JPH0499832A - Manufacture of refractory active metal alloy - Google Patents

Manufacture of refractory active metal alloy

Info

Publication number
JPH0499832A
JPH0499832A JP21754090A JP21754090A JPH0499832A JP H0499832 A JPH0499832 A JP H0499832A JP 21754090 A JP21754090 A JP 21754090A JP 21754090 A JP21754090 A JP 21754090A JP H0499832 A JPH0499832 A JP H0499832A
Authority
JP
Japan
Prior art keywords
components
plate
melting
raw material
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21754090A
Other languages
Japanese (ja)
Inventor
Shigeo Fukumoto
成雄 福元
Ryuji Nakao
隆二 中尾
Hidemaro Takeuchi
竹内 英麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21754090A priority Critical patent/JPH0499832A/en
Publication of JPH0499832A publication Critical patent/JPH0499832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To secure the componental uniformity of an ingot and to suppress the evaporation of high vapor pressure components in an alloy by one-time melting by subjecting a multilayer bar-shaped raw material obtd. by superimposing plate-shaped materials as main components and plate-shaped materials as allay components into a layer shape to melting. CONSTITUTION:Plate-shaped materials 4 as main components and plate-shaped materials 5 as alloy components are alternately superimposed into a layer shape to form a bar-shaped raw material 6 of the multilayer of right 8 layers or above. The width of the plate-shaped materials 4 and 5 is regulated to the same degree for their uniform melting, their thickness is regulated to about 1 to 10mm for the workability of laminating, for the facilitation in the regulation of the weight ratio of the components or the like and the weight ratio of the main components to the allay components in the cross section is regulated so as to obtain the compositional ratio of desired components in the ingot. This bar-shaped raw material is subjected to electron beam melting, and the refractory active metal allay is melted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン、ニオブ、モリブデン、タンタル等の
高融点活性金属を主成分とする合金を電子ビーム溶解に
より製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an alloy whose main component is a high melting point active metal such as titanium, niobium, molybdenum, tantalum, etc. by electron beam melting.

〔従来の技術〕[Conventional technology]

電子ビーム溶解法はI X 10−’Torr程度の高
真空下においてエネルギー密度の高い電子ビームを照射
して溶解することを特徴とし、高融点活性金属の溶解が
容易であること及び不純元素の蒸発除去により鋳塊の高
純化、高清浄化が達成できる等の長所を有する。しかし
、蒸気圧の高い成分の蒸発損失が激しく、鋳塊の成分分
布が不均一になることがある。
The electron beam melting method is characterized by melting by irradiating an electron beam with high energy density under a high vacuum of about I x 10-' Torr, and it is easy to melt high melting point active metals and evaporate impurity elements. Removal has the advantage that high purity and high cleanliness of the ingot can be achieved. However, the evaporation loss of components with high vapor pressure is severe, and the distribution of components in the ingot may become uneven.

例えば、Nb−Ti合金の電子ビーム溶解においてはN
bとTiの融点が約750″C違うためTiが優先的に
溶解して、またはNbが小片状の固体のまま溶融プール
へ滴下し、Nbの溶は残りが生じる現象が起り、鋳塊の
成分不均一が問題となる。
For example, in electron beam melting of Nb-Ti alloy, N
Since the melting points of b and Ti are about 750"C different, Ti preferentially dissolves, or Nb drips into the molten pool in the form of small pieces of solid, leaving behind the melted Nb, which causes the ingot to melt. The problem is the non-uniformity of the components.

さらにTiの蒸気圧がNbに比べて高いためTiの蒸発
損失が激しいという問題が発生する。このような問題を
解決する方法として例えば、特開昭62−20844号
公報に記載されているようにTi中空体内にNb中空体
を内装し、更に該Nb中空体内にTi棒材を内装して成
る3層複合材を溶解素材として使用することにより、N
bT i合金の成分均一化をはかる方法が知られている
Furthermore, since the vapor pressure of Ti is higher than that of Nb, a problem arises in that the evaporation loss of Ti is severe. As a method for solving such problems, for example, as described in Japanese Patent Application Laid-Open No. 62-20844, a Nb hollow body is placed inside a Ti hollow body, and a Ti rod is further placed inside the Nb hollow body. By using the three-layer composite material consisting of N
A method for making the composition of bT i alloy uniform is known.

