JPH049606Y2 - - Google Patents

Info

Publication number
JPH049606Y2
JPH049606Y2 JP2444284U JP2444284U JPH049606Y2 JP H049606 Y2 JPH049606 Y2 JP H049606Y2 JP 2444284 U JP2444284 U JP 2444284U JP 2444284 U JP2444284 U JP 2444284U JP H049606 Y2 JPH049606 Y2 JP H049606Y2
Authority
JP
Japan
Prior art keywords
water
pressure
pump
discharge pressure
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2444284U
Other languages
Japanese (ja)
Other versions
JPS60140110U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2444284U priority Critical patent/JPS60140110U/en
Publication of JPS60140110U publication Critical patent/JPS60140110U/en
Application granted granted Critical
Publication of JPH049606Y2 publication Critical patent/JPH049606Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【考案の詳細な説明】 (技術分野) 本考案は、配水管の流量および圧力を検出し、
これらの検出信号を基に送水ポンプの吐出圧を制
御し、配水系末端の水圧を一定ならしめるポンプ
吐出圧制御装置に関する。 (従来技術) 従来のポンプ吐出圧制御装置として第1図に示
すものが知られている。 第1図において、1は配水池であり、制御弁2
を介して不図示の浄水場より給水される。なお、
LMは配水池1の水位を計測する水位計である。
3は吸込側制御弁、4は配水区域に所定の目標圧
力P0にて給水しうる送水ポンプである。5は送
水ポンプ4の送水側に設けられた制御弁である。
6は送水ポンプ4により吐出される水圧を検出す
る吐出圧検出器であり、その出力は後述するポン
プ吐出圧・推定末端圧制御装置に加えられる。
7は送水流量検出部であり、8は流量検出部7か
らの検出信号を入力されて後述するポンプ吐出
圧・推定末端制御装置に入力する流量発信器で
ある。12は配水管で、送水ポンプ4により吐出
される水を配水区域13に送水するものである。
9はポンプ吐出圧・推定末端圧制御装置であり、
推定末端圧演算器9aとポンプ吐出圧制御装置9
bとを備えている。推定末端圧演算器9aは流量
発信器8から出力される流量Qを入力されて、こ
の流量検出信号と配水系の管路抵抗とを基に送水
ポンプ4の吐出圧の設定値PSを算出する。推定末
端圧演算器9aにより求められた送水ポンプ吐出
圧の設定値PSは、送水ポンプ4の吐出圧制御装置
9bに入力される。吐出圧制御装置9bには吐出
圧検出器6から出力された送水ポンプ4の吐出圧
Pがフイードバツク信号として入力されており、
設定値PSと、吐出圧P2と、後述する実揚程H0
に関連した信号との偏差を演算し、その演算出力
を電動機速度制御装置(ASPR)10に入力し、
かご形電動機、巻線形誘導機で代表されるポンプ
駆動用電動機11の回転速度を制御して送水ポン
プ4の吐出圧制御を行なう。なお、速度制御装置
10としてかご形電動機であればインバータが適
用され、巻線形誘導機であればサイリスタセルビ
ウス装置が適用されて所定の速度制御が行なわれ
る。 H1は配水池1の水位であり、H2は送水ポンプ
4の吐出管水位(又は吸込管水位)を示し、H3
は配水区域13における水位であり、P0は配水
区域13における目標圧力を示す。 ところで、ポンプ吐出圧・推定末端圧制御装置
9は送水ポンプ4の吐出圧目標値Pを、 P=設定値PS+吐出圧P2+H0 (1) の演算式(1)より求めている。 ここで、算出された設定値PSに含まれる管路抵
抗は送水ポンプ4の設置場所から配水区域13に
至る配水管の抵抗、吐出圧P2は吐出圧検出器6
により検出された値であり、H0は実揚程で、 H0=配水池水位H1−送水ポンプ吐出管芯水位
H2+吸込水頭圧PSH (2) の(2)式で表わされる。ここで、吸込水頭圧PSH
送水ポンプ4の吸込側における吐出管芯(又は吸
込管芯)と配水池1の底までの水頭圧を示す。 第1図に示す従来装置によると、(1)式に示す演
算をポンプ吐出圧・推定末端圧制御装置に行な
わせるにあたつて、実揚程H0を手動により設定
していた。 ところで、配水池水位H1は不図示の浄水場か
ら配水池1に送られてくる流入量および配水区域
13側における需要量により時々刻々に変動する
ものであり、また配水池水位H1の変動に伴なつ
て送水ポンプ4の吸込側における吸込水頭圧も当
然に変化する。従つて、従来装置によると、時々
刻々変動する配水池水位H1と吸込水頭PSHに対応
した実揚程H0を設定する事は至極困難で対応し
きれない。これによつては、流入水量および需要
量の変動に対応した吐出圧の追従制御は事実上不
可能であつて、配水系末端圧を目標値に保持する
ことができなくなるのである。 (目的) 本考案は、前記した従来技術の有する欠点を解
決するもので、配水管の流量および圧力を検出
し、送水ポンプの吐出圧を制御し、その末端にお
ける水圧を一定ならしめる送水ポンプ吐出圧制御
装置において、ポンプ吐出圧を決定する一要素で
ある実揚程H0と関数関係を持つ配水池水位と送
水ポンプ吸込水頭が時々刻々変動しても、常にそ
の変動に対応した送水ポンプ吐出圧制御を行なう
ことができるポンプ吐出圧制御装置を提供するこ
とを目的とする。 (考案の概要) 本考案は、配水池から配水区域に対し、その配
水区域における水圧が一定となるように送水ポン
プの吐出圧を制御するポンプ吐出圧制御装置であ
つて、送水ポンプの吸込側の吸込圧力と、送水ポ
ンプの吐出側の吐出圧力と流量とをポンプ吐出
圧・推定末端圧制御装置に入力させて送水ポンプ
の吐出圧を求め、これにより送水ポンプの制御を
行なつて、配水池の水位変動と吸込水頭圧の変動
とを自動補正するものである。 (実施例) 第2図は、本考案のポンプ吐出圧制御装置の実
施例を示す。 同図において参照記号1〜8,10〜13と
LMを付したものは、第1図において説明したも
のと同一構成、同一機能を有するものであるか
ら、その説明は省略する。 同図において、14は送水ポンプ4の吸水側と
配水池1との間に設置された吸込圧力計で、第1
図に関する説明において述べた送水ポンプ4の吸
込圧力P1を検出するものであり、その出力はポ
ンプ吐出圧・推定末端圧制御装置における推定
末端圧演算器9aに入力される。 ここで、吸込圧力P1が前述した(1),(2)式に示
す実揚程H0に関係する理由について述べる。 実揚程H0は(2)式において、 H0=配水池水位(H1)−ポンプ吐出管芯水位
(H2)+吸込水頭圧(PSH) と示されるが、浄水場側より配水池1に流入する
流入量の変動と配水区域13における需要水量の
変動とに対応して、送水ポンプ4に加えられる実
揚程H0が変動することを意味している。 なお、ポンプ吐出管芯水位H2は、送水ポンプ
4の据付高さにより決まつてしまうものであるか
ら、変動しない。 送水ポンプ4に加えられる実揚程H0は、配水
池1の水位H1から送水ポンプ4の吐出管芯水位
H2を減算した値と、送水ポンプ4が配水池1の
水を吸込む水頭圧PSHとに関係するものであり、
さらに云うと送水ポンプ4の入口側における吸込
圧力と関係しているのである。 逆に言つて、送水ポンプ4の吸込圧力は、実揚
程H0の変動に伴なつて変動するのである。従つ
て、送水ポンプ4の吸込圧力を検知することによ
り、時々刻々に変動する実場程H0を知ることが
できる。 次に、第2図に示すポンプ吐出圧制御装置の作
用について説明する。 ポンプ据付高さH2に配設された送水ポンプ4
は配水池1の水を制御弁3を介して吸込み、配水
区域13側に向けて送水をしている。配水池1と
送水ポンプ4との間に配設された吸込圧力計14
により検出した送水ポンプ4の吸込水頭圧PSHは、
ポンプ吐出圧・推定末端圧制御装置の推定末端
圧演算器9aに入力される。送水ポンプが吐出す
る水の流量Qを流量検出部7により検出し、そし
て検出した流量Qは流量発信器8により推定末端
演算器9aに入力される。 推定末端圧演算器9aにおいては、前述した吸
込圧力計14により検出した送水ポンプ4の吸込
圧力P1と、配水流量Qと、定数の管路抵抗との
3諸量を基に送水ポンプ4の吐出圧の設定値PS
求め、これを配水系末端圧の目標値としてポンプ
吐出圧制御装置9bに入力する。ポンプ吐出圧制
御装置9bには送水ポンプ4の吐出圧を検出する
吐出圧検出器6から出力される吐出圧P2がフイ
ードバツク信号として入力され、ポンプ吐出圧制
御装置9bは設定値PSと吐出圧P2との偏差を演
算して求め、その偏差値を電動機速度制御装置
(ASPR)10に入力し、ポンプ駆動用電動機1
1の速度を自動的にコントロールして送水ポンプ
4の吐出圧制御を行なう。 ここで、ポンプ吐出圧・推定末端圧制御装置
は、下記に示す(3)式、即ち前述した(1)式に示す実
揚程H0に代えて吸込圧力P1を用いた P=設定値PS−吐出圧P2 (3) ただし、PSは、PS=吸込圧P1+管路抵抗+流
量Qを示す により演算を行なつて、送水ポンプ4の吐出圧P
を求めるのである。そして、吸込圧力P1は前述
したように実揚程H0の時々刻々の変動に対応し
て変動するもので、換言すると実揚程H0を変動
させる配水池水位H1、吸込水頭圧PSHの変動に対
応して変動するものであるから、時々刻々変動す
る配水池水位H1と吸込水頭圧PSHとの変動を自動
補正した送水ポンプ4の吐出圧Pが(3)式より求め
られる。 (効果) 以上説明したように本考案によると、送水ポン
プの吸込側に吸込圧力検出器を配設し、検出され
た吸込圧力をポンプ吐出圧・推定末端圧制御装置
に入力することにより、時々刻々変動する配水池
水位とポンプの吸込水頭圧の変動を自動補正する
構成にしたから、従来のように配水池の水位変動
を手動調整によつて補正するための操作を省き、
自動的に補正することができ、従つて簡単にかつ
正確な送水制御を行なうことが可能になると共
に、吸込水頭圧の変動をも自動補正することがで
