JPH049820B2 - - Google Patents

Info

Publication number
JPH049820B2
JPH049820B2 JP1301971A JP30197189A JPH049820B2 JP H049820 B2 JPH049820 B2 JP H049820B2 JP 1301971 A JP1301971 A JP 1301971A JP 30197189 A JP30197189 A JP 30197189A JP H049820 B2 JPH049820 B2 JP H049820B2
Authority
JP
Japan
Prior art keywords
styrene
weight
rubber
butadiene
copolymer rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1301971A
Other languages
Japanese (ja)
Other versions
JPH02160846A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP30197189A priority Critical patent/JPH02160846A/en
Publication of JPH02160846A publication Critical patent/JPH02160846A/en
Publication of JPH049820B2 publication Critical patent/JPH049820B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶液重合による特定されたスチレンお
よびブタジエン部ミクロ構造の分子鎖内分布を有
する完全ランダムスチレン−ブタジエン共重合ゴ
ムを原料とするゴム組成物に関する。 有機リチウム化合物を触媒として用い、溶液重
合法でスチレン−ブタジエン共重合ゴムを得よう
とする場合、特に問題となるのは通常行なわれる
条件下ではスチレンとブタジエンの重合速度の差
異により重合体鎖中にスチレンが連続的に結合し
た、いわゆるブロツクスチレンを生じることにあ
る。 この問題を解決してランダムスチレン−ブタジ
エン共重合ゴムを得ようとする試みは多く、既に
多くの方法が提案されている。その一つは重合反
応系に極性有機化合物あるいはナトリウム、カリ
ウムもしくはその類似物の有機塩ないしは錯化合
物を共存させる方法であり、もう一つの方法は反
応操作によるもので代表的なものは重合の進行に
合せて単量体の一部を重合系に遂次追加する方法
あるいは重合体と不活性希釈剤を相分離させ、こ
の状態下で重合する方法等である。これらの方法
によつて従来知られる概念によるブロツクスチレ
ンは確かに低減されるが、一般にビニル結合の上
昇をもたらし、更に重合体連鎖中のスチレンの結
合様式、スチレンの連鎖分布がいかなるものかま
では詳しく検討されておらず、本発明でいう完全
ランダムスチレン−ブタジエン共重合ゴムは得ら
れていなかつた。 比較的最近になつてスチレン−ブタジエン共重
合ゴムのスチレンの連鎖分布の測定がNMRスペ
クトルにより可能となり、この分析法による短鎖
ブロツクスチレンと長鎖ブロツクスチレンの概念
の導入がなされ、擬ランダムスチレン−ブタジエ
ン共重合ゴムおよびその製造法に関する提案がな
されるようになつた。(特開昭49−67986号公報、
特開昭53−69288号公報)しかしNMRによる分
析方法は定性的にある程度スチレンの連鎖分布を
把えるもののカーブリゾルバーで解析することも
あり定量的には不十分であり、又本発明でいう単
離スチレンまで分析するには至らず、したがつて
完全ランダムスチレン−ブタジエン共重合ゴムの
概念には到達し得ないものであつた。 他方、スチレン−ブタジエン共重合ゴムのスチ
レンおよびブタジエン部のミクロ構造の分子鎖内
における分布の概念については、分子鎖間におけ
る分布の概念が解析手段としてゲルパーミエーシ
ヨンクロマトグラフ(GPC)を利用できること
もあつて関連する各種提案があるのに対して(例
えば特開昭55−40712号公報)、従来ほとんど考慮
されないものであつた。わずかに有機リチウム化
合物とルイス塩基を組合わせた触媒によるブタジ
エンの単独重合において上昇温度下における重合
がブタジエン部ミクロ構造、特に1,2ビニル結
合の分子鎖内分布の形成をもたらすことを予想し
ているのみであり、この場合にもその分布の解析
確認は実施されていなかつた。(特公昭43−875号
公報) 本発明は上述の2つの概念、すなわちスチレン
の連鎖分布におけるランダム性およびスチレンと
ブタジエン部ミクロ構造の分子鎖内分布における
均一性を鋭意検討し、ある特定されたスチレンお
よびブタジエン部ミクロ構造の分子鎖内分布を有
する完全ランダムスチレン−ブタジエン共重合ゴ
ムが極めて優れた原料ゴムであることを見出し、
この知見に基づいて本発明をなすに至つた。 すなわち、本発明はムーニー粘度30ないし150、
結合スチレン10ないし30重量%、ブタジエン部の
1,2ビニル結合35ないし65%、重量平均分子量
と数平均分子量の比w/nで表示される分子
量分布1.2ないし3.5、オゾン分解物のゲルパーミ
エーシヨンクロマトグラフによつて分析される単
離。 スチレンが全結合スチレンの50重量%以上、長
鎖ブロツクスチレンが全結合スチレンの5重量%
以下、本文中で定義され差動走査熱量計(DSC)
によつて分析される△Tgが2ないし12℃である
ことを特徴とするスチレン−ブタジエン共重合ゴ
ムおよびこれを原料ゴムとするゴム組成物を提供
するものである。 本発明のスチレン−ブタジエン共重合ゴムを原
料ゴムとするゴム組成物は、各種ゴム用途特にタ
イヤ用途に適した優れた特性、例えば高い反撥弾
性、優れた耐摩耗性、発熱性を示すものである。 本発明で用いる完全ランダムスチレン−ブタジ
エン共重合ゴムのムーニー粘度はLローターを使
用し、100℃の条件下での測定で30ないし150に限
定される。ムーニー粘度が30未満であつては本発
明の共重合ゴムの優れた物性が発現せず、又150
を超えるものであつてはその最終用途に至るまで
の各種副資材との混合性あるいは成型性等の加工
性が十分でなく好ましくない。又共重合ゴム中の
スチレン含量である結合スチレンは10ないし30重
量%好ましくは12ないし25重量%に制限される。
10重量%未満では本発明の完全ランダムである効
果が十分発現せず、又30重量%を超える場合は、
共重合ゴムとしてその物性上不必要な結合スチレ
ンであり、又この結合スチレンで完全ランダム共
重合体自体を得ることも困難であり好ましくな
い。更に本発明で用いる共重合ゴムはスチレン、
ブタァジエン以外の共重合体成分として少量の他
の共重合可能な単量体成分、例えばイソプレン、
ジメチルブタジエン、ペンタジエン、メチルスチ
レン、エチルスチレン、ジビニルベンゼン、ジイ
ソプロペニルベンゼン等を含むものであつても良
い。 本発明で用いる完全ランダムスチレン−ブタジ
エン共重合ゴムのブタジエン部のミクロ構造は
1,2ビニル結合に関して35ないし65%、好まし
くは40ないし60%に制限される。この制限範囲外
のビニル結合は耐摩耗性またはウエツトスキツド
抵抗性いずれかの著しい低下をもたらし本発明の
効果を失うこととなり好ましくない。又、重量平
均分子量と数平均分子量との比をもつて表示され
る分子量分布は1.2ないし3.5、好ましくは1.5ない
し3.0に制限される。この制限よりも狭い分子量
分布は極めて劣つた加工性を示すものとなり、一
方この制限よりも拡大された分子量分布は反撥弾
性、発熱性等本発明の共重合ゴムの特性の一部を
失なうこととなり好ましくない。又、分布の形状
については分子量分布が上述の範囲内にあればモ
ノモーダルであつてもバイモーダル以上の多モー
ダルであつても良い。本発明の好ましい一つの分
布形状は重合後に四塩化ケイ素、四塩化スズ、四
塩化炭素ないしクロロホルム等の多官能性カツプ
リング剤を用いて重合末端リビングの一部をカツ
プリングすることによつて得られたバイモーダル
な分子量分布を有する共重合ゴムである。 本発明で用いる完全ランダムスチレン−ブタジ
エン共重合ゴムのスチレンの結合様式、スチレン
の連鎖分布は共重合ゴムの低温オゾン分解物のゲ
ルパーミエーシヨンクロマトグラフによつて分析
される。従来スチレンの連鎖分布の解析には1H
−NMRによる方法、13C−NMRによる方法ある
いはメタセシス分解物のGC分析による方法が知
られたが、いずれの方法も単離のスチレンを定量
的に把えることおよび比較的長いスチレン連鎖に
ついて知見を得るには十分でなかつた。本発明の
方法は最近田中らによつて開発された方法であつ
てスチレンの連鎖分布なブタジエン単位の二重結
合をすべてオゾン開裂して得た分解物のゲルパー
ミエーシヨンクロマトグラフ(GPC)によつて
分析される。(高分子学会予稿集29巻9号2055頁)
本発明で用いる共重合ゴムはこの方法によつて分
析された単離スチレン、すなわちスチレン単位の
連鎖が1のスチレンが全結合スチレンの50重量%
以上、好ましくは65重量%以上であり、長鎖ブロ
ツクスチレン、すなわちスチレン単位の連鎖が8
以上のスチレンが全結合スチレンの5重量%以
下、好ましくは2.5重量%以下である。単離スチ
レンが50重量%未満であつても、長鎖ブロツクス
チレンが5重量%を越える場合であつても本発明
の完全ランダムスチレン−ブタジエン共重合ゴム
