JPH049464A - Electrode for vapor deposition and method of vapor deposition by using it - Google Patents

Electrode for vapor deposition and method of vapor deposition by using it

Info

Publication number
JPH049464A
JPH049464A JP11499690A JP11499690A JPH049464A JP H049464 A JPH049464 A JP H049464A JP 11499690 A JP11499690 A JP 11499690A JP 11499690 A JP11499690 A JP 11499690A JP H049464 A JPH049464 A JP H049464A
Authority
JP
Japan
Prior art keywords
electrode
electrode material
aggregate
silicon
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11499690A
Other languages
Japanese (ja)
Other versions
JP3067782B2 (en
Inventor
Eduard Pinkhasov
エデュアルド・ピンカーゾフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vapor Technologies Inc
Original Assignee
Vapor Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vapor Technologies Inc filed Critical Vapor Technologies Inc
Priority to JP2114996A priority Critical patent/JP3067782B2/en
Publication of JPH049464A publication Critical patent/JPH049464A/en
Application granted granted Critical
Publication of JP3067782B2 publication Critical patent/JP3067782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To produce an electrode for vapor deposition which prevents the crack and failure by thermal shock by inserting a rod consisting of a highly conductive material of a different kind into an electrode body formed by lightly sintering an electrode material of a coarse grain size so as to integrate both.
CONSTITUTION: The carbon rod 14 which constitutes an electrically conductive element by joining the rod to the electrode body is inserted into a mold 10 made of alumina having an inside volume 11 of a conical shape. The coarse grains 12 and fine grains 13 formed by crushing the monocrystal or polycrystal electrode material are alternately put around this rod. The electrode body consisting of the integral assembly of the coarse grains 12 and the fine grains is obtd. by sintering of a light degree. Arcs are generated between the electrodes 20, 20 consisting of such electrode body and carbon rod 14 in the hermetic chamber 24 and the surface of a substrate 23 is subjected to vapor deposition by the generated vapor. As a result, the electrodes 20, 22 for vapor deposition which is free from the occurrence of the crack and failure by the thermal shock are obtd.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸着に用いる電極、特に、熱衝撃に脆い材料、
特に、モノクリスタル電極材料からなる電極に関するも
のである。発明はまた、上記のような電極を用いる蒸着
法、及びこれら電極を製造する方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to electrodes used for vapor deposition, particularly materials that are fragile to thermal shock,
In particular, it relates to electrodes made of monocrystalline electrode materials. The invention also relates to a vapor deposition method using electrodes as described above, and to a method for manufacturing these electrodes.

〔従来の技術〕[Conventional technology]

以前の特許及び特許申請書で、2つの電極の間に電弧を
発生させて基板の上にアーク蒸着する方法について記述
した。2つの電極のうち少なくとも1つは、基板の上に
析出させる材料に組入れられるシリコンとすることがで
きる。アークは電極の一方を他に近づけて実質的に接触
させることで発生し、ついで電極を離して両者の間にア
ークを形成し、一方の電極の材料を蒸発させ電極にもと
もと元素又は化合物として存在する材料を基板の上に析
出させ又は蒸発の起こる真空の空間内のガス状成分と反
応させ、又は他の電極の材料と反応させ、基板の上に化
合物又は合金の一部として析出させる。
Previous patents and patent applications have described methods for generating an electric arc between two electrodes for arc deposition onto a substrate. At least one of the two electrodes may be silicon incorporated into the material deposited on the substrate. An arc is created by bringing one electrode close together so that they are practically touching the other, and then moving the electrodes apart to form an arc between them, vaporizing the material in one electrode and removing the material originally present in the electrode as an element or compound. The material is deposited on the substrate or reacted with gaseous components in the vacuum space where evaporation occurs, or with other electrode materials, and deposited as part of a compound or alloy on the substrate.

これらの原理によれば、基板の近くでアークを発生させ
る領域は比較的高い真空度に保たれる。
According to these principles, the area where the arc is generated near the substrate is maintained at a relatively high degree of vacuum.