しかし、この方法は中空体を用いるために溶解素材の製
造コストが高く、しかも−回の溶解では十分な成分均一
性が確保されないため多重溶解を実施する必要があり、
Tiの蒸発損失が多大となるのが現状である。
However, since this method uses a hollow body, the production cost of the melted material is high, and moreover, sufficient component uniformity cannot be ensured with multiple melts, so it is necessary to perform multiple melts.
At present, the evaporation loss of Ti is large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように高融点金属を主成分とする合金を電子ビーム
溶解により製造するに際しては、鋳塊の成分不均一性及
び高蒸気圧成分の蒸発が問題となり、これらの現象を抑
制する溶解方法は確立されていないのが現状である。
In this way, when producing alloys whose main components are high-melting point metals by electron beam melting, non-uniformity of the composition of the ingot and evaporation of high vapor pressure components become a problem, and a melting method that suppresses these phenomena has been established. The current situation is that this has not been done.

本発明は上記の問題点に鑑み、−回の溶解において鋳塊
の成分均一性を確保するとともに高蒸気圧成分の蒸発抑
制を可能とする電子ビーム溶解方法を提供することを目
的とするものである。
In view of the above problems, an object of the present invention is to provide an electron beam melting method that ensures uniformity of the components of the ingot during melting times and makes it possible to suppress the evaporation of high vapor pressure components. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は高融点活性金属(例えばNb)を主成分とし、
合金成分を添加した合金(例えばNbTi合金)を電子
ビーム溶解により溶製するに際し、所望成分とするに必
要な主成分の板状材料と合金成分の板状材料を層状に重
ねて、8層以上の多層からなる棒状原料とし、溶解に供
することを特徴とする高融点活性金属合金の製造方法を
要旨とするものである。
The present invention has a high melting point active metal (for example, Nb) as a main component,
When melting an alloy (for example, a NbTi alloy) to which an alloying component is added by electron beam melting, the plate-like material of the main component and the plate-like material of the alloying component necessary to obtain the desired composition are stacked in layers to form eight or more layers. The gist of this invention is a method for producing a high melting point active metal alloy, which is characterized in that a rod-shaped raw material consisting of multiple layers is subjected to melting.

本発明における電子ビーム溶解法は、第1図にその例を
示すように棒状の溶解材料1を電子ビーム2によって溶
融させ、鋳型3内に溶滴を滴下させるロッド溶解である
The electron beam melting method in the present invention is rod melting in which a rod-shaped melting material 1 is melted by an electron beam 2 and droplets are dropped into a mold 3, as shown in FIG.

板状材料としては熱延板、冷延板またはそのスクラップ
を用い、酸素等の不純物含有量が低レベルであることを
要求される場合は酸洗、ショツトブラスト等の処理を行
って表面酸化物を除去した後に使用する。
Hot-rolled plates, cold-rolled plates, or their scraps are used as plate materials, and if the content of impurities such as oxygen is required to be at a low level, treatments such as pickling and shot blasting are performed to remove surface oxides. Use after removing.

第2図(a)に主成分の板状材料4と合金成分の板状材
料5を交互に層状に重ねた棒状原料6の斜視図を示す。
FIG. 2(a) shows a perspective view of a rod-shaped raw material 6 in which a plate-shaped material 4 as a main component and a plate-shaped material 5 as an alloy component are alternately layered.

板状材料4.5の幅は均一に溶解させるために同程度と
し、厚みは積層の作業性、重量比調整のし易さ等より1
〜10mm程度とし、横断面内での主成分と合金成分の
重量比は鋳塊において所望成分の組成比が得られるよう
に調整する。
The width of the plate material 4.5 should be the same in order to dissolve it uniformly, and the thickness should be 1.5 for ease of lamination workability and ease of adjusting the weight ratio.
~10 mm, and the weight ratio of the main component to the alloy component in the cross section is adjusted so as to obtain a desired composition ratio of the components in the ingot.

なお、1枚の板状材料は複数枚の薄い板を積み重ねても
、1枚の板を用いてもよい。第2図建)は2枚の主成分
の板状材料4と1枚の合金成分の板状材料5を交互に重
ねて11層の棒状原料6を形成した例を示す。板状材料
4と5との接触面はできるだけ多い(板状材料5は必ず
板状材料4に挟まれている)方が、両者の混合あるいは
合金化のために望ましい。
Note that one plate-shaped material may be a stack of a plurality of thin plates or a single plate. Figure 2) shows an example in which two main component plate materials 4 and one alloy component plate material 5 are alternately stacked to form 11 layers of rod-shaped raw material 6. It is desirable to have as many contact surfaces as possible between the plate-like materials 4 and 5 (the plate-like material 5 is always sandwiched between the plate-like materials 4) in order to mix or alloy the two.