の優れた特性であるスチレン結合の割に高い反撥
弾性、耐摩耗性等は発現せず、好ましいものでは
ない。 本発明で用いるスチレン−ブタジエン共重合ゴ
ムの差動走査熱量計、(DSC)によつて分析され
る△Tgは2ないし12℃、好ましくは3ないし10
℃に制限される。△Tgが12℃以上の共重合ゴム
は分子鎖内に耐摩耗性、発熱性等の物性を低下さ
せる結合スチレンとブタジエン部ミクロ構造の分
布の不均一性があまりにも大きく好ましくない。
一方△Tgが2℃以下であつては引張強度の低下、
ウエツトスキツド抵抗性の改良あるいは他のゴム
とのブレンド特性が不十分であり好ましくない。 本発明における△Tgは、次のように定義され
る。すなわち、共重合体のミクロ構造と結合スチ
レン含量からゴードン・テイラーの式(ジヤーナ
ル・オブ・アプライド・ポリマー・サイエンス、
第11巻、1581頁、1967年刊)から計算されるガラ
ス転移温度と差動走査熱量計(DSC)によつて
実測されるガラス転移温度の差を△Tgと定義す
る。 ミクロ構造と結合スチレン含量からゴードン、
テイラーの式によつて算出されるガラ転移温度
は、本発明で用いる共重合体のようにスチレン単
量体がほぼ完全にランダムに共重合し、かつ分子
量分布が比較的狭い重合体で、分子鎖内で分子鎖
に沿つてスチレンの含量、ブタジエン部ミクロ構
造が変化することなく均一な組成分布を有する場
合は実測値とほぼ一致する値を示す。しかし分子
鎖内に組成分布の不均一性がある場合には差動走
査熱量計あるいは示差熱分析計(DTA)等の熱
分析によつて測定されるガラス転移温度はその原
理上、みかけ結合スチレン含量、ブタジエン部ビ
ニル含量の低い部分のガラス転移温度を示すこと
になり、計算されて求められるガラス転移温度よ
りも低い値を示し、上記で定義された△Tgは大
きな値とさなる。 本発明の△Tgの算定にあたつての実測Tgは
DSCを使つてのASTM−D−3418−75に示され
る方法によつて求められ、又計算Tgは赤外分光
計を用いてハンプトンの方法(アナリテイカル・
ケミストリー、第21巻、923頁1949年刊)によつ
て求められたスチレン含量及びブタジエン部ミク
ロ構造よりゴードン・テイラーの式によつて求め
られる。DSCによるTg値の測定および赤外分光
計によるスチレン含量及びブタジエン部ミクロ構
造の測定には各々測定機器、測定条件の差異等に
より測定誤差を省じるとされるがその誤差の大き
さは測定を厳密にすれば小さなものとなり△Tg
として±1℃の範囲におさえられる。上記にもか
かわらず測定機器、測定条件による差異が大き
く、△Tgが0℃となるべき乳化重合SBRないし
はスチレン及びブタジエン部ミクロ構造の組成分
布が完全に均一とみなせる重合体の△Tgが0℃
とならない場合には、これら重合体の△Tgを0
℃とみなしての補正により求めるべき他の重合体
の△Tgを決定すれば良い。 本発明で用いるスチレン−ブタジンエン共重合
ゴムは不活性希釈剤の存在下にスチレンとブタジ
エンを有機リチウム化合物とルイス塩基からなる
触媒を用い制限された温度範囲内で温度上昇下に
バツチ重合するか、又は直列に連結された温度の
異なる2以上の重合域を有する反応器を用いての
連続重合によつて得られる。後者の場合には単一
の反応器であつても2以上の重合域を有する、例
えばチユーブ型反応器であつても良い。使用する
有機リチウム化合物としては例えばメチルリチウ
ム、エチルリチウム,n−(sec又はtert)−ブチ
ルリチウム、アシルリチウム、フエニルリチウム
またはシクロヘキシルリチウムなどがあげられ
る。又、ルイス塩基としてはエーテル化合物、チ
オエーテル化合物、第三アミン化合物、ホスフイ
ン化合物またはリチウム以外のアルカリ金属のア
ルコラート化合物、スルホン酸塩、硫酸エステル
塩等があげられ、本発明においてはこれらを目的
に合わせ1種又は2種以上用いて重合を実施す
る。これらの化合物としては例えばジメチルエー
テル、ジエチルエーテル、ジフエニルエーテル、
テトラヒドロフラン 、ジオキサン、1,2−ジメトキシエタン、1,
2−ジブトキシエタン、トリエチルアミン、N,
N,N′,N′−テトラメチルエチレンジアミン、
ジアルキルアリルスルフイド、ヘキサメチレンホ
スフオアミド、アルキルベンゼンスルホン酸カリ
ウムまたはナトリウム、カリウムまたはナトリウ
ムブトキシドなどがあげられる。これら、使用す
るルイス塩基の種類と量によつてスチレン連鎖分
布は多少変化し、本発明の共重合ゴムを得るには
特に好ましいルイス塩基はエチレングリコールジ
アルキルエーテル類または第3級ジアミン類であ
る。その使用量は合重合温度、撹拌条件等の他の
因子にもよるがルイス塩基がエチレングリコール
ジアルキルエーテル類または第3級ジアミン類で
ある場合は有機リチウム化合物に対して0.5ない
し20倍モル、好ましくは1.0ないし10倍モルであ
る。 本発明において用いられる不活性希釈剤として
は、用いる触媒を失活させるものでなければ特に
制限されないが、例えばブタン、ペンタン、ヘキ
サン、ヘプタン、オクタン、シクロヘキサン、エ
チルシクロヘキサンなどがあげられる。特に好ま
しいものはヘキサン、シクロヘキサンである。
又、用いるスチレン、ブタジエン、不活性希釈剤
中には有機リチウム化合物に対してモル比で1以
下のアレン類、例えばプロパジエン、1,2−ブ
タジエン、1,2−ペンタジエン、1,2−オク
タジエン等が含まれるものであつても良い。 本発明で用いる共重合ゴムをバツチ重合で得よ
うとする場合にその重合温度は、開始温度30ない
し80℃最高温度120℃以下、又最高温度と開始温
度の差は10ないし45℃に保持されることが必要で
ある。この温度の保持は重合すべき単量体に対す
る不活性希釈剤の量ないしは反応器に付具された
ジヤケツト、コイル等による除熱によつて行ない
得る。同様に連続重合法による場合も重合域の最
高温度と最低温度の差は10ないし45℃であること
を必要とする。 本発明で用いるスチレン−ブタジエン共重合ゴ
ムは、単独又は他の合成ゴムないし天然ゴムとブ
レンドし、各種ゴム用途、特にタイヤ用途のゴム
組成物の原料ゴムとして、カーボンブラツク、加
硫剤等とともに用いられる。この場合、本発明の
優れた特性を発現するには少なくとも原料ゴムの
30重量%は本発明の共重合ゴムであることを必要
とする。又、ブレンドして用いられる他の合成ゴ
ムないし天然ゴムとして好まいしものは乳化重合
スチレン−ブタジエン共重合ゴム、1,2ビニル
35%未満の溶液重合スチレン−ブタジエン共重合
ゴム、シス1,4−ポリブタジエンゴム、1,2
シンジオポリブタジエンゴム、1,2ビニル10な
いし90%のポリブタジエンゴム、合成ポリイソプ
レンゴムまたは天然ゴムが挙げられ、これらの中
から1種又は2種以上を用いることができる。 本発明の共重合ゴムを原料ゴムとするゴム組成
物は上述の原料ゴムとカーボンブラツク、および
加硫剤よりなり、更に必要に応じて加えられるプ
ロセス油、カーボンブラツク以外の他の充填剤等
よりなるゴム組成物である。使用されるカーボン
ブラツクの種類と量は本発明のゴム組成物の用途
に合せ自由に選択でき、一般にはFEF級、HAF
級、ISAF級、GPF級ないしはSAF級と通称され
るカーボンブラツクの中から選択される。又、そ
の量は原料ゴム100重量部に対し20ないしは120重
量部であることが必要である。20重量部未満では
引張強度、耐摩耗性等が十分でなく、逆に120重
量部を超えると反撥弾性の著しい低下をもたらし
好ましくない。又、加硫剤としてはイオウ及びキ
ノンジオキシム、ヂチオモルホリン、アルキルフ
エノールジスルフイド等の各種イオウ化合物が例
として挙げられ、特に好ましいものはイオウであ
る。その使用量は組成物の用途に合せ自由に変え
られ、例えばイオウを加硫剤として用いる場合に
は原料ゴム100重量部に対し0.3ないし6.0重量部
の範囲内で選択される量が用いられる。 本発明のゴム組成物には、使用に際して更に、
必要に応じてプロセス油、カーボンブラツク以外
の他の充填剤、酸化亜鉛、ステアリン酸、酸化防
止剤、オゾン劣化防止剤、ワツクス等を加えるこ
とができる。プロセス油としては通常ゴム配合用
として用いられている石油留分のうちの高沸点部
分から成るもので、その炭水素分子の化学構造に
よつてパラフイン系、ナフテン系およびアロマチ
ツク系として知られるプロセス油を目的、用途に
合わせ用いることができ、その量も自由に選択で
きる。又、カーボンブラツク以外の充填剤として
は、ケイ酸、ケイ酸塩、炭酸カルシウム、酸化チ
タン、各種クレー類などが用いられる。 本発明のゴム組成物は上述の各成分をゴム工業
用として公知の混合機、例えばオープンロール、
インタナールミキサー等を用い公知の種々の方法
によつて混練することによつて得られるものであ
り、加硫工程を経て得られるゴム製品は従来から
知られるゴム組成物から得られるゴム製品に比し
て優れた物性、例えば高い反撥弾性、優れた耐摩
耗性、発熱性を示す。又、ウエツトスキツド抵抗
性、加工性においても優れる。 次に若干の実施例によつて本発明の効果を説明
するが、これらは本発明を限定するものではな
い。 実施例 1 撹拌機とジヤケツトを有する内容積30の反応
機にスチレン0.25Kg、ブタジエン0.75Kg、ヘキサ
ン11.0Kgおよびテトラヒドロフラン36.0gを導入
し、更に内容物の温度が55℃になつたときブチル
リチウム10重量%ヘキサン溶液6.0gを加えて重
合反応を開始した。この反応において重合温度は
ジヤケツトからの冷却にもかかわらず76℃まで上
昇した。得られた共重合体溶液に5.0gの2,4