再現性のある条件を得るためアークは制御されアークの
発生は適正な速度で繰返される。
The arc is controlled and arcing is repeated at a suitable rate to obtain reproducible conditions.

シリコンは元素又は化合物として析出させることができ
、また多くの目的の場合、析出させる材料としては高純
度のシリコンを用いることが望ましく又は時には重要で
ある。
Silicon can be deposited as an element or a compound, and for many purposes it is desirable or sometimes important to use high purity silicon as the deposited material.

しかし、この目的のために、即ち元素シリコン又はシリ
コンカーバイド又はシリコン窒化物等の化合物の蒸着の
ために、モノクリスタルのシリコン電極を作る場合、ア
ーク発生に伴う熱衝撃によりこの高度に脆い材料に割れ
及び破損が生しることが分かった。この現象は、他の結
晶質材料、即ちシリコンカーバイド及びシリコン窒化物
の場合にも同様に認められる。
However, when making monocrystalline silicon electrodes for this purpose, i.e. for the deposition of elemental silicon or compounds such as silicon carbide or silicon nitride, the thermal shock associated with arcing causes cracks in this highly brittle material. It was found that damage occurred. This phenomenon is similarly observed in the case of other crystalline materials, namely silicon carbide and silicon nitride.

このプロセスに用いる比較的コストの高いアイテムであ
る電極に劣化が起こることは前に述べたシステムの欠陥
であり、上述のような結晶質材料を電極として選定した
いときは尚更である。
Degradation of the electrodes, which are relatively high cost items used in this process, is a drawback of the previously mentioned systems, especially when crystalline materials such as those mentioned above are desired for the electrodes.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、今回の発明の主目的は、上述の欠点のないアー
ク蒸着プロセス用の改善された電極を提供することであ
る。
The main object of the present invention is therefore to provide an improved electrode for arc evaporation processes that does not have the above-mentioned drawbacks.

今回の発明のもう一つの目的は、アーク蒸着に用いる電
極の改善された製造方法を提供することである。
Another object of the present invention is to provide an improved method of manufacturing electrodes for use in arc evaporation.

本発明の更にもう一つの目的は、本発明の新しい電極の
製造の改善された方法を提供することである。
Yet another object of the invention is to provide an improved method of manufacturing the new electrode of the invention.

この発明は従来の電気的プロセスに用いる電極の製造法
の常識を破る驚くべきものであった。電極を伝導性シャ
ンクに接合された電極材料の軽(焼結したマクロ粒子で
作り、このシャンクにより電流が焼結粒子から成る電極
に流れたとき、上述の問題が解決されるのである。焼結
する粒子は粗く破砕した結晶質の粒子でなければならな
い。この粒子は例えばシリコンであるがシリコンカーバ
イド又はシリコン窒化物でもよく、これらは炭素棒又は
金属棒、即ち本体と電気的に接触する伝導部を形成する
シャンクと接合するか又は空気的接触状態になる。本発
明によれば、電極本体の密度は、固体材料の密度の精々
70%程度としなければならない。
This invention was surprising because it broke the conventional wisdom of manufacturing methods for electrodes used in electrical processes. The above-mentioned problem is solved when the electrode is made of light (sintered) macroparticles of electrode material bonded to a conductive shank, and this shank allows current to flow through the electrode made of sintered particles. The particles must be coarsely crushed crystalline particles, for example silicon but also silicon carbide or silicon nitride, which are carbon rods or metal rods, i.e. conductive parts in electrical contact with the body. According to the invention, the density of the electrode body should be at most 70% of the density of the solid material.

望ましい条件として、本体の形状は作用端からシャンク
の出ている他端に向かって広がっており、アークを形成
したとき本体の作用端にコツプ状のくぼみができて、こ
こに溶融した電極材料のたまりができるようにする。
A desirable condition is that the shape of the main body expands from the working end toward the other end where the shank protrudes, so that when an arc is formed, a concave depression is formed at the working end of the main body, and the molten electrode material is deposited here. Allow accumulation to occur.

