JPH0495312A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH0495312A
JPH0495312A JP20431090A JP20431090A JPH0495312A JP H0495312 A JPH0495312 A JP H0495312A JP 20431090 A JP20431090 A JP 20431090A JP 20431090 A JP20431090 A JP 20431090A JP H0495312 A JPH0495312 A JP H0495312A
Authority
JP
Japan
Prior art keywords
heat
insulating member
film
insulating
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20431090A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iwata
和志 岩田
Tsutomu Sakatsu
務 坂津
Masaru Magai
勝 真貝
Takeshi Kozuka
小塚 武
Yoshihiro Yoshida
芳博 吉田
Hiroshi Kobayashi
寛史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20431090A priority Critical patent/JPH0495312A/en
Publication of JPH0495312A publication Critical patent/JPH0495312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To enhance reliability of electrical connection and also secure a passage for heat radiation by providing an insulating member which is good at heat conductivity and which deteriorates less by heat, etc. CONSTITUTION:A film insulating member 11 has an insulating portion 21 which surrounds a conductive member 12 and is formed from an aluminium anodized film which is good at heat conductivity and excellent in heat resistance and moisture resistance, i.e., an aluminium oxide (Al2O3), and also a heat conducting portion 22 made from a metal of thermal conductivity higher than that of alumina is embedded in that portion of the insulating member 11 which is separated from the conductive member 12. Therefore Joule's heat from the conductive member 12 can be readily conducted to the heat conducting portion 22 and also heat generated frown an LSI chip 13 can be efficiently transmitted to a heat radiating member 18 located on the side of a packaging substrate 14, so that the heat radiation property of the anisotropic conductive film can be greatly enhanced (esp. in the vertical direction).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LSI等の半導体素子を実装するのに使用さ
れる異方性導電膜に関し、特にその放熱性を向上させた
異方性導電膜に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an anisotropic conductive film used for mounting semiconductor elements such as LSI, and in particular an anisotropic conductive film with improved heat dissipation. Regarding membranes.

〔従来の技術〕[Conventional technology]

近時、LSI等を配線基板に実装する実装技術分野にお
いては、接続ピッチの微細化と接続の信顛性が高度に要
求されており、そのために異方性接続が可能な異方性導
電膜が多用されている。
Recently, in the field of mounting technology in which LSIs and the like are mounted on wiring boards, there has been a high demand for finer connection pitches and higher connection reliability. is frequently used.

従来のこの種の異方性導電膜としては、例えば第8図に
示すように、樹脂材料によって所定厚さの膜状の絶縁部
材1を形成し、この絶縁部材1に導電材料からなる導電
部材2を所定ピッチで配置するもの、又は分散するもの
が知られており、絶縁部材1を形成する樹脂材料として
は、加熱によってそれ自体が接着性を発揮するものがあ
る。
A conventional anisotropic conductive film of this type is, for example, as shown in FIG. 8, a film-like insulating member 1 of a predetermined thickness is formed of a resin material, and a conductive member made of a conductive material is formed on this insulating member 1. 2 are arranged at a predetermined pitch or are dispersed, and some resin materials forming the insulating member 1 exhibit adhesive properties by themselves when heated.

ところで、LSI等の半導体素子においては、その高集
積化、小型化に拍車がかかっており、それに伴ってLS
I等の単位面積当りの発2量が増加する傾向にある。し
たがって、このような半導体素子の実装に際しては、半
導体チップからの熱を良好に放熱するとともに、異方性
導電膜の導電部でのジュール熱を外部に逃すことが重要
である。
Incidentally, semiconductor devices such as LSIs are becoming more highly integrated and smaller, and along with this, LSI
There is a tendency for the amount of radiation per unit area of I, etc. to increase. Therefore, when mounting such a semiconductor element, it is important to properly dissipate heat from the semiconductor chip and to dissipate Joule heat in the conductive portion of the anisotropic conductive film to the outside.

なお、従来の放熱構造の例としては、例えばパワートラ
ンジスタ半導体素子に近接する放熱板を設け、前記半導
体素子の放熱効果を高めるというようなものが知られて
いる。
Note that, as an example of a conventional heat dissipation structure, one is known in which, for example, a heat dissipation plate is provided close to a power transistor semiconductor element to enhance the heat dissipation effect of the semiconductor element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の異方性導電膜にあって
は、膜状絶縁部材lを熱伝導性の悪い樹脂材料から形成
し、これに導電部材2を分散又は所定ピンチで配置する
構成であったため、異方性導電膜の放熱性が悪いばかり
でなく、接続ピンチを微細化すると導電部が高密度とな
って隣接する導電部間の絶縁が不十分となり、ショート
が発生し易くなっていた。さらに、絶縁部の樹脂が熱劣
化したり吸湿したりして接続の信較性が低下していた。
However, in such a conventional anisotropic conductive film, the film-like insulating member l is formed from a resin material with poor thermal conductivity, and the conductive member 2 is disposed thereon in a dispersed manner or in a predetermined pinch. Therefore, not only did the anisotropic conductive film have poor heat dissipation properties, but miniaturization of the connection pinch resulted in a high density of conductive parts, resulting in insufficient insulation between adjacent conductive parts, making short circuits more likely to occur. . Furthermore, the resin in the insulating part deteriorates due to heat and absorbs moisture, reducing the reliability of the connection.