き、さらに送水ポンプ吸込側の圧力変動による配
水管末端側に水圧変動を与えることも防止するこ
とができる。
[Detailed description of the invention] (Technical field) The invention detects the flow rate and pressure of water pipes,
The present invention relates to a pump discharge pressure control device that controls the discharge pressure of a water pump based on these detection signals and makes the water pressure at the end of a water distribution system constant. (Prior Art) As a conventional pump discharge pressure control device, one shown in FIG. 1 is known. In Fig. 1, 1 is a water distribution reservoir, and a control valve 2
Water is supplied from a water purification plant (not shown) via the water purification plant. In addition,
LM is a water level meter that measures the water level of water distribution reservoir 1.
3 is a suction side control valve, and 4 is a water pump capable of supplying water to the water distribution area at a predetermined target pressure P 0 . 5 is a control valve provided on the water supply side of the water supply pump 4.
Reference numeral 6 denotes a discharge pressure detector that detects the water pressure discharged by the water pump 4, and its output is applied to a pump discharge pressure/estimated terminal pressure control device 9 , which will be described later.
7 is a water supply flow rate detection section, and 8 is a flow rate transmitter that receives a detection signal from the flow rate detection section 7 and inputs it to a pump discharge pressure/estimation terminal control device 9 , which will be described later. Reference numeral 12 denotes a water distribution pipe that conveys water discharged by the water pump 4 to the water distribution area 13.
9 is a pump discharge pressure/estimated terminal pressure control device;
Estimated terminal pressure calculator 9a and pump discharge pressure control device 9
b. The estimated end pressure calculator 9a receives the flow rate Q output from the flow rate transmitter 8 as input, and calculates the set value P S of the discharge pressure of the water pump 4 based on this flow rate detection signal and the pipe resistance of the water distribution system. do. The set value P S of the water pump discharge pressure determined by the estimated terminal pressure calculator 9a is input to the discharge pressure control device 9b of the water pump 4. The discharge pressure P of the water pump 4 output from the discharge pressure detector 6 is input to the discharge pressure control device 9b as a feedback signal.
Calculates the deviation between the set value PS , the discharge pressure P2 , and a signal related to the actual head H0 described later, and inputs the calculated output to the motor speed control device (ASPR) 10,
The discharge pressure of the water pump 4 is controlled by controlling the rotational speed of a pump drive motor 11, typically a squirrel cage motor or a wound induction machine. It should be noted that an inverter is used as the speed control device 10 in the case of a squirrel cage electric motor, and a thyristor Servius device is applied in the case of a wound induction machine to perform predetermined speed control. H 1 is the water level of the water distribution reservoir 1, H 2 is the discharge pipe water level (or suction pipe water level) of the water pump 4, and H 3
is the water level in the water distribution area 13, and P 0 indicates the target pressure in the water distribution area 13. By the way, the pump discharge pressure/estimated terminal pressure control device 9 calculates the discharge pressure target value P of the water pump 4 from the calculation formula (1): P = set value P S + discharge pressure P 2 + H 0 (1) . Here, the pipe resistance included in the calculated setting value P S is the resistance of the water distribution pipe from the installation location of the water pump 4 to the water distribution area 13, and the discharge pressure P 2 is the resistance of the water distribution pipe from the installation location of the water pump 4 to the water distribution area 13.
is the value detected by H 0 is the actual head, H 0 = water level in the distribution reservoir H 1 - water pump discharge pipe core water level