−ジ−ter−ブチル−P−クレゾールを加え混合
後、溶剤および末反応単量体を除去しスチレン−
ブタジエン共重合ゴム0.99Kgを得た。このものの
分析値はムーニー粘度54、結合スチレン24.8重量
*1)、ブタジエン部の1,2結合51.3%*1)、分子
量分布(MW/Mn)1.32*2)、単離スチレン69重
量%*3)、長鎖ブロツクスチレン3.5重量%、△
Tg5℃*4)、であつた。このゴムを原料ゴムとして
表1に表す配合にて実験室用小型バンバリーミキ
サーおよび8インチロールにて混練した。得られ
た未加硫ゴム組成物は150℃にて加硫し物性測定
に供した。その結果を表2に示す。 *1) 赤外分光計を用いハンプトンの方法で計
算した。 *2) GPC(島津製作所製LC−1)にて、移動
相としてテトラヒドロンフランを用い測定し
た。 *3) 本文中に示す田中らの方法をそのまま用
いて測定した。 *4) △Tgの算定は本文中に示す方法によつ
て実施した。算定に必要なTg値の測定はDSC
(第二精工舎SSC/560S、島津製作所DT−30)
を用い、ASTM−D3418−75に従い実施し、
外挿開始温度(Tf)をもつてTg値とした。こ
の方法で測定された乳化重合SBR#1502のTg
値は−59℃となり、△Tg値は0℃であつた。 実施例 2 実施例1と同様にして、但しテトラヒドロフラ
ン36.0gに変えてテトラメチルエチレンジアミン
1.2gを用いて実施した。重合温度は58℃より74
℃まで上昇し0.98Kgの共重合ゴムを得た。このも
のの分析値はムーニー粘度48、結合スチレン24.6
重量%、ブタジエン部の1,2結合50.5%、分子
量分布(MW/Mn)1.25、単離スチレン73重量
%、長鎖ブロツクスチレン1.8重量%、△Tg4℃
であつた。このもののゴム組成物としての物性評
価結果を表2に示す。 比較例 1 実施例1と同様にして、但し用いるヘキサンと
テトラヒドロフラン量は各々5.0Kgと48.0gに変
え、またジヤケツトからの冷却も停止しほぼ断熱
に近い反応条件下で重合を実施した。重合温度は
50℃より106℃まで上昇し1.0Kgの共重合ゴムを得
た。このものの分析値はムーニー粘度45、結合ス
チレン24.8重量%、ブタジエン部の1,2結合
51.6%、分子量分布(/)1.28単離スチ
レン62重量%、長鎖ブロツクスチレン6.8重量%、
△Tg13℃であつた。このもののゴム組成物とし
ての物性評価結果を表2に示す。 比較例 2 実施例1と同様にして、但しテトラヒドロフラ
ン36.0gに変えてエチレングリコールジブチルエ
ーテル1.0gを用い、又ヘキサン量を15.0Kgに増
量して重合を実施した。重合温度は60℃より65℃
まで上昇し、0.99Kgの共重合ゴムを得た。このも
のの分析値はムーニー粘度51、結合スチレン24.9
重量%、ブタジエン部の1,2結合51.7%、分子
量分布(/)1.23、単離スチレン73重量
%、長鎖ブロツクスチレン1.2重量%、△Tg1℃
であつた。このもののゴム組成物としての物性評
価結果を表2に示す。 表2より、本発明の特定されたスチレン−ブタ
ジエン共重合ゴムの優れた特性が明らかとなつ
た。すなわち実施例1,2に示す本発明の共重合
ゴムを用いたゴム組成物(加硫物)は比較例1に
示す不完全ランダムスチレン−ブタジエン共重合
ゴムを用いたゴム組成物に比して反撥弾性、耐摩
耗性、発熱性で優れる。一方、比較例2に示すあ
まりにも均一な組成分布を有する完全ランダムス
チレン−ブタジエン共重合ゴムを用いた組成物に
比して引張強度、ウエツトスキツド抵抗性で優
れ、本発明の共重合ゴムが極めてバランスのとれ
た物性を有するゴムであることを示すものであつ
た。尚、比較例2に示した共重合ゴムは天然ゴム
とのブレンドにおいて混合性で不十分な面がみら
れたが、本発明の共重合ゴムはこの点でも他のゴ
ムに劣るような所は見られなかつた。 実施例 3 実施例3は実施例1と同様にして、但し用いる
ブチルリチウムを2倍に増量し、ヌルイス塩基も
エチレングリコールジブチルエーテル2.0gに変
えて実施した。重合温度は50℃より77℃に上昇し
た。 得られた活性重合体溶液に更に四塩化スズの10
重量%ヘキサン溶液5.0gを添加し数分間撹拌後、
2,4−ジ−ter−ブチル−P−クレゾールを加
え溶剤を除去しスチレン−ブタジエン共重合ゴム
0.98Kgを得た。このものの分析値はムーニー粘度
57、結合スチレン24.7重量%、ブタジエン部の
1,2結合50.8%、分子量分布(/)
1.74単離スチレン72重量%、長鎖ブロツクスチレ
ン2.3重量%、△Tg5℃であつた。このもののゴ
ム組成物としての物性評価を表3に示す。 実施例 4 実施例3と同様にして、但しルイス塩基をテト
ラメチルエチレンジアミン3.0gに変えて実施し
た。重合温度は53℃より85℃まで上昇した。重合
後の処理も実施例3と同様にしてスチレン−ブタ
ジエン共重合ゴム1.0Kgを得た。このものの分析
値はムーニー粘度54、結合スチレン25.0重量%、
ブタジエン部の1,2結合52.4%、分子量分布
(/)1.82、単離スチレン73重量%、長鎖
ブロツクスチレン1.7重量%、△Tg8℃であつた。
このもののゴム組成物としての物性評価結果を表
3に示す。 比較例 3 実施例3と同様にして、但しヘキサン量を15.0
Kgに増量して重合を実施し、重合温度は67℃より
74℃に上昇した。重合後の処理も実施例3と同様
にしてスチレン−ブタジエン共重合ゴム0.99Kgを
得た。このものの分析値はムーニー粘度50、結合
スチレン24.8重量%、ブタジエン部の1,2結合
54.3%、分子量分布(/)1.85、単離ス
チレン76重量%、長鎖ブロツクスチレン0.5重量
%、△Tg1℃であつた。このもののゴム組成物と
しての物性評価結果を表3に示す。 比較例 4 実施例4と同様にして、但しヘキサン量を5.0
Kgに減量して重合を実施し、重合温度は53℃より
85℃に上昇した。重合後の処理も実施例4と同様
にしてスチレン−ブタジエン共重合ゴム1.0Kgを
得た。このものの分析値はムーニー粘度48、結合
スチレン24.9重量%、ブタジエン部の1,2結合
50.1%、分子量分布(/)1.60、単離ス
チレン72重量%、長鎖ブロツクスチレン4.3重量
%、△Tg14℃であつた。このもののゴム組成物
としての物性評価結果を表3に示す。 表3より、本発明の特定されたスチレン−ブタ
ジエン共重合ゴムの優れた特性が更に明確となつ
た。すなわち実施例3,4に示す本発明の共重合
ゴムを用いたゴム組成物は、比較例3,4に示し
た結合スチレンとブタジエン部ミクロ構造の分布
の不均一性が本発明の範囲外にある完全ランダム
スチレン−ブタジエン共重合ゴムに対して、比較
例3に対しては引張強度、伸びて優れ、一方比較
例4に対しては反撥弾性、耐摩耗性および発熱性
で優れ、本発明の共重合ゴムが極めてバランスの
とれた物性を有するゴムであることを示すもので
あつた。 実施例 5 撹拌機とジヤケツトを有する内容積10の反応
機を2基直列に連結し、その1基目底部にスチレ
ン0.5Kg/hr、ブタジエン1.5Kg/hr、ヘキサン
10.0Kg/hr、エチレングリコールジメチルエーテ
ル5.6g/hr、およびブチルリチウム1.2g/hr、
を各々の速度で連続的に供給し温度を75℃に保つ
て反応させた。生成物は頂部より排出させ、2基
目底部に導入し温度95℃で反応を継続した。更に
2基目頂部より排出する共重合体溶液に10.0g/
hrの速度で2,4−ジ−ter−ブチル−P−クレ
ゾールを添加し混合後、溶剤、未反応単量体を除
去し、スチレン−ブタジエン共重合ゴムを得た。
このものの分析値はムーニー粘度50、結合スチレ
ン25.0重量%、ブタジエン部の1,2結合50.2
%、分子量分布(/)1.85、単離スチレ
ン75重量%、長鎖ブロツクスチレン0.2重量%以
下、△Tg5℃であつた。このもののゴム組成物と
しての物性評価結果を表4に示す。 実施例 6 実施例5と同様にして、但しエチレングリコー
ルジメチルエーテル5.6g/hrに変えてテトラメ
チレンジアミン8.2g/hrを供給し、又1基目及
び2基目の反応機の重合温度も各々70℃、100℃
に変更して実施した。得られた共重合ゴムの分析
値はムーニー粘度51.5、結合スチレン24.8重量
%、ブタジエン部の1,2結合53.5%、分子量分
布(/)1.92、単離スチレン76重量%、
長鎖ブロツクスチレン0.2重量%以下、△Tg8℃
であつた。このもののゴム組成物としての物性評
価結果を表4に示す。 比較例 5 実施例5と同様にして、但し1基目及び2基目
の反応機での重合温度を両者とも85℃に変更して
実施した。得られた共重合ゴムの分析値はムーニ
ー粘度56、結合スチレン24.6重量%、ブタジエン
部の1,2結合51.7%、分子量分布(/)
1.83、単離スチレン78重量%、長鎖ブロツクウス
チレン0.2重量%以下、△Tg0℃であつた。この
もののゴム組成物としての物性評価結果を表4に
示す。 比較例 6 実施例6と同様にして、但し1基目及び2基目
の反応機での重合温度を各々60℃、120℃に変更
して実施した。得られた共重合ゴムの分析値はム
ーニー粘度47、結合スチレン24.3重量%、ブタジ
エン部の1,2結合52.3%、分子量分布(/
Mn)2.04、単離スチレン75重量%、長鎖ブロツ
クスチレン1.4重量%、△Tg14℃であつた。この
もののゴム組成物としての物性評価結果を表4に
示す。 表4より、本発明の特定されたスチレン−ブタ
ジエン共重合ゴムは連続重合法によつて得たもの