このため、半導体チップや異方性導電膜の温度が上昇し
、導電部の耐電流も低下し易く、半導体素子の信転性や
接続の信較性が低下するという問題があった。
Therefore, the temperature of the semiconductor chip and the anisotropic conductive film increases, and the withstand current of the conductive portion tends to decrease, resulting in a problem that the reliability of the semiconductor element and the reliability of the connection decrease.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は、熱伝導性が良く熱劣化等の少ない絶
縁部材を設けることにより、電気的接続の信顧性を向上
させるとともに、放熱経路をも確保することのできる異
方性導電膜を提供することを目的としている。
Therefore, the present invention provides an anisotropic conductive film that can improve the reliability of electrical connections and also secure a heat dissipation path by providing an insulating member with good thermal conductivity and little thermal deterioration. is intended to provide.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的達成のため、請求項1記載の発明は、膜状の絶
縁部材と、該絶縁部材に両面側で接続部を露出するよう
埋設された導電部材とを備えた異方性導電膜において、
前記絶縁部材が、導電部材を取り囲む絶縁部と、該絶縁
部より熱伝導率の高い材料からなる伝熱部とを有するこ
とを特徴とするものであり、 請求項2記載の発明は、前記絶縁部材が、アルミニウム
を陽極酸化することにより形成された絶縁部と、酸化ア
ルミニウムより熱伝導率の高い伝熱部とを有することを
特徴とするものである。
To achieve the above object, the invention according to claim 1 provides an anisotropic conductive film comprising a film-like insulating member and a conductive member embedded in the insulating member so as to expose a connecting portion on both sides,
The invention according to claim 2 is characterized in that the insulating member has an insulating part surrounding the conductive member and a heat transfer part made of a material having higher thermal conductivity than the insulating part, The member is characterized in that it has an insulating part formed by anodizing aluminum and a heat transfer part having higher thermal conductivity than aluminum oxide.

また、上記目的達成のため、請求項3記載の発明は、・
膜状の絶縁部材と、該絶縁部材に両面側で接続部を露出
するよう埋設された導電部材とを備えた異方性導電膜に
おいて、前記絶縁部材の少なくとも一面側で前記導電部
材から離隔する部位に、該絶縁部材より熱伝導率の高い
材料からなる伝熱層を設けたことを特徴とするものであ
り、請求項4記載の発明は、前記伝熱層が、異種材料か
らなる複数の層を積層して形成されたことを特徴とする
ものである。
Furthermore, in order to achieve the above object, the invention according to claim 3:
In an anisotropic conductive film comprising a film-like insulating member and a conductive member buried in the insulating member so as to expose a connecting portion on both surfaces thereof, at least one side of the insulating member is separated from the conductive member. The device is characterized in that a heat transfer layer made of a material having a higher thermal conductivity than the insulating member is provided at the portion, and the invention according to claim 4 is characterized in that the heat transfer layer includes a plurality of heat transfer layers made of different materials. It is characterized by being formed by laminating layers.

なお、上記各発明に係る異方性導電膜においては、実装
する半導体チップ等に放熱回路を付加したり実装基板側
に放熱部材を設けたりして、これに対応して伝熱部又は
伝熱層を設置するのが好ましい。
In addition, in the anisotropic conductive film according to each of the above-mentioned inventions, a heat dissipation circuit is added to the semiconductor chip etc. to be mounted, or a heat dissipation member is provided on the mounting board side, and a heat transfer part or a heat transfer member is provided correspondingly. Preferably, a layer is provided.

以下、本発明を実施例に基づいて説明する。Hereinafter, the present invention will be explained based on examples.

第1〜3図は本発明に係る異方性導電膜の第1実施例を
示す図である。
1 to 3 are diagrams showing a first embodiment of an anisotropic conductive film according to the present invention.

第1図において、10は一実施例としての異方性導電膜
、11はその膜状の絶縁部材、12は絶縁部材11の膜
厚方向に貫通し絶縁部材11の両面側に両端部を露出さ
せた導電部材である。この絶縁部材11は、導電部材1
2を取り囲む絶縁部21と、導電部材12から絶縁され
た伝熱部22とを有しており、絶縁部21は、例えば酸
化アルミニウム(A 12 o3)からなり、伝熱部2
2は、例えば絶縁部21より熱伝導の良い金(Au)、
銅(Cu)、ニッケル(Ni)又はインジウム(In)
からなる。すなわち、絶縁部材11は、アルミニウム(
Al)を陽極酸化することにより形成された絶縁部21
と、絶縁部21(酸化アルミニウム)より熱伝導率の高
い材料からなる伝熱部22とを有している。
In FIG. 1, 10 is an anisotropic conductive film as an example, 11 is a film-like insulating member thereof, and 12 is a film that penetrates through the insulating member 11 in the film thickness direction and exposes both ends on both sides of the insulating member 11. It is an electrically conductive member. This insulating member 11 is a conductive member 1
2, and a heat transfer portion 22 insulated from the conductive member 12. The insulation portion 21 is made of, for example, aluminum oxide (A 12 o3), and
2 is, for example, gold (Au), which has better thermal conductivity than the insulating part 21;
Copper (Cu), nickel (Ni) or indium (In)
Consisting of That is, the insulating member 11 is made of aluminum (
Insulating part 21 formed by anodizing Al)
and a heat transfer section 22 made of a material with higher thermal conductivity than the insulating section 21 (aluminum oxide).