It is expressed by equation (2): H 2 + suction head pressure P SH (2). Here, the suction head pressure P SH indicates the water head pressure between the discharge pipe core (or suction pipe core) on the suction side of the water pump 4 and the bottom of the water distribution reservoir 1 . According to the conventional device shown in FIG. 1, the actual head H 0 was manually set in order to cause the pump discharge pressure/estimated terminal pressure control device 9 to perform the calculation shown in equation (1). By the way, the water level H1 in the water distribution reservoir fluctuates from moment to moment depending on the amount of inflow sent to the water distribution reservoir 1 from a water purification plant (not shown) and the amount of demand in the water distribution area 13 side, and also changes in the water level H1 in the water distribution reservoir Naturally, the suction head pressure on the suction side of the water pump 4 changes accordingly. Therefore, according to the conventional device, it is extremely difficult to set the actual head H 0 that corresponds to the water distribution reservoir water level H 1 and the suction head P SH that fluctuate from time to time. This makes it virtually impossible to follow-up control of the discharge pressure in response to fluctuations in the amount of inflow water and demand, and it becomes impossible to maintain the end pressure of the water distribution system at the target value. (Purpose) The present invention solves the drawbacks of the prior art described above, and is a water pump discharge system that detects the flow rate and pressure of a water distribution pipe, controls the discharge pressure of the water pump, and makes the water pressure at the end constant. In a pressure control device, even if the distribution reservoir water level and the water pump suction head, which have a functional relationship with the actual head H0 , which is one element that determines the pump discharge pressure, fluctuate from moment to moment, the water pump discharge pressure always corresponds to the fluctuation. It is an object of the present invention to provide a pump discharge pressure control device that can perform control. (Summary of the invention) The present invention is a pump discharge pressure control device that controls the discharge pressure of a water pump so that the water pressure in the water distribution area is constant from a water distribution reservoir to a water distribution area. The suction pressure of the water pump, and the discharge pressure and flow rate on the discharge side of the water pump are input to the pump discharge pressure/estimated terminal pressure control device to obtain the water pump discharge pressure.The water pump is controlled based on this, and the water pump is controlled. This system automatically corrects fluctuations in the water level of the water pond and fluctuations in the suction head pressure. (Embodiment) FIG. 2 shows an embodiment of the pump discharge pressure control device of the present invention. In the figure, reference symbols 1 to 8, 10 to 13 and
Components marked with LM have the same configuration and function as those described in FIG. 1, so their explanation will be omitted. In the figure, 14 is a suction pressure gauge installed between the water suction side of the water pump 4 and the water distribution reservoir 1;
This detects the suction pressure P1 of the water pump 4 mentioned in the explanation regarding the figure, and its output is input to the estimated terminal pressure calculator 9a in the pump discharge pressure/estimated terminal pressure control device 9 . Here, the reason why the suction pressure P 1 is related to the actual head H 0 shown in equations (1) and (2) mentioned above will be described. The actual head H 0 is expressed in equation (2) as H 0 = water level in the distribution reservoir (H 1 ) - pump discharge pipe core water level (H 2 ) + suction head pressure (P SH ). This means that the actual head H 0 applied to the water pump 4 changes in response to changes in the amount of water flowing into the water supply area 1 and changes in the amount of water demanded in the water distribution area 13 . Note that the pump discharge pipe core water level H2 is determined by the installation height of the water pump 4, and therefore does not vary. The actual head H 0 added to the water pump 4 is calculated from the water level H 1 of the water distribution reservoir 1 to the discharge pipe core water level of the water pump 4.
It is related to the value obtained by subtracting H 2 and the head pressure P SH at which the water pump 4 sucks water from the distribution reservoir 1,
Furthermore, it is related to the suction pressure on the inlet side of the water pump 4. In other words, the suction pressure of the water pump 4 fluctuates as the actual head H 0 fluctuates. Therefore, by detecting the suction pressure of the water pump 4, it is possible to know the actual pressure H0 , which changes from moment to moment. Next, the operation of the pump discharge pressure control device shown in FIG. 2 will be explained. Water pump 4 installed at pump installation height H 2