であつても表2,表3に示した優れた特徴を示す
ものであることが分かつた。
The present invention relates to a rubber composition made from a completely random styrene-butadiene copolymer rubber having a specified intramolecular chain distribution of styrene and butadiene moiety microstructures obtained by solution polymerization. When trying to obtain styrene-butadiene copolymer rubber by solution polymerization using an organolithium compound as a catalyst, a particular problem is that under normal conditions, the difference in polymerization rate between styrene and butadiene causes the formation of styrene-butadiene copolymer rubber in the polymer chain. This is to produce so-called blocked styrene, in which styrene is continuously bonded to the styrene. Many attempts have been made to solve this problem and obtain random styrene-butadiene copolymer rubber, and many methods have already been proposed. One method is to coexist a polar organic compound or an organic salt or a complex compound of sodium, potassium, or their analogues in the polymerization reaction system, and the other method involves reaction operation, and the typical method is to allow the polymerization to proceed. The method includes a method in which a portion of the monomer is successively added to the polymerization system according to the amount of polymerization, or a method in which the polymer and an inert diluent are phase-separated and polymerization is carried out under this condition. Although these methods certainly reduce the amount of blocked styrene based on the conventionally known concept, they generally result in an increase in vinyl bonds, and furthermore, the bonding mode of styrene in the polymer chain and the chain distribution of styrene are not known. This has not been studied in detail, and the completely random styrene-butadiene copolymer rubber referred to in the present invention has not been obtained. Relatively recently, it has become possible to measure the chain distribution of styrene in styrene-butadiene copolymer rubber using NMR spectroscopy, and the concept of short chain blocked styrene and long chain blocked styrene was introduced using this analysis method, and pseudorandom styrene - Proposals have been made regarding butadiene copolymer rubber and its manufacturing method. (Unexamined Japanese Patent Publication No. 49-67986,
(Japanese Unexamined Patent Publication No. 53-69288) However, although the NMR analysis method qualitatively grasps the chain distribution of styrene to some extent, it is insufficient quantitatively because analysis is sometimes performed using a curve resolver, and the It was not possible to analyze even styrene-free, and therefore it was impossible to arrive at the concept of a completely random styrene-butadiene copolymer rubber. On the other hand, regarding the concept of distribution within the molecular chain of the microstructure of the styrene and butadiene moieties of styrene-butadiene copolymer rubber, gel permeation chromatography (GPC) can be used as an analysis method for the concept of distribution between molecular chains. Although there are various related proposals (for example, Japanese Unexamined Patent Publication No. 55-40712), little consideration has been given so far. In the homopolymerization of butadiene using a catalyst consisting of a combination of a slight organolithium compound and a Lewis base, we expected that the polymerization at elevated temperatures would lead to the formation of a butadiene moiety microstructure, particularly an intramolecular chain distribution of 1,2 vinyl bonds. In this case, no analysis or confirmation of the distribution was conducted. (Japanese Patent Publication No. 43-875) The present invention has been made by intensively studying the above-mentioned two concepts, namely, the randomness in the chain distribution of styrene and the uniformity in the intramolecular chain distribution of the microstructure of styrene and butadiene moieties. It was discovered that a completely random styrene-butadiene copolymer rubber having a microstructure of styrene and butadiene moieties distributed within the molecular chain is an extremely excellent raw material rubber.