第2図において、13は半導体素子であるLSIチップ
、14は実装基板であり、LSIチフプ13は異方性導
電膜10を介して実装基板14上に実装されている。こ
のLSIチップ13は、異方性導電膜10の導電部材1
2に接触する電極15と、パッシベーション膜16を有
しており、実装基板14は、導電部材12に接触する導
体パターン17と、伝熱部22に接触する放熱部材18
とを有している。この放熱部材18には裏面放熱パター
ン18a及び放熱フィン18bが形成されている。
In FIG. 2, 13 is an LSI chip which is a semiconductor element, 14 is a mounting board, and the LSI chip 13 is mounted on the mounting board 14 via an anisotropic conductive film 10. This LSI chip 13 has a conductive member 1 of an anisotropic conductive film 10.
The mounting board 14 has a conductive pattern 17 in contact with the conductive member 12 and a heat dissipation member 18 in contact with the heat transfer part 22.
It has This heat radiating member 18 is formed with a back heat radiating pattern 18a and a heat radiating fin 18b.

第3図に示すように、異方性導電膜10は、次のような
工程で製造される。
As shown in FIG. 3, the anisotropic conductive film 10 is manufactured through the following steps.

まず、第3図(a)に示すように、導電性の材料、例え
ばアルミニウム(Al)からなるAl板又はAl箔を導
電基板31として準備し、この導電基板31上にスピン
コード又はロールコート法等で液体レジスト32を塗布
し、このフォトレジストを紫外線(以下、UVともいう
)露光して、アルカリ系の現像液で現像する。
First, as shown in FIG. 3(a), an Al plate or Al foil made of a conductive material, such as aluminum (Al), is prepared as a conductive substrate 31, and coated on this conductive substrate 31 by spin cord or roll coating. A liquid resist 32 is applied using a photoresist, etc., and this photoresist is exposed to ultraviolet light (hereinafter also referred to as UV) and developed with an alkaline developer.

次いで、第3図(b)に示すように、この導電基板31
を陽極とする酸性溶液中の電気分解でこの導電基板31
を選択的に陽極酸化し、導電基板31の表層部にA12
03からなり多数の微小な孔を有する所定パターンの陽
極酸化膜33を形成した後、レジスト32を除去する。
Next, as shown in FIG. 3(b), this conductive substrate 31
This conductive substrate 31 is electrolyzed in an acidic solution using as an anode.
is selectively anodized to form A12 on the surface layer of the conductive substrate 31.
After forming an anodic oxide film 33 of a predetermined pattern made of 0.03 and having a large number of minute holes, the resist 32 is removed.

この陽極酸化の処理は、例えば例えば0.4%程度のリ
ン酸溶液を使用し、条件を温度10〜25℃、印加電圧
DC100〜250■で10〜120分とする処理であ
り、この処理により多数の微細な孔(ボア)を有する陽
極酸化膜33が形成される。
This anodic oxidation treatment is a treatment using, for example, a 0.4% phosphoric acid solution under conditions of a temperature of 10 to 25°C and an applied voltage of DC 100 to 250 cm for 10 to 120 minutes. An anodic oxide film 33 having many fine holes (bores) is formed.

次いで、第3図(c)に示すように、例えば38%のN
aOH1塩酸、塩化第2鉄等を使用してアルエツチング
を行い、陽極酸化膜33を導電基板31の下層部から分
離するとともに、この陽極酸化膜33に複数の孔35.
36を貫通させると、絶縁部材11ができあがる。
Next, as shown in FIG. 3(c), for example, 38% N
Al etching is performed using aOH1 hydrochloric acid, ferric chloride, etc. to separate the anodic oxide film 33 from the lower layer of the conductive substrate 31, and to form a plurality of holes 35 in the anodic oxide film 33.
36, the insulating member 11 is completed.

次いで、第3図(d)に示すように、絶縁部材11の一
面側にレジスト(又は感光性フィルム)38を塗布(又
はラミネート)シ、これをUV露光及び現像によりバタ
ーニングして孔35.36に対応する開口部38a、3
8bを形成し、絶縁部材11の一面側を選択的にマスキ
ングする。
Next, as shown in FIG. 3(d), a resist (or photosensitive film) 38 is coated (or laminated) on one side of the insulating member 11, and patterned by UV exposure and development to form holes 35. Openings 38a, 3 corresponding to 36
8b and selectively mask one side of the insulating member 11.

