電性フェルト状材
(6)が配置されている固体電解質型燃料電池であっ
て、 前記導電性フェルト状材(6)の前記セル(C)に隣接
する一対の外側部分(6a),(6a)を、前記セル
(C)に押圧する弾性体(13)が、前記導電性フェル
ト状材(6)に収納されている固体電解質型燃料電池。
1. A plate-like solid electrolyte layer (1) having an oxygen electrode (2) on one surface and a fuel electrode (3) on the other surface.
And an oxygen-containing gas flow channel (s) or a fuel gas flow channel (f) is formed on one of the side facing the oxygen electrode (2) and the side facing the fuel electrode (3), and A cell (C) of a solid oxide fuel cell is composed of a gas flow path constituting section (4) having conductivity, and a plurality of cells (C) are
In order to form the fuel gas flow channel (f) or the oxygen-containing gas flow channel (s), they are juxtaposed in the vertical direction with an interval between them, and the adjacent cells ( A solid oxide fuel cell in which a conductive felt-like material (6) formed in a shape that allows gas flow is arranged in a state where C) and (C) are electrically connected to each other, The elastic body (13) for pressing the pair of outer portions (6a), (6a) of the conductive felt-like material (6) adjacent to the cell (C) to the cell (C) is the conductive felt. A solid oxide fuel cell housed in a sheet material (6).
【請求項2】 前記導電性フェルト状材(6)の前記外
側部分(6a)の充填密度が、前記導電性フェルト状材
(6)の内側部分(6b)の充填密度よりも大きくなる
ように構成され、前記外側部分(6a)と前記内側部分
(6b)とが加温により融着するように構成されている
固体電解質型燃料電池。
2. The packing density of the outer part (6a) of the conductive felt-like material (6) is higher than the packing density of the inner part (6b) of the conductive felt-like material (6). A solid oxide fuel cell, which is configured so that the outer portion (6a) and the inner portion (6b) are fused by heating.
【請求項3】 前記弾性体(13)が、導電性を備えた
ものである請求項1又は2に記載の固体電解質型燃料電
池。
3. The solid oxide fuel cell according to claim 1, wherein the elastic body (13) has conductivity.
JP3261494A 1991-10-09 1991-10-09 Fuel cell with solid electrolyte Pending JPH05101836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3261494A JPH05101836A (en) 1991-10-09 1991-10-09 Fuel cell with solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261494A JPH05101836A (en) 1991-10-09 1991-10-09 Fuel cell with solid electrolyte

Publications (1)

Publication Number Publication Date
JPH05101836A true JPH05101836A (en) 1993-04-23

Family

ID=17362692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261494A Pending JPH05101836A (en) 1991-10-09 1991-10-09 Fuel cell with solid electrolyte

Country Status (1)