The system sucks water from the water distribution reservoir 1 through the control valve 3 and sends the water toward the water distribution area 13 side. Suction pressure gauge 14 arranged between water distribution reservoir 1 and water pump 4
The suction head pressure P SH of the water pump 4 detected by
It is input to the estimated terminal pressure calculator 9a of the pump discharge pressure/estimated terminal pressure control device 9 . The flow rate Q of water discharged by the water pump is detected by the flow rate detector 7, and the detected flow rate Q is inputted by the flow rate transmitter 8 to the estimation terminal calculator 9a. The estimated terminal pressure calculator 9a calculates the pressure of the water pump 4 based on three quantities: the suction pressure P1 of the water pump 4 detected by the suction pressure gauge 14, the water distribution flow rate Q, and the constant pipe resistance. The set value P S of the discharge pressure is determined and inputted to the pump discharge pressure control device 9b as the target value of the water distribution system terminal pressure. The pump discharge pressure control device 9b receives the discharge pressure P2 outputted from the discharge pressure detector 6 that detects the discharge pressure of the water pump 4 as a feedback signal, and the pump discharge pressure control device 9b outputs the set value P S and the discharge pressure. The deviation from the pressure P 2 is calculated and determined, and the deviation value is input to the motor speed control device (ASPR) 10, and the pump drive motor 1
The discharge pressure of the water pump 4 is controlled by automatically controlling the speed of the pump 1. Here, pump discharge pressure/estimated terminal pressure control device 9
is the equation (3) shown below, that is, the suction pressure P 1 is used instead of the actual head H 0 shown in the equation (1) above. P = Set value P S - Discharge pressure P 2 (3) However, P S is calculated by showing P S = suction pressure P 1 + pipe resistance + flow rate Q, and the discharge pressure P of the water pump 4 is calculated.
We seek. As mentioned above, the suction pressure P 1 fluctuates in response to the moment-to-moment fluctuations in the actual head H 0 .In other words, the water level H 1 of the distribution reservoir and the suction head pressure P SH that fluctuate the actual head H 0 . Since it fluctuates in response to fluctuations, the discharge pressure P of the water pump 4 that automatically corrects the fluctuations in the water distribution reservoir water level H1 and the suction head pressure PSH , which fluctuate from moment to moment, can be obtained from equation (3). (Effects) As explained above, according to the present invention, by disposing a suction pressure detector on the suction side of the water pump and inputting the detected suction pressure to the pump discharge pressure/estimated terminal pressure control device, it is possible to The system is configured to automatically compensate for the ever-changing water level in the distribution reservoir and fluctuations in the suction head pressure of the pump, eliminating the need for manual adjustments to compensate for fluctuations in the water level in the distribution reservoir, as in the past.
It can be automatically corrected, and therefore it is possible to perform simple and accurate water supply control, and it is also possible to automatically compensate for fluctuations in suction water head pressure. Fluctuations in water pressure at the end of the water pipe can also be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のポンプ吐出圧制御装置のブロツ
ク図、第2図は本考案のポンプ吐出圧制御装置の
実施例のブロツク図である。 図中、1は配水池、2,3,5は制御弁、4は
送水ポンプ、6は吐出圧検出器、7は流量検出
部、8は流量発信器、はポンプ吐出圧・推定末
端圧制御装置、9aは推定末端圧演算器、9bは
ポンプ吐出圧制御装置、10は電動機速度制御装
置、11はポンプ駆動用電動機、12は配水管、
13は配水区域、14は吸込圧力計を示す。
FIG. 1 is a block diagram of a conventional pump discharge pressure control device, and FIG. 2 is a block diagram of an embodiment of the pump discharge pressure control device of the present invention. In the figure, 1 is a water distribution reservoir, 2, 3, and 5 are control valves, 4 is a water pump, 6 is a discharge pressure detector, 7 is a flow rate detector, 8 is a flow transmitter, and 9 is a pump discharge pressure/estimated terminal pressure A control device, 9a is an estimated terminal pressure calculator, 9b is a pump discharge pressure control device, 10 is a motor speed control device, 11 is a pump driving electric motor, 12 is a water pipe,
13 indicates a water distribution area, and 14 indicates a suction pressure gauge.