次いで、第3図(e)に示すように、蒸着(抵抗加熱蒸
着法、電子ビーム蒸着法)、スパッタ、メツキ等により
、絶縁部材11の孔35.36にアルミナ(A l z
 03 )より熱伝導率の良い(熱伝導率が高い)導電
材料、例えば金、銅、ニッケル又は半田を埋め込んで導
電部材12及び伝熱部22を形成する。
Next, as shown in FIG. 3(e), alumina (A lz
03) The conductive member 12 and the heat transfer portion 22 are formed by embedding a conductive material with better thermal conductivity (higher thermal conductivity), such as gold, copper, nickel, or solder.

次いで、第3図(f)に示すように、レジスト(又は感
光性フィルム)38等を剥離・除去すると、異方性導電
膜10ができあがる。
Next, as shown in FIG. 3(f), the resist (or photosensitive film) 38 and the like are peeled off and removed to complete the anisotropic conductive film 10.

次に、製造された異方性導電膜10を用いてLSIチッ
プ13を実装基板14に実装する場合、導電部材12を
LSIチップ13の電極15に接触させるとともに、実
装基板14の導体パターン17に接触させる。
Next, when mounting the LSI chip 13 on the mounting board 14 using the manufactured anisotropic conductive film 10, the conductive member 12 is brought into contact with the electrode 15 of the LSI chip 13, and the conductor pattern 17 of the mounting board 14 is brought into contact with the conductive member 12. bring into contact.

なお、この接触とは、例えば接着法や熱圧着法による接
続を含む、このとき、異方性導電膜10の中央部に埋め
込まれた伝熱部22がLSIチップ13及び放熱部材1
8と比較的広い面積で接触し、LSIチップ13から発
生する熱が放熱部材18の裏面放熱パターン18a及び
放熱フィン18bによって放熱できるようになる。
Note that this contact includes connection by, for example, an adhesive method or a thermocompression bonding method.
8 over a relatively wide area, and the heat generated from the LSI chip 13 can be radiated by the back heat radiation pattern 18a and the heat radiation fins 18b of the heat radiation member 18.

このよ・うに、本実施例においては、膜状絶縁部材11
のうち導電部材12を取り囲む絶縁部21を、樹脂より
熱伝導性が良く耐熱性・耐湿性に優れたアルミの陽極酸
化膜、すなわち、酸化アルミニウム(Alzo:+)か
ら形成するとともに、絶縁部材11の導電部材12から
離隔する部位にアルミナより熱伝導率の高い金属からな
る伝熱部22を埋め込んでいる。したがって、導電部材
12からのジュール熱を伝熱部22に良好に伝導させる
ことができるとともに、LSIチップ13から発生した
熱を効率良く実装基板14側の放熱部材18に伝え、放
熱性(特に上下方向)を大幅に向上させることができる
As described above, in this embodiment, the film-like insulating member 11
Among them, the insulating part 21 surrounding the conductive member 12 is formed from an anodic oxide film of aluminum, that is, aluminum oxide (Alzo: +), which has better thermal conductivity than resin and excellent heat resistance and moisture resistance. A heat transfer portion 22 made of a metal having higher thermal conductivity than alumina is embedded in a portion spaced apart from the conductive member 12. Therefore, the Joule heat from the conductive member 12 can be well conducted to the heat transfer part 22, and the heat generated from the LSI chip 13 can be efficiently transmitted to the heat dissipation member 18 on the mounting board 14 side, and the heat dissipation (especially the upper and lower direction) can be significantly improved.

この結果、LSIチップ13及び異方性導電膜10の温
度上昇を防止し、LSIチップ13の温度分布の均一化
による特性安定化と信軽性向上とを図ることができ、さ
らに、異方性導電膜10の導電部における耐電流を向上
させることができる。すなわち、本実施例においては、
熱伝導性が良く熱劣化等の少ない絶縁部材11を設ける
ことにより、LSIチツブ13を実装基板14に実装す
る際の電気的接続の信較性を向上させるとともに、その
接続部やLSIチップ13からの熱に対する放熱経路を
も確保することができる。
As a result, it is possible to prevent the temperature of the LSI chip 13 and the anisotropic conductive film 10 from rising, and to make the temperature distribution of the LSI chip 13 uniform, thereby stabilizing the characteristics and improving reliability. The withstand current in the conductive portion of the conductive film 10 can be improved. That is, in this example,
By providing the insulating member 11 with good thermal conductivity and little thermal deterioration, the reliability of electrical connections when mounting the LSI chip 13 on the mounting board 14 is improved, and the electrical connection from the connection part and the LSI chip 13 is improved. It is also possible to secure a heat dissipation path for the heat.

第4〜6図は本発明に係る異方性導電膜の第2実施例を
示す図である。
4 to 6 are diagrams showing a second embodiment of the anisotropic conductive film according to the present invention.