また、主成分の板状材料4は同一材質の薄板で同一材質
のスクラップを包んで板状としたものでもよい。棒状原
料6は後述の理由から8層以上とし、その大きさは通常
使用されるロッド溶解に供するもの(例えば50〜10
0刷中)とする。8層以上の多層に重ねられた棒状原料
6は溶接、又は主成分と同一成分の線材による結束等の
手段によって固定し、溶解に供する。
Further, the plate-shaped material 4 as the main component may be made into a plate shape by wrapping a scrap of the same material in a thin plate of the same material. The rod-shaped raw material 6 has 8 or more layers for the reason described later, and its size is one that is used for rod melting that is normally used (for example, 50 to 10 layers).
(currently in print). The rod-shaped raw materials 6 stacked in eight or more layers are fixed by means such as welding or bundling with wire rods having the same composition as the main component, and then subjected to melting.

〔作用〕[Effect]

第3図にTiの板状材料とNbの板状材料を層状に重ね
合せた棒状原料を用い、Nb−Ti合金を電子ビーム溶
解した場合のTiの成分変動と棒状原料の層数の関係を
示す。なお、縦軸の成分変動は鋳塊長手方向の成分分布
を調査した際の標準偏差をとっている。Tiの成分分布
の標準偏差は棒状原料の層数が8層以上では1%以下に
抑えられており、1回の溶解により成分均一性が確保さ
れている。これは棒状原料の層数を増すことによって電
子ビームが原料に照射され、原料が溶融滴下する際にN
bとTiが十分に合金化しているためと考えられる。つ
まり、層数が少ない場合は、Nbが溶解する前に融点の
低いTiが合金化することなく、溶融滴下してしまうの
に対し、層数が多い場合はTiが先に溶融し、続いてこ
れがNbと合金化することによって低融点化し、Nbの
溶解も円滑に進行していくと考えられる。また、このよ
うに棒状原料の層数を8層以上とした場合は溶融滴下の
段階で十分に合金化しているためNbの溶は残りも発生
しない。
Figure 3 shows the relationship between Ti component fluctuations and the number of layers in the rod-shaped raw material when Nb-Ti alloy is melted with an electron beam using a rod-shaped raw material in which a Ti plate material and a Nb plate-shaped material are stacked in layers. show. Note that the component fluctuation on the vertical axis is the standard deviation when investigating the component distribution in the longitudinal direction of the ingot. The standard deviation of the Ti component distribution is suppressed to 1% or less when the number of layers of the rod-shaped raw material is 8 or more, and component uniformity is ensured by one melting. This is because by increasing the number of layers of the rod-shaped raw material, the raw material is irradiated with an electron beam, and when the raw material melts and drips, N
This is thought to be because b and Ti are sufficiently alloyed. In other words, when the number of layers is small, Ti, which has a low melting point, melts and drips without being alloyed before Nb melts, whereas when there are many layers, Ti melts first, and then It is thought that by alloying with Nb, the melting point is lowered, and the dissolution of Nb proceeds smoothly. Further, when the number of layers of the rod-shaped raw material is 8 or more as described above, since the material is sufficiently alloyed at the stage of melting and dropping, no residual Nb is generated.

第4図にTiの板状材料とA2の板状材料を層状に重ね
合せた棒状原料を用い、Ti −AZ金合金電子ビーム
溶解した場合のAI蒸発歩留と棒状原料の層数の関係を
示す。TiとAtは融点が約1000°C異なり、八!
の蒸気圧はTiに比べて非常に高いためAIの蒸発損失
が問題となるが、棒状原料の層数を8層以上とした場合
は八!歩留は急激に上昇し、10層では八!の歩留が8
0%まで向上する。層数の少ない場合はTiが溶融する
前にAIが先に溶融し、合金化する前に電子ビーム照射
によりAIが過熱され、蒸発が著しくなる。これに対し
、層数を多くすることによって上述と同様に合金化が促
進され、蒸発を抑制できたと考えられる。また、高蒸気
圧成分の蒸発を抑制するためには直接電子ビームが照射
される最上面には蒸気圧の低い成分の板状材料を置くこ
とが望ましい。逆の場合は最上面の高蒸気圧成分の板状
材料の蒸発が多くなり、歩留の低下をまねくためである
Figure 4 shows the relationship between the AI evaporation yield and the number of layers of the rod-shaped raw material when a Ti-AZ gold alloy is electron beam melted using a rod-shaped raw material in which a Ti plate material and an A2 plate-shaped material are stacked in layers. show. The melting points of Ti and At differ by about 1000°C, and 8!
The vapor pressure of AI is much higher than that of Ti, so evaporation loss of AI becomes a problem, but when the number of layers of the rod-shaped raw material is 8 or more, 8! The yield increased rapidly, reaching 8 in the 10th layer! The yield of
Improved to 0%. When the number of layers is small, the AI melts before the Ti melts, and the AI is overheated by electron beam irradiation before alloying, resulting in significant evaporation. On the other hand, it is considered that by increasing the number of layers, alloying was promoted in the same way as described above, and evaporation could be suppressed. Furthermore, in order to suppress evaporation of high vapor pressure components, it is desirable to place a plate-like material of low vapor pressure components on the top surface that is directly irradiated with the electron beam. This is because in the opposite case, the plate-like material of the high vapor pressure component on the uppermost surface will evaporate more, leading to a decrease in yield.