Claims (1)

【実用新案登録請求の範囲】 配水池から配水区域にその末端側における水圧
を一定ならしめる送水制御を行うものであつて、 送水ポンプと、 送水ポンプの前段に配設された吸込圧力検出手
段と、 送水ポンプの吐出側に配設された吐出圧検出手
段および流量検出手段と、 送水ポンプの吐出圧を演算し、制御するポンプ
吐出圧・推定末端制御装置とを備え、 前記したポンプ推定末端圧制御装置は前記した
吸込圧力検出手段からの吸込圧と流量検出手段か
らの流量と定数の管理抵抗とを入力して送水ポン
プの吐出圧の設定値を演算により求め、その値と
吐出圧検出手段からの吐出圧との偏差を演算して
求め、その偏差値に基づいて送水ポンプの吐出圧
制御を行うポンプ吐出圧制御装置。
[Scope of Claim for Utility Model Registration] A water supply system that controls water supply from a water distribution reservoir to a water distribution area to make the water pressure constant at the end thereof, comprising: a water supply pump; a suction pressure detection means disposed at the front stage of the water supply pump; , a discharge pressure detection means and a flow rate detection means disposed on the discharge side of the water supply pump, and a pump discharge pressure/estimated end control device that calculates and controls the discharge pressure of the water supply pump, the pump estimated end pressure as described above. The control device inputs the suction pressure from the suction pressure detection means, the flow rate from the flow rate detection means, and a constant control resistance, calculates the set value of the discharge pressure of the water pump, and calculates the set value of the discharge pressure of the water pump, and calculates the set value of the discharge pressure of the water pump by inputting the suction pressure from the suction pressure detection means, the flow rate from the flow rate detection means, and a constant control resistance. A pump discharge pressure control device that calculates and determines the deviation from the discharge pressure of the water supply pump and controls the discharge pressure of the water pump based on the deviation value.
JP2444284U 1984-02-22 1984-02-22 Pump discharge pressure control device Granted JPS60140110U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2444284U JPS60140110U (en) 1984-02-22 1984-02-22 Pump discharge pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2444284U JPS60140110U (en) 1984-02-22 1984-02-22 Pump discharge pressure control device