第4図において、40は本実施例の異方性導電膜、41
はその膜状の絶縁部材、42は絶縁部材11の膜厚方向
に貫通し絶縁部材41の両面側に両端部を突出させた導
電部材であり、絶縁部材41は、導電部材42を取り囲
むようアルミニウム(/l)を陽極酸化することにより
形成された絶縁部51と、絶縁部材41の上面側中央部
に配置され導電部材42から絶縁された伝熱面部52と
を有している。ここで、絶縁部51は、例えばアルミナ
(AZ、O3)からなり、伝熱面部52は、絶縁部51
より熱伝導率の良い金属、例えば、金(Au)、銅(C
u)、ニンケル(Ni)、又はインジウム(I n)か
らなる。
In FIG. 4, 40 is the anisotropic conductive film of this example, 41
42 is a conductive member that penetrates the insulating member 11 in the thickness direction and has both ends protruding from both sides of the insulating member 41. The insulating member 41 is made of aluminum so as to surround the conductive member 42. It has an insulating part 51 formed by anodizing (/l), and a heat transfer surface part 52 arranged at the center of the upper surface of the insulating member 41 and insulated from the conductive member 42. Here, the insulating part 51 is made of alumina (AZ, O3), for example, and the heat transfer surface part 52 is made of the insulating part 51.
Metals with better thermal conductivity, such as gold (Au), copper (C
u), nickel (Ni), or indium (In).

すなわち、絶縁部材41には少なくともその一面側で導
電部材42から離隔する部位に、酸化アルミニウム(A
fzO8)より熱伝導率の高い材料からなる伝熱面部5
2(伝熱層)が設けられており、この伝熱面部52は、
異種材料からなる複数の層、例えば半田からなる上層部
53と、銅からなる下層部54とを積層して形成されて
いる。
That is, the insulating member 41 has aluminum oxide (A
Heat transfer surface portion 5 made of a material with higher thermal conductivity than fzO8)
2 (heat transfer layer) is provided, and this heat transfer surface portion 52 is
It is formed by laminating a plurality of layers made of different materials, for example, an upper layer part 53 made of solder and a lower layer part 54 made of copper.

第6図において、43は半導体素子であるLSIチップ
、44は実装基板であり、LSIチ、プ43は異方性導
電膜40を介して実装基板44上に実装されている。こ
のLSIチップ43は、異方性導電膜40の導電部材4
2に接触する電極45と、伝熱面部52に所定の接触圧
で接触するパフシベーシシン膜46とを有しており、実
装基板44は、導電部材42に接触する導体パターン4
7を有している。また、48は、異方性導電膜40、L
SIチ7プ43及び実装基vi44を一体的に接着する
接着剤である。
In FIG. 6, 43 is an LSI chip which is a semiconductor element, 44 is a mounting board, and the LSI chip 43 is mounted on the mounting board 44 via an anisotropic conductive film 40. This LSI chip 43 has a conductive member 4 of an anisotropic conductive film 40.
The mounting board 44 has an electrode 45 that contacts the conductor pattern 4 that contacts the conductive member 42, and a puffy base film 46 that contacts the heat transfer surface portion 52 with a predetermined contact pressure.
7. Further, 48 is an anisotropic conductive film 40, L
This is an adhesive that integrally bonds the SI chip 43 and the mounting board vi44.

なお、図示はしないが、異方性導電膜40は、次のよう
な工程で製造される。まず、導電性の材料、例えばAI
!板(又は、l箔)を準備し、これを陽極とする酸性溶
液中の電気分解でこのAl基板を陽極酸化し、AI!基
板に、l!、O,からなり多数の微細孔(ボア)を有す
る陽極酸化膜を形成する。
Although not shown, the anisotropic conductive film 40 is manufactured through the following steps. First, conductive materials such as AI
! A plate (or l foil) is prepared, and this Al substrate is anodized by electrolysis in an acidic solution using this as an anode, and AI! On the board, l! , O, and has a large number of micropores (bore).

この陽極酸化処理は、例えば例えば0.4%程度のリン
酸溶液を使用し、条件を温度10〜25°C士ビC1印
加電圧DC100〜250■として10〜120分間行
う処理である。次いで、例えば逆電解剥離法により陽極
酸化膜を下地のANから分離するとともに、この陽極酸
化膜の複数の微細孔を貫通させる。次いで、この陽極酸
化膜の一面側にレジストを塗布し、これを露光・現像に
よりパターニングし陽極酸化膜の一面側を選択的にマス
キングして、前記複数の微細孔を選択的に溶解して拡径
処理すると、絶縁部材41ができあがる。次いで、所定
のパターンを形成した母型に絶縁部材41を密着させ、
電解析出により孔内に導電部材42を形成した後、絶縁
部材41を母型から分離する。次いで、導電部材42と
接触しないようなパターンで伝熱面部52を形成する。
This anodizing treatment is carried out for 10 to 120 minutes using, for example, a 0.4% phosphoric acid solution at a temperature of 10 to 25 DEG C. and an applied voltage of 100 to 250 DEG C. Next, the anodic oxide film is separated from the underlying AN by, for example, a reverse electrolytic peeling method, and a plurality of micropores in the anodic oxide film are penetrated. Next, a resist is applied to one side of this anodic oxide film, and this is patterned by exposure and development to selectively mask one side of the anodic oxide film, and the plurality of micropores are selectively dissolved and enlarged. After the diameter treatment, the insulating member 41 is completed. Next, the insulating member 41 is brought into close contact with the mother mold on which a predetermined pattern is formed,
After forming the conductive member 42 in the hole by electrolytic deposition, the insulating member 41 is separated from the matrix. Next, the heat transfer surface portion 52 is formed in a pattern that does not come into contact with the conductive member 42.