Country Link
JP (1) JPH05101836A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027813A2 (en) * 2000-09-27 2002-04-04 Proton Energy Systems, Inc. Apparatus and method for maintaining compression of the active area in an electrochemical cell
US6682845B2 (en) 2000-09-27 2004-01-27 Proton Energy Systems, Inc. Apparatus for maintaining compression of the active area in an electrochemical cell
US6869720B2 (en) 2000-09-27 2005-03-22 Proton Energy Systems, Inc. Method and apparatus for maintaining compression of the active area in an electrochemical cell
JPWO2005013405A1 (en) * 2003-07-31 2006-09-28 トヨタ自動車株式会社 FUEL CELL STACK, FUEL CELL SYSTEM, AND METHOD FOR PRODUCING FUEL CELL STACK
JP2007005186A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007005185A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007005183A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007005181A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
US7354675B2 (en) 1999-10-07 2008-04-08 Proton Energy Systems, Inc. Apparatus and method for maintaining compression of the active area in an electrochemical cell
JP2008147021A (en) * 2006-12-11 2008-06-26 Nissan Motor Co Ltd Separator for solid electrolyte fuel cell, solid electrolyte fuel cell, and solid electrolyte fuel cell stack structure
JP2008243572A (en) * 2007-03-27 2008-10-09 Equos Research Co Ltd Current collector and fuel cell
JP2010103042A (en) * 2008-10-27 2010-05-06 Toyota Motor Corp Fuel cell and method for manufacturing fuel cell
JP2010129461A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Polymer electrolyte fuel cell
WO2018155111A1 (en) * 2017-02-27 2018-08-30 日本特殊陶業株式会社 Electrochemical reaction unit, electrochemical reaction cell stack, and production method for electrochemical reaction unit
JP2020042980A (en) * 2018-09-11 2020-03-19 住友精密工業株式会社 Fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354675B2 (en) 1999-10-07 2008-04-08 Proton Energy Systems, Inc. Apparatus and method for maintaining compression of the active area in an electrochemical cell
WO2002027813A2 (en) * 2000-09-27 2002-04-04 Proton Energy Systems, Inc. Apparatus and method for maintaining compression of the active area in an electrochemical cell
WO2002027813A3 (en) * 2000-09-27 2002-12-12 Proton Energy Sys Inc Apparatus and method for maintaining compression of the active area in an electrochemical cell
US6682845B2 (en) 2000-09-27 2004-01-27 Proton Energy Systems, Inc. Apparatus for maintaining compression of the active area in an electrochemical cell
US6869720B2 (en) 2000-09-27 2005-03-22 Proton Energy Systems, Inc. Method and apparatus for maintaining compression of the active area in an electrochemical cell
JPWO2005013405A1 (en) * 2003-07-31 2006-09-28 トヨタ自動車株式会社 FUEL CELL STACK, FUEL CELL SYSTEM, AND METHOD FOR PRODUCING FUEL CELL STACK
JP2007005181A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007005183A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007005185A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007005186A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2008147021A (en) * 2006-12-11 2008-06-26 Nissan Motor Co Ltd Separator for solid electrolyte fuel cell, solid electrolyte fuel cell, and solid electrolyte fuel cell stack structure
JP2008243572A (en) * 2007-03-27 2008-10-09 Equos Research Co Ltd Current collector and fuel cell
JP2010103042A (en) * 2008-10-27 2010-05-06 Toyota Motor Corp Fuel cell and method for manufacturing fuel cell
JP2010129461A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Polymer electrolyte fuel cell
WO2018155111A1 (en) * 2017-02-27 2018-08-30 日本特殊陶業株式会社 Electrochemical reaction unit, electrochemical reaction cell stack, and production method for electrochemical reaction unit
JPWO2018155111A1 (en) * 2017-02-27 2019-02-28 日本特殊陶業株式会社 Electrochemical reaction unit, electrochemical reaction cell stack, and method for producing electrochemical reaction unit
US11289727B2 (en) 2017-02-27 2022-03-29 Morimura Sofc Technology Co., Ltd. Electrochemical reaction unit, electrochemical reaction cell stack, and production method for electrochemical reaction unit
JP2020042980A (en) * 2018-09-11 2020-03-19 住友精密工業株式会社 Fuel cell

Similar Documents

Publication Publication Date Title
JPH05101836A (en) Fuel cell with solid electrolyte
US5188910A (en) Solid oxide fuel cells
US6444340B1 (en) Electrical conductivity in a fuel cell assembly
JP4322106B2 (en) Fuel cell and fuel cell stack
WO2000002275A3 (en) Electrochemical fuel cell having an undulate membrane electrode assembly
JP4200088B2 (en) Fuel cell and fuel cell stack
KR100853015B1 (en) Fuel cell and manufacturing method thereof
JPH08130023A (en) Fuel cell
US5023152A (en) Fuel cell assembly
JP4680338B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF CONNECTING THE SAME
US5149601A (en) Solid oxide fuel cell
CA2486180A1 (en) A fuel cell structure
JP2006080084A (en) Fuel cell stack
JP2002170581A (en) Polymer electrolyte type fuel battery
JP4287364B2 (en) Molten carbonate fuel cell and manufacturing method thereof
JPH0620294Y2 (en) Solid electrolyte fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
EP1469541A2 (en) Unit cell for fuel cell and fuel cell therewith
JPH06290803A (en) Fuel cell
JPH0644987A (en) Cell structure for fuel cell
JP3046485B2 (en) Solid oxide fuel cell
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JPH06333582A (en) Solid polyelectrolyte fuel cell
JP2799877B2 (en) Cylindrical solid electrolyte fuel cell
JP2002231276A (en) Fuel cell