Publications (2)

Publication Number Publication Date
JPS60140110U JPS60140110U (en) 1985-09-17
JPH049606Y2 true JPH049606Y2 (en) 1992-03-10

Family

ID=30518596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2444284U Granted JPS60140110U (en) 1984-02-22 1984-02-22 Pump discharge pressure control device

Country Status (1)

Country Link
JP (1) JPS60140110U (en)

Also Published As

Publication number Publication date
JPS60140110U (en) 1985-09-17

Similar Documents

Publication Publication Date Title
US4091834A (en) Apparatus for automatically preparing solution of controlled concentration
JPH0564801B2 (en)
US4498809A (en) Flow compensated computing controller
US3021789A (en) Motor speed control arrangement
JPH049606Y2 (en)
JP3426447B2 (en) Automatic water supply
JP3411128B2 (en) Variable speed water supply
JP3720011B2 (en) Variable speed water supply device
JPH0832314B2 (en) Paint circulation equipment
JPS6175907A (en) Water level controller
JPS57139460A (en) Control method for secondary cooling water in continuous casting installation
RU2477419C1 (en) Control device of transportation of oil, gas and water mixture in product pipeline
JPS58113596A (en) Flow control device for pump
JP3360007B2 (en) Predicted and estimated terminal pressure constant control water supply device
JPS588313B2 (en) Dissolved oxygen control device for aeration tank
JPH04171507A (en) Water level controller
JPS5827893A (en) Method of controlling discharge pressure of pump
JPS6214201A (en) Flow rate control device
JPS6256354B2 (en)
JP3268304B2 (en) Pressure control device in low pressure casting machine
JPS5917981Y2 (en) water supply device
JPH05180169A (en) Controller for water level in pump well
JPH01142116A (en) Intake gate controller
JPS57116717A (en) Method for controlling discharge of granulated slag slurry in settling tank
JPS5897612U (en) water level control device