Based on this knowledge, the present invention was accomplished. That is, the present invention has a Mooney viscosity of 30 to 150,
10 to 30% by weight of bound styrene, 35 to 65% of 1,2 vinyl bonds in the butadiene moiety, molecular weight distribution expressed as the ratio w/n of weight average molecular weight to number average molecular weight, 1.2 to 3.5, gel permeate of ozone decomposition product Isolation analyzed by chromatography. Styrene is at least 50% by weight of the total bonded styrene, and long chain block styrene is 5% by weight of the total bonded styrene.
Differential scanning calorimeter (DSC) defined in the text below
The present invention provides a styrene-butadiene copolymer rubber characterized by a ΔTg of 2 to 12°C as analyzed by the method, and a rubber composition using the same as a raw material rubber. The rubber composition using the styrene-butadiene copolymer rubber of the present invention as a raw material rubber exhibits excellent properties suitable for various rubber applications, particularly tire applications, such as high rebound resilience, excellent abrasion resistance, and heat generation property. . The Mooney viscosity of the completely random styrene-butadiene copolymer rubber used in the present invention is limited to 30 to 150 when measured at 100°C using an L rotor. If the Mooney viscosity is less than 30, the excellent physical properties of the copolymer rubber of the present invention will not be exhibited;
If it exceeds the above range, it is not preferable because its mixability with various auxiliary materials or processability such as moldability is insufficient until it reaches its final use. The styrene content in the copolymer rubber, bound styrene, is limited to 10 to 30% by weight, preferably 12 to 25% by weight.
If it is less than 10% by weight, the completely random effect of the present invention will not be fully expressed, and if it exceeds 30% by weight,
The bound styrene is unnecessary in view of its physical properties as a copolymer rubber, and it is also difficult to obtain a completely random copolymer itself using this bound styrene, which is not preferred. Furthermore, the copolymer rubber used in the present invention is styrene,
Small amounts of other copolymerizable monomer components other than butadiene, such as isoprene,
It may contain dimethylbutadiene, pentadiene, methylstyrene, ethylstyrene, divinylbenzene, diisopropenylbenzene, and the like. The microstructure of the butadiene portion of the completely random styrene-butadiene copolymer rubber used in the present invention is limited to 35 to 65%, preferably 40 to 60%, with respect to 1,2 vinyl bonds. Vinyl bonding outside this limited range is not preferred because either the abrasion resistance or the wet skid resistance is significantly reduced and the effects of the present invention are lost. Further, the molecular weight distribution expressed as the ratio of weight average molecular weight to number average molecular weight is limited to 1.2 to 3.5, preferably 1.5 to 3.0. A molecular weight distribution narrower than this limit will show extremely poor processability, while a molecular weight distribution wider than this limit will lose some of the properties of the copolymer rubber of the present invention, such as rebound resilience and heat generation properties. This is not desirable. Further, the shape of the distribution may be monomodal, bimodal or more multimodal as long as the molecular weight distribution is within the above range. One preferred distribution shape of the present invention is obtained by coupling a part of the polymer terminal living after polymerization using a polyfunctional coupling agent such as silicon tetrachloride, tin tetrachloride, carbon tetrachloride or chloroform. It is a copolymer rubber with a bimodal molecular weight distribution. The bonding mode of styrene and the chain distribution of styrene in the completely random styrene-butadiene copolymer rubber used in the present invention are analyzed by gel permeation chromatography of a low-temperature ozonolyzed product of the copolymer rubber. Conventional styrene chain distribution analysis requires 1 H
-NMR methods, 13 C-NMR methods, and GC analysis of metathesized decomposition products are known, but all methods require quantitative understanding of isolated styrene and knowledge about relatively long styrene chains. It wasn't enough to get it. The method of the present invention is a method recently developed by Tanaka et al., in which all the double bonds of butadiene units in the chain distribution of styrene are cleaved with ozone, and the decomposition product obtained by gel permeation chromatography (GPC) is used. It is then analyzed. (Proceedings of the Society of Polymer Science, Vol. 29, No. 9, p. 2055)
The copolymer rubber used in the present invention has isolated styrene analyzed by this method, that is, styrene with a chain of 1 styrene unit accounts for 50% by weight of the total bound styrene.
or more, preferably 65% by weight or more, and long chain blocked styrene, that is, the chain of styrene units is 8
The above styrene accounts for 5% by weight or less, preferably 2.5% by weight or less of the total combined styrene. Even when isolated styrene is less than 50% by weight and long-chain blocked styrene is more than 5% by weight, the completely random styrene-butadiene copolymer rubber of the present invention has excellent properties in terms of styrene bonds. It does not exhibit high rebound resilience, abrasion resistance, etc., and is not preferable. The ΔTg of the styrene-butadiene copolymer rubber used in the present invention is analyzed by differential scanning calorimetry (DSC) from 2 to 12°C, preferably from 3 to 10°C.
Limited to ℃. A copolymer rubber having a ΔTg of 12° C. or higher is undesirable because the microstructure of the bonded styrene and butadiene moieties in the molecular chain deteriorates physical properties such as abrasion resistance and heat generation, and the distribution is too uneven.
On the other hand, if △Tg is 2℃ or less, the tensile strength decreases,
The improvement in wet skid resistance and the blending properties with other rubbers are insufficient and are therefore undesirable. ΔTg in the present invention is defined as follows. That is, from the microstructure of the copolymer and the bound styrene content, the Gordon-Taylor equation (Journal of Applied Polymer Science,
11, p. 1581, published in 1967) and the glass transition temperature actually measured by a differential scanning calorimeter (DSC) is defined as ΔTg. Gordon from microstructure and bound styrene content,
The gala transition temperature calculated by Taylor's equation is for a polymer in which styrene monomers are almost completely randomly copolymerized and the molecular weight distribution is relatively narrow, such as the copolymer used in the present invention. If the styrene content and butadiene part microstructure within the chain do not change along the molecular chain and have a uniform composition distribution, the value will be approximately the same as the measured value. However, if there is non-uniformity in the composition distribution within the molecular chain, the glass transition temperature measured by thermal analysis using a differential scanning calorimeter or differential thermal analyzer (DTA) will, in principle, This indicates the glass transition temperature of the portion with a low vinyl content and butadiene portion, which is lower than the calculated glass transition temperature, and the ΔTg defined above is a large value. The actual measured Tg for calculating △Tg of the present invention is
The calculated Tg is determined by the method shown in ASTM-D-3418-75 using DSC, and the calculated Tg is determined by Hampton's method (analytical method) using an infrared spectrometer.
Chemistry, Vol. 21, p. 923, published in 1949) and the microstructure of the butadiene moiety. Measurement of Tg value by DSC and measurement of styrene content and butadiene moiety microstructure by infrared spectrometer are said to exclude measurement errors due to differences in measurement equipment and measurement conditions, etc., but the magnitude of the error is measured by measurement. If we make it strict, it becomes small △Tg
It can be kept within the range of ±1°C. Despite the above, there are large differences depending on the measuring equipment and measurement conditions, and the ΔTg of emulsion polymerized SBR that should have a ΔTg of 0°C or a polymer whose composition distribution in the microstructure of the styrene and butadiene parts is considered to be completely uniform is 0°C.