以上述べてきたように、鋳塊の成分均一化及び蒸発抑制
のためには棒状原料の層数を増やすことが重要であり、
8層以上とすることによってこれらの問題を安定して解
決することができる。
As mentioned above, it is important to increase the number of layers of rod-shaped raw material in order to equalize the composition of the ingot and suppress evaporation.
These problems can be stably solved by having eight or more layers.

また、本発明の板状材料は熱延板、冷延板及びそのスク
ラップを用いるため、種々の板厚のものを用いることが
可能である。
Moreover, since the plate-shaped material of the present invention uses hot-rolled plates, cold-rolled plates, and their scraps, it is possible to use plates of various thicknesses.

〔実施例] 高融点活性金属を主成分とする合金の電子ビーム溶解に
おいて棒状原料の層数を変えて溶解試験を実施した結果
を第1表に示す。150mm中の角形断面の鋳型を用い
、表中に示すEB比出力溶解速度において種々の合金を
溶解した場合の合金成分の成分変動、溶は残りの有無、
合金成分の歩留を示すが、本発明例のNo、 1〜4は
成分の均一化が達成されており成分蒸発歩留も高いのに
対し、No。
[Example] Table 1 shows the results of a melting test conducted by changing the number of layers of the rod-shaped raw material in electron beam melting of an alloy whose main component is a high melting point active metal. Changes in alloy composition when various alloys are melted at the EB specific power melting rate shown in the table using a mold with a rectangular cross section of 150 mm, presence or absence of melt remaining,
The yield of alloy components is shown. In contrast to Nos. 1 to 4 of the present invention examples, the components have been made uniform and the component evaporation yield is high.

5.6の中空体の3層複合体を用いた場合の比較例では
成分変動が激しく、溶は残りも存在し、成分歩留も低い
。また、No、 7の層数が少ない棒状原料の場合もN
o、 5.6と同様の問題が発生している。
In a comparative example in which a three-layer composite of hollow bodies of No. 5.6 was used, the components fluctuated significantly, some residual solution remained, and the component yield was low. Also, in the case of rod-shaped raw materials with a small number of layers No. 7, N
o, The same problem as 5.6 is occurring.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように高融点活性金属を主成分とする合
金を電子ビーム溶解により溶製する際、主成分と合金成
分の板状材料を8層以上に積み重ねた多層の棒状原料を
溶解に供することにより、鋳塊の成分均一性を1回の溶
解により安定して確保するとともに高蒸気圧成分の蒸発
を抑制するものである。
As described above, when melting an alloy whose main component is a high melting point active metal by electron beam melting, the present invention melts a multilayered rod-shaped raw material in which plate-shaped materials of the main component and alloy component are stacked in eight or more layers. By providing this, uniformity of the components of the ingot can be stably ensured by one melting process, and evaporation of high vapor pressure components can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子ビーム溶解炉における溶解方法を示す図、
第2図(a)、(b)は本発明において使用する棒状原
料を示す斜視図、第3図は成分変動と棒状原料の層数の
関係を示す図、第4図は蒸発歩留と棒状原料の層数の関
係を示す図である。
Figure 1 is a diagram showing the melting method in an electron beam melting furnace;
Figures 2 (a) and (b) are perspective views showing the rod-shaped raw material used in the present invention, Figure 3 is a diagram showing the relationship between component fluctuations and the number of layers of the rod-shaped raw material, and Figure 4 is a diagram showing the relationship between the evaporation yield and the rod-shaped raw material. FIG. 3 is a diagram showing the relationship between the number of layers of raw materials.