固体の結晶質電極で生じた破損問題が、本発明の電極で
は、同じ熱衝撃をうけながら、何故起こらないかについ
て全部の理由は分からないが、軽度の焼結のため粒子間
の溶融による架橋の数に限りがあり、従って架橋は電気
の伝達には充分であるが、作用面からの熱の伝達は少な
くなると考えられる。
The reason why the breakage problem that occurred with the solid crystalline electrode does not occur with the electrode of the present invention even though it is subjected to the same thermal shock is not fully understood, but the slight sintering may cause cross-linking due to interparticle melting. It is believed that there is a limited number of cross-links, and therefore the crosslinks are sufficient for the transfer of electricity, but that the transfer of heat from the working surface is reduced.

電極材料は結晶質のシリコン又はシリコンカーバイド又
はシリコン窒化物が望ましくこれを固体密度の50ない
し60%の密度を持つ多孔質のものとする。粒子の大き
さは大体2から15閣までのものがよい。
The electrode material is preferably crystalline silicon, silicon carbide, or silicon nitride, which is porous and has a density of 50 to 60% of the solid density. The particle size should be approximately 2 to 15 mm.

電極の作り方で有利な方法は、耐火材料、例えばアルミ
ナ、で作った型を用意し、これにグラファイト等の炭素
棒を伝導性シャンクとして中心に置き、そのまわりに結
晶質の電極材料の粒子を、細かい層と粗い層が交互にな
るように入れ、型の中の集合体には機械的圧力はかけず
にそのまま焼結するのである。
An advantageous method for making electrodes is to prepare a mold made of a refractory material, such as alumina, in which a carbon rod such as graphite is placed in the center as a conductive shank, and particles of crystalline electrode material are placed around it. The fine and coarse layers are placed in alternating layers, and the aggregate in the mold is sintered without applying any mechanical pressure.

特に適切と思われるのは、はじめは集合体の温度を約6
00°Cまで40ないし50分かけて徐々に上げ、その
後は毎分25“Cないし50゛Cの加熱速度で1280
℃ないし1400°C1望ましくは約1375℃、の焼
結温度にあげ、焼結温度に約15分保持して、集合体の
密度が余り高くならないように、粒子間の溶融結合即ち
架橋を制限する方法である。
It seems particularly appropriate to initially set the temperature of the aggregate to about 6
00°C gradually over 40 to 50 minutes, then 1280°C at a heating rate of 25"C to 50°C per minute.
Raise the sintering temperature to 1400°C to 1400°C, preferably about 1375°C, and hold at the sintering temperature for about 15 minutes to limit fusion bonding or crosslinking between the particles so that the density of the aggregate does not become too high. It's a method.

この電極は上述したように、また既得の特許に述べたよ
うに、アーク蒸着プロセスに用いることができる。
This electrode can be used in arc deposition processes as described above and in prior patents.

今回の発明の目的、特徴、及び利点は以下の説明によっ
て更に明瞭に理解されるであろう。添付の図面を参照さ
れたい: 第1図は今回の発明に従って行う電極の製造法を示す断
面図であり、 第2図は電極を用いてアーク蒸着プロセスを行うための
装置を示す図解式立面図である。
The objects, features, and advantages of the present invention will be more clearly understood from the following description. Please refer to the accompanying drawings: FIG. 1 is a cross-sectional view illustrating the method of manufacturing an electrode according to the present invention, and FIG. 2 is a schematic elevational view of an apparatus for carrying out an arc deposition process using an electrode. It is a diagram.

第1図には円錐形の内容積11を持つアルミナ製の型1
0が示しである。電極20(第2図参照)はこの中で作
られる。この型1oの中に、電極本体に接合されて電気
伝導性エレメントとなる炭素棒14のまわりにモノクリ
スタル又はポリクリスタルの電極材料を破砕した粗粒工
2及び細粒工3が交互の層として入れられる。!種本体
は既述のように真空オーブン内で型に入れたまま粒子を
焼結することによって作られる。
Figure 1 shows an alumina mold 1 with a conical internal volume 11.
0 is the indication. Electrodes 20 (see FIG. 2) are made therein. In this mold 1o, a coarse-grained material 2 and a fine-grained material 3 made of crushed monocrystalline or polycrystalline electrode material are arranged as alternating layers around a carbon rod 14 that is joined to the electrode body and becomes an electrically conductive element. Can be put in. ! The seed body is made by sintering the particles in a mold in a vacuum oven as described above.