If not, the △Tg of these polymers should be set to 0.
It is sufficient to determine the ΔTg of other polymers to be determined by correction assuming that the temperature is ℃. The styrene-butadiene copolymer rubber used in the present invention can be prepared by batch polymerizing styrene and butadiene in the presence of an inert diluent using a catalyst consisting of an organolithium compound and a Lewis base at an elevated temperature within a limited temperature range, or Alternatively, it can be obtained by continuous polymerization using a reactor having two or more polymerization zones connected in series and having different temperatures. In the latter case, it may be a single reactor or a tube reactor having two or more polymerization zones, for example. Examples of the organic lithium compounds used include methyllithium, ethyllithium, n-(sec or tert)-butyllithium, acyllithium, phenyllithium, and cyclohexyllithium. Examples of Lewis bases include ether compounds, thioether compounds, tertiary amine compounds, phosphine compounds, alcoholate compounds of alkali metals other than lithium, sulfonates, sulfuric acid ester salts, etc. In the present invention, these may be used according to the purpose. Polymerization is carried out using one type or two or more types. Examples of these compounds include dimethyl ether, diethyl ether, diphenyl ether,
Tetrahydrofuran, dioxane, 1,2-dimethoxyethane, 1,
2-dibutoxyethane, triethylamine, N,
N,N',N'-tetramethylethylenediamine,
Examples include dialkylallyl sulfide, hexamethylene phosphoramide, potassium or sodium alkylbenzene sulfonate, potassium or sodium butoxide, and the like. The styrene chain distribution changes somewhat depending on the type and amount of the Lewis base used, and particularly preferred Lewis bases for obtaining the copolymer rubber of the present invention are ethylene glycol dialkyl ethers or tertiary diamines. The amount used depends on other factors such as polymerization temperature and stirring conditions, but when the Lewis base is ethylene glycol dialkyl ethers or tertiary diamines, it is preferably 0.5 to 20 times the mole of the organolithium compound. is 1.0 to 10 times molar. The inert diluent used in the present invention is not particularly limited as long as it does not deactivate the catalyst used, and examples thereof include butane, pentane, hexane, heptane, octane, cyclohexane, ethylcyclohexane, and the like. Particularly preferred are hexane and cyclohexane.
In addition, the styrene, butadiene, and inert diluent used may contain arenes such as propadiene, 1,2-butadiene, 1,2-pentadiene, 1,2-octadiene, etc. in a molar ratio of 1 or less to the organolithium compound. It may also include. When the copolymer rubber used in the present invention is to be obtained by batch polymerization, the polymerization temperature is maintained at a starting temperature of 30 to 80°C, a maximum temperature of 120°C or less, and a difference between the maximum temperature and the starting temperature of 10 to 45°C. It is necessary to This temperature can be maintained by adding an inert diluent to the monomer to be polymerized or by removing heat using a jacket, coil, etc. attached to the reactor. Similarly, in the case of continuous polymerization, the difference between the highest and lowest temperatures in the polymerization zone is required to be 10 to 45°C. The styrene-butadiene copolymer rubber used in the present invention is used alone or blended with other synthetic rubber or natural rubber, together with carbon black, a vulcanizing agent, etc., as a raw material rubber for rubber compositions for various rubber applications, especially for tires. It will be done. In this case, in order to exhibit the excellent properties of the present invention, at least
30% by weight is required to be the copolymer rubber of the present invention. Other preferred synthetic rubbers or natural rubbers to be blended are emulsion polymerized styrene-butadiene copolymer rubber, 1,2 vinyl
Less than 35% solution polymerized styrene-butadiene copolymer rubber, cis 1,4-polybutadiene rubber, 1,2
Examples include syndiopolybutadiene rubber, polybutadiene rubber containing 10 to 90% 1,2 vinyl, synthetic polyisoprene rubber, and natural rubber, and one or more of these can be used. The rubber composition using the copolymer rubber of the present invention as a raw material rubber consists of the above-mentioned raw material rubber, carbon black, and a vulcanizing agent, and further contains process oil, fillers other than carbon black, etc., which are added as necessary. This is a rubber composition. The type and amount of carbon black used can be freely selected depending on the use of the rubber composition of the present invention, and generally FEF grade, HAF grade
The carbon black is selected from carbon black commonly known as class, ISAF class, GPF class or SAF class. Further, the amount thereof needs to be 20 to 120 parts by weight per 100 parts by weight of raw rubber. If it is less than 20 parts by weight, the tensile strength, abrasion resistance, etc. will not be sufficient, and if it exceeds 120 parts by weight, it will result in a significant decrease in rebound properties, which is undesirable. Examples of the vulcanizing agent include sulfur and various sulfur compounds such as quinone dioxime, dithiomorpholine, and alkylphenol disulfide, with sulfur being particularly preferred. The amount used can be freely changed depending on the intended use of the composition. For example, when sulfur is used as a vulcanizing agent, an amount selected within the range of 0.3 to 6.0 parts by weight per 100 parts by weight of raw rubber is used. In use, the rubber composition of the present invention further includes:
If necessary, process oil, fillers other than carbon black, zinc oxide, stearic acid, antioxidants, antiozonants, wax, etc. can be added. Processing oils consist of high-boiling parts of petroleum fractions that are usually used for rubber compounding, and are known as paraffinic, naphthenic, or aromatic oils depending on the chemical structure of their hydrocarbon molecules. can be used depending on the purpose and use, and the amount can be freely selected. Further, as fillers other than carbon black, silicic acid, silicates, calcium carbonate, titanium oxide, various clays, etc. are used. The rubber composition of the present invention is prepared by mixing the above-mentioned components using a mixer known for the rubber industry, such as an open roll.
It is obtained by kneading by various known methods using an internal mixer, etc., and the rubber products obtained through the vulcanization process are compared to rubber products obtained from conventionally known rubber compositions. It exhibits excellent physical properties such as high impact resilience, excellent abrasion resistance, and heat generation properties. It also has excellent wet skid resistance and workability. Next, the effects of the present invention will be explained using some examples, but these are not intended to limit the present invention. Example 1 0.25 kg of styrene, 0.75 kg of butadiene, 11.0 kg of hexane, and 36.0 g of tetrahydrofuran were introduced into a reactor having an internal volume of 30 kg and a stirrer and a jacket, and when the temperature of the contents reached 55°C, 10 kg of butyl lithium was added. The polymerization reaction was started by adding 6.0 g of a wt% hexane solution. In this reaction, the polymerization temperature rose to 76°C despite cooling from the jacket. Add 5.0 g of 2,4 to the obtained copolymer solution.
-Di-ter-butyl-P-cresol was added and mixed, the solvent and the terminal reaction monomer were removed, and the styrene-
0.99 kg of butadiene copolymer rubber was obtained. The analysis values for this product are Mooney viscosity 54, bound styrene 24.8% by weight *1) , 1,2 bonds in the butadiene moiety 51.3% *1) , molecular weight distribution (MW/Mn) 1.32 *2) , isolated styrene 69% by weight * 3) , long chain block styrene 3.5% by weight, △
Tg5℃ *4) . This rubber was used as a raw material rubber and kneaded in the formulation shown in Table 1 using a small laboratory Banbury mixer and an 8-inch roll. The obtained unvulcanized rubber composition was vulcanized at 150°C and subjected to physical property measurements. The results are shown in Table 2. *1) Calculated using Hampton's method using an infrared spectrometer. *2) Measured using GPC (LC-1 manufactured by Shimadzu Corporation) using tetrahydrone furan as the mobile phase. *3) Measured using the method of Tanaka et al. shown in the text as is. *4) Calculation of △Tg was performed using the method shown in the text. DSC is used to measure the Tg value required for calculation.