Claims (1)

【特許請求の範囲】[Claims] 高融点活性金属を主成分とする合金を電子ビーム溶解に
より溶製するに際し、前記合金を所望成分組成とするに
必要な主成分の板状材料と合金成分の板状材料を層状に
重ねて8層以上の多層からなる棒状原料とし、溶解に供
することを特徴とする高融点活性金属合金の製造方法。
When melting an alloy whose main component is a high melting point active metal by electron beam melting, the plate-like material of the main component and the plate-like material of the alloy component necessary to make the alloy have the desired composition are stacked in layers. A method for producing a high melting point active metal alloy, which comprises using a rod-shaped raw material consisting of multiple layers or more and subjecting it to melting.
JP21754090A 1990-08-17 1990-08-17 Manufacture of refractory active metal alloy Pending JPH0499832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21754090A JPH0499832A (en) 1990-08-17 1990-08-17 Manufacture of refractory active metal alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21754090A JPH0499832A (en) 1990-08-17 1990-08-17 Manufacture of refractory active metal alloy

Publications (1)

Publication Number Publication Date
JPH0499832A true JPH0499832A (en) 1992-03-31

Family

ID=16705857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21754090A Pending JPH0499832A (en) 1990-08-17 1990-08-17 Manufacture of refractory active metal alloy

Country Status (1)

Country Link
JP (1) JPH0499832A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045496A1 (en) * 1997-04-04 1998-10-15 Japan Energy Corporation Production method of sheet material of active metal having high melting point
US20120318101A1 (en) * 2006-12-01 2012-12-20 Tini Alloy Company Method of alloying reactive components
CN114277255A (en) * 2021-12-15 2022-04-05 西安诺博尔稀贵金属材料股份有限公司 Method for improving uniformity of components of niobium-tungsten alloy ingot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045496A1 (en) * 1997-04-04 1998-10-15 Japan Energy Corporation Production method of sheet material of active metal having high melting point
US20120318101A1 (en) * 2006-12-01 2012-12-20 Tini Alloy Company Method of alloying reactive components
US8349099B1 (en) * 2006-12-01 2013-01-08 Ormco Corporation Method of alloying reactive components
US9340858B2 (en) 2006-12-01 2016-05-17 Ormco Corporation Method of alloying reactive components
US10190199B2 (en) 2006-12-01 2019-01-29 Ormco Corporation Method of alloying reactive components
CN114277255A (en) * 2021-12-15 2022-04-05 西安诺博尔稀贵金属材料股份有限公司 Method for improving uniformity of components of niobium-tungsten alloy ingot
CN114277255B (en) * 2021-12-15 2024-05-14 西安诺博尔稀贵金属材料股份有限公司 Method for improving component uniformity of niobium-tungsten alloy cast ingot

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
CN105102679B (en) Hot rolling titanium strand and its manufacture method
US10923248B2 (en) Method for producing a metal film
DE102014008137B4 (en) Process for producing a metal foil
US11101118B2 (en) Cobalt, iron, boron, and/or nickel alloy-containing articles and methods for making same
EP2997170B1 (en) Method and device for remelting and/or remelt-alloying metallic materials, in particular nitinol
US8765053B2 (en) Sn based alloys with fine compound inclusions for Nb3Sn superconducting wires
WO2017018513A1 (en) Titanium composite material, and titanium material for use in hot rolling
CN112916870A (en) Preparation method of medium-high entropy alloy material
EP0146314A2 (en) Method of producing a high-purity metal member
JPH0499832A (en) Manufacture of refractory active metal alloy
TW201718893A (en) Titanium composite material and titanium material for hot working
EP0595877B1 (en) Process of producing superconducting alloys
JP2016512286A (en) Crystalline alloy having amorphous forming ability, method for producing the same, alloy target for sputtering, and method for producing the same
JPH06264233A (en) Sputtering target for producing tft
CN113245681A (en) Vacuum plasma welding method for niobium-titanium alloy cast ingot
RU2436199C1 (en) METHOD TO MANUFACTURE COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
TWI626093B (en) Titanium composite and titanium for hot rolling
TWI603851B (en) Hot rolled titanium
RU2559803C2 (en) METHOD FOR MANUFACTURING OF COMPOSITE SUPERCONDUCTING WIRE BASED ON Nb3Sn COMPOSITION AND PRODUCTION LINE FOR MANUFACTURING OF COMPOSITE SUPERCONDUCTING WIRE BASED ON Nb3Sn COMPOSITION
JPS6220844A (en) Manufacture of nb-ti alloy
EP0582565A4 (en) Superconductor and process of manufacture.
TW202041294A (en) Ultra-thin titanium sheet and method for producing the same
JPS6119743A (en) Preparation of nb-alloy
JPH05880B2 (en)