こうして得られた電極2oは粗粒12と細粒13が軽度
の焼結で一体の集合体となった電極本体からなり、同じ
材料の固体のモノクリスタル又はポリクリスタルの電極
よりも遥かに熱衝撃を受けにくいものとなる。
The electrode 2o obtained in this way consists of an electrode body in which coarse grains 12 and fine grains 13 are integrated by slight sintering, and has a much higher thermal shock than solid monocrystalline or polycrystalline electrodes made of the same material. It becomes difficult to accept.

1i橋は第2図に示すようにアーク蒸着プロセスに用い
ることができる。
The 1i bridge can be used in an arc deposition process as shown in FIG.

特に、この電極を、例えば、基板23の上に高純度のシ
リコンを析出させたければシリコンの、又はシリコンカ
ーバイド又はシリコンとシリコンカーバイドの混合物を
析出させるのであればシリコンとシリコンカーバイドの
塊状片の、同様の製造法で作った電極22と並置して用
いることができる。電極20.22はポンプ25が示す
ように、既述の適用例で、及び被覆法の特許で記述した
ような真空レベルにされた密閉室24の中で用いられる
In particular, this electrode may be made of silicon, for example, if high purity silicon is to be deposited on the substrate 23, or of silicon and silicon carbide, if silicon carbide or a mixture of silicon and silicon carbide is to be deposited. It can be used in juxtaposition with an electrode 22 made by a similar manufacturing method. The electrodes 20,22 are used in the applications described above, as shown by the pump 25, and in a closed chamber 24 brought to a vacuum level as described in the coating method patent.

電極22は駆動装置26によって往復運動させられて電
極20と接触したり離れたりし、その間電源27は2つ
の電極を渡って接続され、円錐形電極本体の狭い作用端
の端面のコツプ状のくぼみ29に溶融した電極材料のブ
ール28が形成される。W気の発生とその基板23上へ
の析出については前述の特許及び適用例に詳細に記述さ
れている。特に、アークは電極22を電極20のプール
と断続的に接触させることによって、又は電極22を本
体21と接触させることによって発生させなければなら
ない。更に、アークは繰返しのアークとばしによって弱
められるので、それによって電極本体21にそっての移
動が制御される。これによってアークは常にコツプ状の
部分29に向けて発生され、電極の広い端部又は伝導性
シャンク14に向かうことはない。
The electrode 22 is reciprocated into and out of contact with the electrode 20 by a drive 26, while a power source 27 is connected across the two electrodes and connected to a conical indentation in the end face of the narrow working end of the conical electrode body. A boule 28 of molten electrode material is formed in 29 . The generation of W gas and its precipitation on the substrate 23 are described in detail in the aforementioned patents and application examples. In particular, the arc must be generated by intermittent contact of electrode 22 with a pool of electrodes 20 or by contact of electrode 22 with body 21. Furthermore, the arc is weakened by repeated arc blowing, thereby controlling its movement along the electrode body 21. The arc is thereby always directed towards the tipped portion 29 and not towards the wide end of the electrode or the conductive shank 14.

被覆作業中室24内の真空度は104トール以上に保た
れる([ち、圧力は10〜3トールより高くなることは
ない)、またアークは、30ないし100アンペアの電
流を用い、電圧30ないし150Vでとばされる。
During the coating operation, the vacuum in chamber 24 is maintained above 104 Torr (and the pressure never exceeds 10-3 Torr), and the arc is applied at a voltage of 30 Torr using a current of 30 to 100 Amps. It is blown off at 150V.

豊lじL勇 一般に第1図に示す形状を持ち、内容積250iのアル
ミナ容器に、大体3から13腫のモノクリスタルシリコ
ンの破片を粒度別の層に分けて入れる。炭素電極棒を図
に示すように集合体に挿入する。
In general, about 3 to 13 particles of monocrystalline silicon are placed in layers according to particle size in an alumina container having the shape shown in Fig. 1 and having an internal volume of 250 μm. Insert the carbon electrode rod into the assembly as shown.