(Daini Seikosha SSC/560S, Shimadzu DT-30)
Performed according to ASTM-D3418-75 using
The extrapolation start temperature (Tf) was taken as the Tg value. Tg of emulsion polymerized SBR#1502 measured by this method
The value was -59°C, and the ΔTg value was 0°C. Example 2 Same as Example 1, except that 36.0 g of tetrahydrofuran was replaced with tetramethylethylenediamine.
It was carried out using 1.2g. Polymerization temperature is 74℃ from 58℃
The temperature rose to ℃ and 0.98 kg of copolymer rubber was obtained. The analysis values for this item are Mooney viscosity 48, bonded styrene 24.6
Weight%, 1,2 bond in butadiene moiety 50.5%, molecular weight distribution (MW/Mn) 1.25, isolated styrene 73% by weight, long chain blocked styrene 1.8% by weight, △Tg 4℃
It was hot. Table 2 shows the results of evaluating the physical properties of this product as a rubber composition. Comparative Example 1 Polymerization was carried out in the same manner as in Example 1, except that the amounts of hexane and tetrahydrofuran used were changed to 5.0 kg and 48.0 g, respectively, cooling from the jacket was also stopped, and the polymerization was carried out under almost adiabatic reaction conditions. The polymerization temperature is
The temperature rose from 50°C to 106°C, yielding 1.0 kg of copolymer rubber. The analysis values for this product are Mooney viscosity 45, bound styrene 24.8% by weight, and 1,2 bonds in the butadiene part.
51.6%, molecular weight distribution (/) 1.28, isolated styrene 62%, long chain blocked styrene 6.8%,
△Tg was 13℃. Table 2 shows the results of evaluating the physical properties of this product as a rubber composition. Comparative Example 2 Polymerization was carried out in the same manner as in Example 1, except that 1.0 g of ethylene glycol dibutyl ether was used instead of 36.0 g of tetrahydrofuran, and the amount of hexane was increased to 15.0 kg. Polymerization temperature is 60℃ to 65℃
0.99 kg of copolymer rubber was obtained. The analysis values for this item are Mooney viscosity 51, bonded styrene 24.9
Weight%, 1,2 bond in butadiene moiety 51.7%, molecular weight distribution (/) 1.23, isolated styrene 73% by weight, long chain blocked styrene 1.2% by weight, △Tg1℃
It was hot. Table 2 shows the results of evaluating the physical properties of this product as a rubber composition. Table 2 reveals the excellent properties of the styrene-butadiene copolymer rubber specified in the present invention. In other words, the rubber compositions (vulcanizates) using the copolymer rubber of the present invention shown in Examples 1 and 2 had a higher temperature than the rubber composition using the incompletely random styrene-butadiene copolymer rubber shown in Comparative Example 1. Excellent rebound, abrasion resistance, and heat generation properties. On the other hand, compared to the composition shown in Comparative Example 2 using a completely random styrene-butadiene copolymer rubber having an extremely uniform composition distribution, the copolymer rubber of the present invention has excellent tensile strength and wet skid resistance. This indicates that the rubber has excellent physical properties. The copolymer rubber shown in Comparative Example 2 had insufficient miscibility when blended with natural rubber, but the copolymer rubber of the present invention was inferior to other rubbers in this respect as well. I couldn't see it. Example 3 Example 3 was carried out in the same manner as in Example 1, except that the amount of butyl lithium used was doubled and the null Lewis base was also changed to 2.0 g of ethylene glycol dibutyl ether. The polymerization temperature increased from 50°C to 77°C. Add 10% of tin tetrachloride to the resulting active polymer solution.
After adding 5.0 g of wt% hexane solution and stirring for several minutes,
Add 2,4-di-ter-butyl-P-cresol and remove the solvent to obtain styrene-butadiene copolymer rubber.
Obtained 0.98Kg. The analysis value of this item is Mooney viscosity
57, 24.7% by weight of bound styrene, 50.8% of 1,2 bonds in butadiene moiety, molecular weight distribution (/)
1.74 72% by weight of isolated styrene, 2.3% by weight of long chain blocked styrene, ΔTg 5°C. Table 3 shows the evaluation of the physical properties of this product as a rubber composition. Example 4 The procedure was carried out in the same manner as in Example 3, except that 3.0 g of tetramethylethylenediamine was used instead of the Lewis base. The polymerization temperature rose from 53°C to 85°C. The post-polymerization treatment was also carried out in the same manner as in Example 3 to obtain 1.0 kg of styrene-butadiene copolymer rubber. The analysis values for this product are Mooney viscosity 54, bound styrene 25.0% by weight,
It had 52.4% of 1,2 bonds in the butadiene moiety, a molecular weight distribution (/) of 1.82, 73% by weight of isolated styrene, 1.7% by weight of long chain blocked styrene, and ΔTg of 8°C.
Table 3 shows the results of evaluating the physical properties of this product as a rubber composition. Comparative Example 3 Same as Example 3, except that the amount of hexane was 15.0
The polymerization was carried out by increasing the amount to 67℃ and the polymerization temperature was 67℃.
The temperature rose to 74℃. The post-polymerization treatment was also carried out in the same manner as in Example 3 to obtain 0.99 kg of styrene-butadiene copolymer rubber. The analysis values for this product are Mooney viscosity 50, bound styrene 24.8% by weight, and 1,2 bonds in the butadiene part.
54.3%, molecular weight distribution (/) 1.85, isolated styrene 76%, long chain blocked styrene 0.5% by weight, ΔTg 1°C. Table 3 shows the results of evaluating the physical properties of this product as a rubber composition. Comparative Example 4 Same as Example 4, except that the amount of hexane was 5.0
The polymerization was carried out by reducing the weight to 53 kg, and the polymerization temperature was 53℃.
The temperature rose to 85℃. The post-polymerization treatment was also carried out in the same manner as in Example 4 to obtain 1.0 kg of styrene-butadiene copolymer rubber. The analysis values for this product are Mooney viscosity 48, bound styrene 24.9% by weight, and 1,2 bonds in the butadiene part.
50.1%, molecular weight distribution (/) 1.60, isolated styrene 72% by weight, long chain blocked styrene 4.3% by weight, ΔTg 14°C. Table 3 shows the results of evaluating the physical properties of this product as a rubber composition. From Table 3, the excellent characteristics of the specified styrene-butadiene copolymer rubber of the present invention became clearer. That is, in the rubber compositions using the copolymer rubber of the present invention shown in Examples 3 and 4, the non-uniformity of the distribution of the bonded styrene and butadiene moiety microstructure shown in Comparative Examples 3 and 4 is outside the scope of the present invention. Regarding a certain completely random styrene-butadiene copolymer rubber, Comparative Example 3 had excellent tensile strength and elongation, while Comparative Example 4 had excellent rebound resilience, abrasion resistance, and heat generation property. This indicates that the copolymer rubber has extremely well-balanced physical properties. Example 5 Two reactors each having an internal volume of 10 and having a stirrer and a jacket were connected in series, and the bottom of the first reactor was charged with 0.5 kg/hr of styrene, 1.5 kg/hr of butadiene, and hexane.
10.0Kg/hr, ethylene glycol dimethyl ether 5.6g/hr, and butyl lithium 1.2g/hr,
were continuously fed at different rates and the temperature was maintained at 75°C for reaction. The product was discharged from the top, introduced into the bottom of the second reactor, and the reaction was continued at a temperature of 95°C. Furthermore, 10.0 g/g was added to the copolymer solution discharged from the top of the second unit.
After adding and mixing 2,4-di-tert-butyl-P-cresol at a rate of hr, the solvent and unreacted monomers were removed to obtain a styrene-butadiene copolymer rubber.
The analysis values for this product are Mooney viscosity 50, bound styrene 25.0% by weight, and 1,2 bonds in the butadiene part 50.2.