この伝熱面部52を形成する方法としては、例えば所定
形状の開口部を有するステンレス網等のメタルマスクを
用い、銅を1000〜5000人、半田を1000〜5
000人の厚さに蒸着する方法があるゆ次に、製造され
た異方性導電膜40を用いてLSIチ、プ43を実装基
板44に実装する場合、導電部材42をLSIチップ4
3の電極45に接触させるとともに、実装基板44の導
体パターン47に接触させる。
As a method for forming the heat transfer surface portion 52, for example, a metal mask such as a stainless steel mesh having an opening in a predetermined shape is used, copper is applied in 1,000 to 5,000 layers, and solder is applied in 1,000 to 5,000 layers.
Next, when mounting the LSI chip 43 on the mounting board 44 using the manufactured anisotropic conductive film 40, the conductive member 42 is attached to the LSI chip 4.
3 and the conductive pattern 47 of the mounting board 44.

具体的には、例えば接着材48として熱硬化樹脂を用い
、150℃の温度で加熱しつつ加圧接着する。
Specifically, for example, a thermosetting resin is used as the adhesive 48, and the adhesive is bonded under pressure while being heated at a temperature of 150°C.

このとき、半田層である上層部53がLSIチップ43
と密着し、LSIチップ43と絶縁部材41とが熱伝導
性の良い伝熱面部52を介し広い接触面積で接触する。
At this time, the upper layer portion 53, which is a solder layer, is attached to the LSI chip 43.
The LSI chip 43 and the insulating member 41 are in close contact with each other over a wide contact area via the heat transfer surface portion 52 having good thermal conductivity.

したがって、LSIチップ43から発生する熱が効率良
く放熱できるようになる。なお、前記伝熱面部52に設
ける半田は、加熱時に過度の流動性を持たないように融
点が150℃程度のものを用いるのが好ましい。
Therefore, the heat generated from the LSI chip 43 can be efficiently radiated. Note that the solder provided on the heat transfer surface portion 52 preferably has a melting point of about 150° C. so as not to have excessive fluidity during heating.

このように、本実施例においては、膜状の絶縁部材41
として樹脂より熱伝導性が良く耐熱・耐湿性に優れたア
ルミの陽極酸化膜、すなわち、アルミナ(Aj!go、
)を使用するとともに、絶縁部材41の少なくとも一面
側で導電部材42から離隔する部位に、アルミナより熱
伝導率の高い金属からなる伝熱面部52を設けている。
In this way, in this embodiment, the film-like insulating member 41
Anodized aluminum film with better thermal conductivity and superior heat and moisture resistance than resin, that is, alumina (Aj!go,
), and a heat transfer surface portion 52 made of a metal having higher thermal conductivity than alumina is provided on at least one side of the insulating member 41 at a portion separated from the conductive member 42.

したがって、導電部材42からのジュール熱を絶縁部材
41が良好に伝導させることができるとともに、この熱
とLSIチップ43から発生した熱とを絶縁部材41に
より効率良く実装基板44側に伝えることができ、放熱
性を大幅に向上させることができる。この結果、LSI
チップ43及び異方性導電膜40の温度上昇を防止し、
LSIチップ43の温度分布の均一化による特性安定化
と信頼性向上とを図ることができ、さらに、異方性導電
膜40の導電部における耐電流を向上させることができ
る。すなわち、本実施例においても、熱伝導性が良く熱
劣化等の少ない絶縁部材41(伝熱層を含む)を設ける
ことにより、LSIチップ43を実装基板44に実装す
る際の電気的接続の信頼性を向上させるとともに、その
接続部やLSIチップ43からの熱に対する放熱経路を
確保することかできる。
Therefore, the insulating member 41 can effectively conduct Joule heat from the conductive member 42, and this heat and the heat generated from the LSI chip 43 can be efficiently transmitted to the mounting board 44 side by the insulating member 41. , heat dissipation can be significantly improved. As a result, LSI
Preventing the temperature rise of the chip 43 and the anisotropic conductive film 40,
By making the temperature distribution of the LSI chip 43 uniform, characteristics can be stabilized and reliability can be improved, and furthermore, the withstand current in the conductive portion of the anisotropic conductive film 40 can be improved. That is, in this embodiment as well, by providing the insulating member 41 (including a heat transfer layer) with good thermal conductivity and little thermal deterioration, the reliability of the electrical connection when mounting the LSI chip 43 on the mounting board 44 is improved. In addition to improving the performance, a heat dissipation path for heat from the connection portion and the LSI chip 43 can be secured.