この集合体を真空オーブン内で真空度10−′ないし1
0−’トールで焼結するのであるが、はじめは600℃
の温度まで40分かけて温度をあげてゆき、つぎに毎分
50℃で急速に加熱して】375°Cの温度まで上げる
。集合体を1375°Cの焼結温度に15分間保持する
。電極本体は容易にるつぼから取り出すことができ、そ
の密度は固体シリコンの密度の50ないし60%となる
。こうして作った電極本体2ケを、シリコンを基板にア
ーク蒸着させる電極20及び22として用いる。真空室
内の真空度は10−’トールとし、蒸着作業はこのレベ
ル又はこれより良い真空度を維持する。電極本体はシリ
コンで構成され記述の方法で作られる。
This assembly is placed in a vacuum oven at a vacuum degree of 10-' to 1.
It is sintered at 0-'Torr, but initially at 600℃.
The temperature was increased over 40 minutes to a temperature of 375°C, then rapidly heated at 50°C per minute. The assembly is held at a sintering temperature of 1375°C for 15 minutes. The electrode body can be easily removed from the crucible and has a density of 50 to 60% of that of solid silicon. The two electrode bodies thus produced are used as electrodes 20 and 22 for arc-depositing silicon onto a substrate. The vacuum in the vacuum chamber is 10-' Torr, and the deposition operation is maintained at this level or better. The electrode body is composed of silicon and made in the manner described.

基板23は、被覆される面をあらかじめサンドブラスト
で清浄にしたアルミ板である。アークはおよそ毎秒1回
の割合でとばす、基板はアークから約15cmの所に置
き、電流約90アンペア、電圧約90Vでアークを発生
させる。被覆は極めて均一に行われ、シリコンからなる
ものである。
The substrate 23 is an aluminum plate whose surface to be coated has been cleaned by sandblasting in advance. The arc is blown approximately once per second, the substrate is placed approximately 15 cm from the arc, and the arc is generated at a current of approximately 90 amperes and a voltage of approximately 90 volts. The coating is very uniform and consists of silicon.

析出物に加えたい他の材料があれば、これをコツプ状の
くぼみ29に加えることができる。例えば、2本のシリ
コン電極を用いるとき、シリコンカーバイド又は硼素カ
ーバイドをコツプ状くぼみに加え、基板の上にシリコン
カーバイド又は硼素カーバイドを電極材料自体からのシ
リコンと共に蒸発させて析出させることができる。また
、密閉室内を窒素ガス雰囲気とすれば、基板の上に窒化
物の析出を形成することもできる。
If there are other materials that one would like to add to the deposit, they can be added to the pot 29. For example, when using two silicon electrodes, silicon carbide or boron carbide can be added to the pot and deposited on the substrate by evaporating the silicon carbide or boron carbide along with the silicon from the electrode material itself. Further, by creating a nitrogen gas atmosphere in the sealed chamber, nitride precipitation can be formed on the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る電極の製造方法を説明する断面
図、第2図はこの発明に係る電極を用いてアーク蒸着プ
ロセスを行うための装置の説明立面図である。 20.22は電極。 特許出願人 ベイバー・チクノロシーズ・インコーポレ
イテッド
FIG. 1 is a sectional view illustrating a method of manufacturing an electrode according to the present invention, and FIG. 2 is an elevational view illustrating an apparatus for performing an arc evaporation process using the electrode according to the present invention. 20.22 is an electrode. Patent Applicant: Baber Chikunoroses Incorporated

Claims (10)