%, molecular weight distribution (/) 1.85, isolated styrene 75% by weight, long chain blocked styrene 0.2% by weight or less, ΔTg 5°C. Table 4 shows the results of evaluating the physical properties of this product as a rubber composition. Example 6 The same procedure as in Example 5 was carried out, except that 8.2 g/hr of tetramethylene diamine was supplied instead of 5.6 g/hr of ethylene glycol dimethyl ether, and the polymerization temperatures of the first and second reactors were each changed to 70 g/hr. ℃、100℃
It was changed and implemented. The analytical values of the obtained copolymer rubber were Mooney viscosity 51.5, bound styrene 24.8% by weight, 1,2 bonds in the butadiene moiety 53.5%, molecular weight distribution (/) 1.92, isolated styrene 76% by weight,
Long chain blocked styrene 0.2% by weight or less, △Tg8℃
It was hot. Table 4 shows the results of evaluating the physical properties of this product as a rubber composition. Comparative Example 5 Polymerization was carried out in the same manner as in Example 5, except that the polymerization temperatures in the first and second reactors were both changed to 85°C. The analysis values of the obtained copolymer rubber were Mooney viscosity 56, bound styrene 24.6% by weight, 1,2 bonds in the butadiene portion 51.7%, and molecular weight distribution (/).
1.83, isolated styrene 78% by weight, long chain blocked styrene 0.2% by weight or less, ΔTg 0°C. Table 4 shows the results of evaluating the physical properties of this product as a rubber composition. Comparative Example 6 Polymerization was carried out in the same manner as in Example 6, except that the polymerization temperatures in the first and second reactors were changed to 60°C and 120°C, respectively. The analytical values of the obtained copolymer rubber were Mooney viscosity 47, bound styrene 24.3% by weight, 1,2 bonds in the butadiene moiety 52.3%, and molecular weight distribution (/
Mn) 2.04, isolated styrene 75% by weight, long chain blocked styrene 1.4% by weight, ΔTg 14°C. Table 4 shows the results of evaluating the physical properties of this product as a rubber composition. From Table 4, it was found that the styrene-butadiene copolymer rubber specified in the present invention exhibits the excellent characteristics shown in Tables 2 and 3 even if it is obtained by a continuous polymerization method. .

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ムーニー粘度30ないし150、結合スチレン10
ないし30重量%、ブタジエン部の1,2ビニル結
合35ないし65%、重量平均分子量と数平均分子量
の比w/nで表示される分子量分布1.2ない
し3.5、オゾン分解物のゲルパーミエーシヨンク
ロマトグラフによつて分析される単離スチレンが
全結合スチレンの50重量%以上、長鎖ブロツクス
チレンが全結合スチレンの5重量%以下、差動走
査熱量計(DSC)によつて分析される△Tgが2
ないし12℃であることを特徴とするスチレン−ブ
タジエン共重合ゴムを少なくとも30重量%含有す
る原料ゴムに、その100重量部当り20ないし120重
量部のカーボンブラツク及び必要量の加硫剤を配
合して成るゴム組成物。
1 Mooney viscosity 30 to 150, bonded styrene 10
to 30% by weight, 35 to 65% of 1,2 vinyl bonds in the butadiene moiety, molecular weight distribution expressed as the ratio w/n of weight average molecular weight to number average molecular weight, 1.2 to 3.5, gel permeation chromatography of ozone decomposition product Isolated styrene analyzed by 50% by weight of total bound styrene, long chain blocked styrene 5% by weight of total bound styrene analyzed by 2
A raw material rubber containing at least 30% by weight of styrene-butadiene copolymer rubber characterized by a temperature of 20 to 120 parts by weight of carbon black and a necessary amount of vulcanizing agent per 100 parts by weight. A rubber composition consisting of
JP30197189A 1989-11-22 1989-11-22 Styrene-butadiene copolymer rubber composition Granted JPH02160846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30197189A JPH02160846A (en) 1989-11-22 1989-11-22 Styrene-butadiene copolymer rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30197189A JPH02160846A (en) 1989-11-22 1989-11-22 Styrene-butadiene copolymer rubber composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6332481A Division JPS57179212A (en) 1981-04-28 1981-04-28 Styrene-butadiene copolymer rubber

Publications (2)

Publication Number Publication Date
JPH02160846A JPH02160846A (en) 1990-06-20
JPH049820B2 true JPH049820B2 (en) 1992-02-21

Family

ID=17903336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30197189A Granted JPH02160846A (en) 1989-11-22 1989-11-22 Styrene-butadiene copolymer rubber composition

Country Status (1)

Country Link
JP (1) JPH02160846A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889477B2 (en) * 1993-11-26 1999-05-10 住友ゴム工業株式会社 Radial tire for high speed heavy load
JP3325683B2 (en) * 1993-12-27 2002-09-17 株式会社ブリヂストン Rubber composition for tire tread
EP3269770A4 (en) * 2015-03-13 2018-10-31 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
JP7043828B2 (en) * 2017-12-18 2022-03-30 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires
JP7056134B2 (en) * 2017-12-18 2022-04-19 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires
JP7069688B2 (en) * 2017-12-18 2022-05-18 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462248A (en) * 1977-10-08 1979-05-19 Dunlop Co Ltd Tire and elastomer composition for therefor
JPS5523568A (en) * 1978-08-08 1980-02-20 Nippon Telegr & Teleph Corp <Ntt> Film reader
JPS5755912A (en) * 1980-09-20 1982-04-03 Japan Synthetic Rubber Co Ltd High-level bond content styrene/butadiene copolymer
JPS5787407A (en) * 1980-11-21 1982-05-31 Japan Synthetic Rubber Co Ltd Preparation of styrene-butadiene copolymer
JPH0214926A (en) * 1988-07-01 1990-01-18 Iseki & Co Ltd Front wheel transmission gear for tractor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462248A (en) * 1977-10-08 1979-05-19 Dunlop Co Ltd Tire and elastomer composition for therefor
JPS5523568A (en) * 1978-08-08 1980-02-20 Nippon Telegr & Teleph Corp <Ntt> Film reader
JPS5755912A (en) * 1980-09-20 1982-04-03 Japan Synthetic Rubber Co Ltd High-level bond content styrene/butadiene copolymer
JPS5787407A (en) * 1980-11-21 1982-05-31 Japan Synthetic Rubber Co Ltd Preparation of styrene-butadiene copolymer
JPH0214926A (en) * 1988-07-01 1990-01-18 Iseki & Co Ltd Front wheel transmission gear for tractor

Also Published As

Publication number Publication date
JPH02160846A (en) 1990-06-20

Similar Documents

Publication Publication Date Title
JPH0228604B2 (en)
EP2138516B1 (en) Process for production of modified conjugated diene polymer, compositions comprising the polymer, and tires containing the compositions
JP2894986B2 (en) Diene polymer rubber composition
KR860000675B1 (en) Random styken-butadiene copolymers
EP2271682B1 (en) Styrene-butadiene polymers with styrene gradient and methods of making the same
KR101845375B1 (en) Conjugated diene rubber, rubber composition, rubber crosslink product, and tire
JP2000178378A (en) Oil-extended rubber and rubber composition
JP4491868B2 (en) Method for producing diolefin polymer composition, and method for producing rubber composition for vulcanization
US7981990B2 (en) Synthesis of a liquid polymer and a functionalized polymer
JPH049820B2 (en)
JP4348795B2 (en) Diolefin polymer composition, process for producing the same, and rubber composition for vulcanization
JPH0580503B2 (en)
JPH11246633A (en) Conjugated diolefin-based copolymer rubber and its composition
JPS61141741A (en) Butadiene rubber composition
JPH05202150A (en) Chlorinated isobutylene-isoprene rubber graft copolymer
JPS6227442A (en) Improved rubber composition for tire
JPS6330502A (en) Novel random styrene/butadiene copolymer and its composition
JPH023404B2 (en)
JPS6181445A (en) Rubber composition
JPH05202102A (en) Production of modified conjugated diene polymer and rubber composition
JPH04246401A (en) Method for modification of conjugated diene polymer rubber and conjugated diene rubber composition
JPH0322413B2 (en)
JPH0641537B2 (en) Styrene-butadiene copolymer rubber composition with excellent flex resistance
JPS61255917A (en) Production of styrene/butadiene copolymer rubber of excellent flex resistance
JPS61271338A (en) Styrene/butadiene random copolymer composition