なお、第2実施例においては、伝熱面部52を絶縁部材
41の片面側に設けていたが、第7図に示す第3実施例
のように絶縁部材41の両面側にそれぞれ伝熱面部52
を設けた異方性導電膜60を用い、放熱性をより向上さ
せることができる。
In the second embodiment, the heat transfer surface section 52 was provided on one side of the insulating member 41, but as in the third embodiment shown in FIG.
By using the anisotropic conductive film 60 provided with this, heat dissipation can be further improved.

〔効果〕〔effect〕

請求項1記載の発明によれば、膜状の絶縁部材を、導電
部材を取り囲む絶縁部と該絶縁部より熱伝導率の高い材
料からなる伝熱部とを有するように構成したので、熱伝
導性の良い絶縁部材を設けて電気的接続の信頼性を向上
させるとともに、放熱経路をも確保することができる。
According to the invention as claimed in claim 1, since the film-like insulating member is configured to have an insulating part surrounding the conductive member and a heat transfer part made of a material having higher thermal conductivity than the insulating part, heat conduction is improved. By providing an insulating member with good properties, the reliability of electrical connection can be improved, and a heat dissipation path can also be secured.

請求項2記載の発明によれば、前記絶縁部をアルミニウ
ムの陽極酸化膜により形成するとともに、伝熱部を酸化
アルミニウムより熱伝導率の高い材料から形成している
ので、異方性導電膜の熱伝導性の向上のみならず、膜状
絶縁部材の耐熱性及び耐湿性等を向上させることができ
る。
According to the second aspect of the invention, the insulating part is formed of an anodic oxide film of aluminum, and the heat transfer part is formed of a material having higher thermal conductivity than aluminum oxide, so that the anisotropic conductive film is Not only the thermal conductivity can be improved, but also the heat resistance, moisture resistance, etc. of the film-like insulating member can be improved.

請求項3記載の発明によれば、膜状の絶縁部材の少なく
とも一面側で導電部材から離隔する部位に、該絶縁部材
より熱伝導率の高い材料からなる伝熱層を設けたので、
伝熱層を広い面積で半導体素子に接触させて放熱性を高
めることができる。
According to the invention as set forth in claim 3, a heat transfer layer made of a material having higher thermal conductivity than the insulating member is provided on at least one side of the film-like insulating member at a portion separated from the conductive member.
Heat dissipation can be improved by bringing the heat transfer layer into contact with the semiconductor element over a wide area.

請求項4記載の発明によれば、前記伝熱層を、異種材料
からなる複数の層を積層して形成しているので、伝熱層
と半導体素子の密着性の良い層を上層にしてその密着性
を良くすることができる。
According to the invention set forth in claim 4, the heat transfer layer is formed by laminating a plurality of layers made of different materials, so that the layer with good adhesion between the heat transfer layer and the semiconductor element is placed as an upper layer. Adhesion can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明に係る異方性導電膜の第1実施例を
示す図であり、 第1図はその断面図、 第2図はその異方性導電膜による半導体チップの実装構
造を示す断面図、 第3図はその製造工程の説明図である。 第4〜6図は本発明に係る異方性導電膜の第2実施例を
示す図であり、 第4図はその外観斜視図、 第5図はその断面図、 第6図はその異方性導電膜による半導体チップの実装構
造を示す断面図である。 第7図は本発明に係る異方性導電膜の第3実施例による
半導体チップの実装構造を示す断面図である。 第8図は従来例の異方性導電膜を示すその断面図である
。 10.40.60・・・・・・異方性導電膜、11.4
1・・・・−・膜状絶縁部材、12.42・・・・・・
導電部材、 13.43・・・・・・LSIチップ(半導体素子)、
14.44・・・・・・実装基板、 18・・・・・・放熱部材、 21・・・・・・絶縁部、 22・・・・・・伝熱部、 52・・・・−・伝熱面部(伝熱層)、53・・・・・
・上層部、 54・・・・・・下層部。
1 to 3 are diagrams showing a first embodiment of an anisotropic conductive film according to the present invention, FIG. 1 is a cross-sectional view thereof, and FIG. 2 is a mounting structure of a semiconductor chip using the anisotropic conductive film. FIG. 3 is an explanatory diagram of the manufacturing process. 4 to 6 are diagrams showing a second embodiment of the anisotropic conductive film according to the present invention, FIG. 4 is an external perspective view thereof, FIG. 5 is a sectional view thereof, and FIG. 6 is an anisotropic view thereof. FIG. 2 is a cross-sectional view showing a structure in which a semiconductor chip is mounted using a conductive film. FIG. 7 is a sectional view showing a semiconductor chip mounting structure according to a third embodiment of the anisotropic conductive film according to the present invention. FIG. 8 is a sectional view showing a conventional anisotropic conductive film. 10.40.60... Anisotropic conductive film, 11.4
1...- Membrane insulating member, 12.42...
Conductive member, 13.43... LSI chip (semiconductor element),
14.44... Mounting board, 18... Heat radiation member, 21... Insulating part, 22... Heat transfer part, 52...... Heat transfer surface portion (heat transfer layer), 53...
・Upper layer, 54...lower layer.