【特許請求の範囲】[Claims] (1)電極材料の粗粒を軽く焼結したものを主体とする
電極本体と、前記本体の内部まで達して延びる、前記電
極材料とは異なる、高伝導性材料のシャンクから構成さ
れる、アーク蒸着に用いる電極。
(1) An arc consisting of an electrode body mainly made of lightly sintered coarse particles of electrode material, and a shank made of a highly conductive material different from the electrode material and extending to the inside of the body. Electrode used for vapor deposition.
(2)請求項(1)に記載の電極であって、前記電極材
料が結晶質材料であることを特徴とする請求項(1)記
載の電極。
(2) The electrode according to claim (1), wherein the electrode material is a crystalline material.
(3)請求項(1)に記載の電極であって、前記電極材
料がシリコン、シリコンカーバイド、及びシリコン窒化
物からなるグループから選定されたもので形成されてい
ることを特徴とする請求項(1)記載の電極。
(3) The electrode according to claim (1), wherein the electrode material is made of a material selected from the group consisting of silicon, silicon carbide, and silicon nitride. 1) The electrode described.
(4)請求項(1)に記載の電極であって、前記電極は
大体切頭円錐形で一端は狭く他端は広く、前記シャンク
は広い方の端部から突出していることを特徴とする請求
項(1)記載の電極。
4. The electrode of claim 1, wherein the electrode is generally frustoconically shaped, narrow at one end and wide at the other end, and the shank projects from the wider end. The electrode according to claim (1).
(5)請求項(1)に記載の電極であって、前記電極本
体は、固体電極材料の密度の精々70%の密度になるよ
うに焼結形成されていることを特徴とする請求項(1)
記載の電極。
(5) The electrode according to claim (1), wherein the electrode body is sintered and formed to have a density that is at most 70% of the density of the solid electrode material. 1)
Electrode as described.
(6)電極材料の粗片を軽く焼結したものを主体とする
電極本体と、前記本体内部に達してのびる、前記電極材
料とは異なる高伝導性材料のシャンクから構成されるア
ーク蒸着用の電極の製造方法であって、前記方法は:前
記電極材料の破片を焼結に適する集合体の形状に成形し
、前記集合体に伝導性の棒を、前記集合体の前記シャン
クとなるように挿入し、前記集合体と前記棒を真空炉内
で電極材料の破片が一体の集合体となるように軽く焼結
されるに充分な時間焼結する、等のステップからなるこ
とを特徴とする方法。
(6) An electrode body for arc evaporation consisting of an electrode body mainly made of lightly sintered coarse pieces of electrode material, and a shank made of a highly conductive material different from the electrode material, which extends into the body. A method of manufacturing an electrode, said method comprising: forming pieces of said electrode material into a shape of an aggregate suitable for sintering, and placing a conductive rod in said aggregate to serve as said shank of said aggregate. and sintering the assembly and rod in a vacuum furnace for a sufficient period of time to cause the pieces of electrode material to be lightly sintered into an integral assembly. Method.
(7)請求項(6)に記載の方法であって、焼結は前記
真空炉内で前記集合体の温度が瞬時に約600℃の温度
になるように、40ないし50分加熱し、その後前記集
合体の温度を前記電極材料の溶融点以下の焼結温度に大
体毎分25ないし50℃の速度で上昇させることで達成
される方法。
(7) The method according to claim (6), wherein the sintering is performed by heating the aggregate in the vacuum furnace for 40 to 50 minutes so that the temperature of the aggregate instantly reaches about 600°C, and then A method achieved by increasing the temperature of the assembly to a sintering temperature below the melting point of the electrode material at a rate of approximately 25 to 50°C per minute.
(8)請求項(7)に記載の方法であって、前記電極材
料はシリコンで、前記焼結温度は約1375℃で、また
前記集合体は前記焼結温度に約15分間保持される方法
(8) The method of claim (7), wherein the electrode material is silicon, the sintering temperature is about 1375°C, and the aggregate is held at the sintering temperature for about 15 minutes. .
(9)請求項(8)に記載の方法であって、前記集合体
は主として結晶質シリコン、シリコンカーバイド又はシ
リコン窒化物の2ないし15mmの粒径の粒子からなる
もの。
(9) A method according to claim (8), wherein the aggregate consists primarily of particles of crystalline silicon, silicon carbide or silicon nitride with a particle size of 2 to 15 mm.
(10)アーク蒸着の方法であって次の各ステップから
なる方法: まず前記電極材料の破片を焼結可能の集合体の形状に成
形し、伝導性の棒を前記集合体のシャンクを形成するよ
うに挿入し、 次に前記集合体と前記棒を真空炉内で破片が軽く焼結さ
れて一体の集合体の電極本体となるのに充分な時間焼結
し、 密閉室内に前記電極本体を別の電極と、被覆されるべき
基板に関して適切な間隔で、並置し、前記密閉質を10
^−^5トールを下まわらない真空度で真空とし、 前記電極本体と前記別の電極の間に電弧を繰返し発生さ
せて、前記電極材料を蒸発させ前記基体の上に、少なく
とも一部は蒸発した電極材料からなる被覆を、蒸着させ
るアーク蒸着電極を形成する方法。
(10) A method of arc evaporation, comprising the following steps: first forming the pieces of the electrode material into the shape of a sinterable aggregate, and a conductive rod forming the shank of the aggregate; the assembly and rod are then sintered in a vacuum furnace for a sufficient period of time to lightly sinter the pieces into an integral assembly electrode body, and the electrode body is placed in a sealed chamber. juxtaposed with another electrode at an appropriate spacing with respect to the substrate to be coated, and the sealant was
A vacuum is created with a degree of vacuum not less than 5 Torr, and an electric arc is repeatedly generated between the electrode body and the other electrode to evaporate the electrode material and at least partially evaporate onto the substrate. A method of forming an arc-deposited electrode by depositing a coating of electrode material.
JP2114996A 1990-04-27 1990-04-27 Electrode for vapor deposition and vapor deposition method using the same Expired - Fee Related JP3067782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114996A JP3067782B2 (en) 1990-04-27 1990-04-27 Electrode for vapor deposition and vapor deposition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114996A JP3067782B2 (en) 1990-04-27 1990-04-27 Electrode for vapor deposition and vapor deposition method using the same