Claims (4)

【特許請求の範囲】[Claims] (1)膜状の絶縁部材と、該絶縁部材に両面側で接続部
を露出するよう埋設された導電部材と、を備えた異方性
導電膜において、前記絶縁部材が、導電部材を取り囲む
絶縁部と、該絶縁部より熱伝導率の高い材料からなる伝
熱部と、を有することを特徴とする異方性導電膜。
(1) In an anisotropic conductive film comprising a film-like insulating member and a conductive member embedded in the insulating member so as to expose a connecting portion on both sides, the insulating member is an insulator surrounding the conductive member. 1. An anisotropic conductive film having a heat transfer portion made of a material having a higher thermal conductivity than the insulating portion.
(2)前記絶縁部材が、アルミニウムを陽極酸化するこ
とにより形成された絶縁部と、酸化アルミニウムより熱
伝導率の高い伝熱部とを有することを特徴とする請求項
1記載の異方性導電膜。
(2) The anisotropic conductivity according to claim 1, wherein the insulating member has an insulating part formed by anodizing aluminum and a heat transfer part having a higher thermal conductivity than aluminum oxide. film.
(3)膜状の絶縁部材と、該絶縁部材に両面側で接続部
を露出するよう埋設された導電部材と、を備えた異方性
導電膜において、前記絶縁部材の少なくとも一面側で前
記導電部材から離隔する部位に、該絶縁部材より熱伝導
率の高い材料からなる伝熱層を設けたことを特徴とする
異方性導電膜。
(3) In an anisotropic conductive film comprising a film-like insulating member and a conductive member embedded in the insulating member so as to expose a connecting portion on both sides, the conductive member is disposed on at least one side of the insulating member. An anisotropic conductive film characterized in that a heat transfer layer made of a material having higher thermal conductivity than the insulating member is provided at a portion separated from the member.
(4)前記伝熱層が、異種材料からなる複数の層を積層
して形成されたことを特徴とする請求項3記載の異方性
導電膜。
(4) The anisotropic conductive film according to claim 3, wherein the heat transfer layer is formed by laminating a plurality of layers made of different materials.
JP20431090A 1990-07-31 1990-07-31 Anisotropic conductive film Pending JPH0495312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20431090A JPH0495312A (en) 1990-07-31 1990-07-31 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20431090A JPH0495312A (en) 1990-07-31 1990-07-31 Anisotropic conductive film

Publications (1)

Publication Number Publication Date
JPH0495312A true JPH0495312A (en) 1992-03-27

Family

ID=16488368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20431090A Pending JPH0495312A (en) 1990-07-31 1990-07-31 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JPH0495312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082447A (en) * 2012-09-26 2014-05-08 Fujifilm Corp Multilayer substrate and semiconductor package
JP2014110162A (en) * 2012-12-03 2014-06-12 Fujitsu Ltd Socket and electronic component mounting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082447A (en) * 2012-09-26 2014-05-08 Fujifilm Corp Multilayer substrate and semiconductor package
JP2014110162A (en) * 2012-12-03 2014-06-12 Fujitsu Ltd Socket and electronic component mounting structure

Similar Documents

Publication Publication Date Title
US6201292B1 (en) Resin-sealed semiconductor device, circuit member used therefor
US5081562A (en) Circuit board with high heat dissipations characteristic
JP3154713B2 (en) Anisotropic conductive film and method for manufacturing the same
KR101077378B1 (en) Heat-radiating substrate and manufacturing method thereof
TW560234B (en) Wiring substrate for small electronic component and manufacturing method
US20090314522A1 (en) Printed Circuit Board With Additional Functional Elements, Method of Production and Use
TW201840255A (en) Circuit board structure and method for forming the same
KR100860533B1 (en) Method of fabricating metal pcb
KR101167425B1 (en) Heat-radiating substrate and method for manufacturing the same
JP2011091185A (en) Conductive film, method of manufacturing the same, and semiconductor device and method of manufacturing the same
JPH0487213A (en) Anisotropic conductive film and its manufacture
JP2002118204A (en) Semiconductor device, substrate for mounting semiconductor and method for manufacturing the same
CN103635012A (en) Printed circuit board and method for manufacturing the same
JPH07106509A (en) Multilayer structure semiconductor device
TW200421961A (en) Multi-layer wiring substrate and the manufacturing method thereof
JPH0495312A (en) Anisotropic conductive film
JP2003142829A (en) Multi-layered wiring board and its manufacturing method
JPH1098127A (en) Semiconductor package for surface mounting
JP2004095757A (en) Laminated metal plate wiring board and its manufacturing method
KR101162506B1 (en) Printed circuit board and method for manufacturing the same
JP2989478B2 (en) Hybrid integrated circuit device
JP5318797B2 (en) Mounting substrate and semiconductor device
JP2003282617A (en) Semiconductor device and its manufacturing method
JPH05198901A (en) Printed circuit board and manufacture thereof
JP4402256B2 (en) Manufacturing method of wiring member for mounting semiconductor chip