Publications (2)

Publication Number Publication Date
JPH049464A true JPH049464A (en) 1992-01-14
JP3067782B2 JP3067782B2 (en) 2000-07-24

Family

ID=14651725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114996A Expired - Fee Related JP3067782B2 (en) 1990-04-27 1990-04-27 Electrode for vapor deposition and vapor deposition method using the same

Country Status (1)

Country Link
JP (1) JP3067782B2 (en)

Also Published As

Publication number Publication date
JP3067782B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
US5683606A (en) Ceramic heaters and heating devices using such ceramic heaters
US4505948A (en) Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
US20070172378A1 (en) Tungsten based sintered compact and method for production thereof
CA2556786C (en) Process and apparatus for the manufacture of sputtering targets
CN113122918B (en) TaC coating crucible for third-generation semiconductor crystal growth and preparation method
WO2001042163A2 (en) High-purity low-resistivity electrostatic chucks
CA1240482A (en) Silicon melting and evaporation method and apparatus for high purity applications
US4978556A (en) Electrode for vapor deposition and vapor-deposition method using same
EP1209137B1 (en) Method for preparing eutectic ceramics
US3325393A (en) Electrical discharge cleaning and coating process
US4924135A (en) Electrode for vapor deposition and vapor-deposition method using same
JP2000277592A (en) Substrate holder
KR100256142B1 (en) Plasma fluorine resistant polycrystalline alumina ceramic material and of making
US4565711A (en) Method of and apparatus for the coating of quartz crucibles with protective layers
JPH049464A (en) Electrode for vapor deposition and method of vapor deposition by using it
CA2528886A1 (en) Production method of metal product, metal product, connection method of metal component and connection structure
US6562418B2 (en) Microwave processing of pressed boron powders for use as cathodes in vacuum arc sources
JP3829935B2 (en) High voltage resistance member
CN116194613A (en) Manufacture and refilling of sputter targets
EP0990630B1 (en) Structural body comprising aluminum nitride and method of producing the same
CA1238295A (en) Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
JP3964530B2 (en) Ceramic heater
JP2001164361A (en) Sputtering target cooling structure
US4569307A (en) Silicon melting and evaporation apparatus for high purity applications
JPS6352084B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees