JPH049443A - Aluminum series bearing alloy - Google Patents

Aluminum series bearing alloy

Info

Publication number
JPH049443A
JPH049443A JP11021190A JP11021190A JPH049443A JP H049443 A JPH049443 A JP H049443A JP 11021190 A JP11021190 A JP 11021190A JP 11021190 A JP11021190 A JP 11021190A JP H049443 A JPH049443 A JP H049443A
Authority
JP
Japan
Prior art keywords
alloy
resistance
weight
bearing
bearing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021190A
Other languages
Japanese (ja)
Other versions
JP3298635B2 (en
Inventor
Shoji Kamiya
荘司 神谷
Akira Yamada
晃 山田
Kenichiro Futamura
憲一朗 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP11021190A priority Critical patent/JP3298635B2/en
Publication of JPH049443A publication Critical patent/JPH049443A/en
Application granted granted Critical
Publication of JP3298635B2 publication Critical patent/JP3298635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain an Al series bearing alloy excellent in seizing resistance and fatigue resistance by specifying the compsn. constituted of Sn, Zr, Cu, Mg, Pb, Bi In and Al. CONSTITUTION:This is an Al series bearing alloy contg., by weight, 2 to 25% Sn, 0.02 to 1.0% Zr, 0.1 to 2.5% of at least one kind of Cu and Mg and 0.1 to 8.0% of one or more kinds among Pb, Bi and In, if required, furthermore contg. 0.01 to 2.0% of one or more kinds among Mn, V, Sb, Nb, Mo, Co, Ti, TiB, Fe and Sr and the balance Al with inevitable impurities. The alloy does not roughen the surface of a shaft having low hardness and is excellent in seizing resistance and fatigue resistance, and by adding hard substance forming elements thereto, its wear resistance can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルミニウム系軸受合金に関するものであり
、特に硬さが伝い軸の表面を粗さず、耐焼付性に優れた
アルミニウム系軸受合金に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an aluminum-based bearing alloy, and particularly an aluminum-based bearing alloy that is hard, does not roughen the shaft surface, and has excellent seizure resistance. It is related to.

(従来の技術) 特開昭53−87917号公報によると、Sn25重量
%以下、(以下、百分率は特に断らない限り重量%であ
る)、CrまたはZrO,1〜1.0%を基本成分とし
て含有し、必要によりさらにCuO15〜2.0%また
はCu0.5〜2.0%とBe0.1〜0.5%を含有
するアルミニウム系軸受合金が提案されている。この合
金は、Al−3n系合金の高温での急激な硬さ低下を防
ぐためにCrまたはZrを添加したことを特徴とすると
説明されているが、相手軸を555C焼入軸とした動荷
重疲労試験により合金の特性を評価した実施例ではZr
添加の例は示されていない。
(Prior art) According to JP-A No. 53-87917, the basic components are 25% by weight or less of Sn (hereinafter, percentages are by weight unless otherwise specified), and 1 to 1.0% of Cr or ZrO. Aluminum-based bearing alloys have been proposed that further contain 15 to 2.0% CuO or 0.5 to 2.0% Cu and 0.1 to 0.5% Be. This alloy is said to be characterized by the addition of Cr or Zr to prevent the rapid hardness reduction at high temperatures of Al-3n alloys, but it is said that the alloy is characterized by the addition of Cr or Zr to prevent the rapid hardness reduction at high temperatures of Al-3n alloys. In the example in which the properties of the alloy were evaluated through tests, Zr
No examples of additions are given.

特公昭60−55582号公報によると、Sn3〜40
%、Pb0.1〜5%、Sb0.1〜3%、Cuおよび
/またはMg0.1〜3.0%、Zrなど3.0%を超
え10.0%までを含有するアルミニウム系軸受合金が
提案されている。この合金の特徴は、Zrなどは硬質物
形成元素として添加し、硬質物を多量に存在させること
によって相手軸に対する耐摩耗性を向上するところにあ
る。
According to Japanese Patent Publication No. 60-55582, Sn3-40
%, Pb0.1-5%, Sb0.1-3%, Cu and/or Mg0.1-3.0%, Zr, etc. Proposed. A feature of this alloy is that Zr and the like are added as hard substance forming elements, and by making a large amount of hard substances exist, the wear resistance against the mating shaft is improved.

さらに、特開昭62−63636号公報によると、S 
n 3〜20%、Pb0.1〜5%、Cuおよび/また
はMg0.2〜2%、Zr0.1〜1%、Si1.5〜
8%を含有するアルミニウム系軸受合金が提案されてい
る。この合金の特徴は、Zrの添加によりアルミニウム
基地を固溶強化しかつ析出物の生成によりSnの粗大化
を防ぎ、また、単体で1000以上のビッカース硬さを
もっSiの添加により耐焼付性および耐摩耗性を高めた
ところにある。従来のアルミニウム系軸受合金では、主
として相手軸が球状黒鉛鋳鉄であるときの耐摩耗性向上
を重視されていた。ところが近年エンジンの振動、騒音
低減の観点から、焼入鋼、炭素鋼を焼入れあるいは焼串
しないで鍛造のまま非調質で使用する検討が行われるよ
うになった。
Furthermore, according to Japanese Patent Application Laid-open No. 62-63636, S
n 3~20%, Pb0.1~5%, Cu and/or Mg0.2~2%, Zr0.1~1%, Si1.5~
An aluminum-based bearing alloy containing 8% has been proposed. The characteristics of this alloy are that the addition of Zr strengthens the aluminum matrix and prevents the coarsening of Sn by forming precipitates, and the addition of Si, which alone has a Vickers hardness of 1000 or more, improves seizure resistance and It has improved wear resistance. In conventional aluminum-based bearing alloys, emphasis has been placed primarily on improving wear resistance when the mating shaft is made of spheroidal graphite cast iron. However, in recent years, from the perspective of reducing engine vibration and noise, studies have begun to consider using quenched steel and carbon steel without quenching or skewering, instead of using them in their forged form without heat treatment.

(発明が解決しようとする課題) ところが、従来のアルミニウム系軸受合金を非調質軸に
対して使用すると軸受が軸の表面を粗してしまい、軸受
が軸に低い荷重で焼付いてしまう問題が現れた。
(Problem to be solved by the invention) However, when a conventional aluminum-based bearing alloy is used for a non-tempered shaft, the surface of the bearing becomes rough, and there is a problem that the bearing seizes on the shaft under a low load. Appeared.

また、近年エンジンが高出力、高速、高温、低燃費かつ
低排ガス化に伴い、通常の焼入鋼軸に対して従来のアル
ミニウム系軸受合金を使用した場合でも高面圧、高温、
高速の使用環境のもとて耐疲労性や耐焼付性が不十分に
なることがあった。
In addition, in recent years, engines have become more powerful, faster, hotter, more fuel efficient, and have lower exhaust emissions.
Under high-speed usage environments, fatigue resistance and seizure resistance were sometimes insufficient.

(課題を解決するための手段) 上記した課題を解決する本発明の第1は、Sn2〜25
重量%、 ZrO,02’〜1.0重量%、 CuおよびMgの少なくとも1種0.1〜2.5重量% Pb、BiおよびInの1種以上0.1〜8.0重量%
、 を含有し、残部が不可避的不純物及びAlからなること
を特徴とするアルミニウム系軸受合金である。
(Means for Solving the Problems) The first aspect of the present invention for solving the above-mentioned problems is Sn2-25
Weight%, ZrO, 02' to 1.0% by weight, 0.1 to 2.5% by weight of at least one of Cu and Mg, 0.1 to 8.0% by weight of one or more of Pb, Bi, and In.
It is an aluminum-based bearing alloy characterized by containing , and the remainder consisting of inevitable impurities and Al.

本発明の第2は、 Sn2〜25重量%、 Zr0.02〜1.0重量%、 CuおよびMgの少なくとも1種0.1〜2.5重量% Pb、BiおよびInの1種以上0.1〜8.0重量%
、 Mn、V、Sb、Nb%Mo、Co、Ti、TiB、F
eおよびSrの1種以上0.01〜2.0重量% を含有し、残部が不可避的不純物及びA1からなること
を特徴とするアルミニウム系軸受合金である。
The second aspect of the present invention is 2 to 25% by weight of Sn, 0.02 to 1.0% by weight of Zr, 0.1 to 2.5% by weight of at least one of Cu and Mg, and 0.1 to 2.5% of at least one of Pb, Bi, and In. 1-8.0% by weight
, Mn, V, Sb, Nb%Mo, Co, Ti, TiB, F
This is an aluminum-based bearing alloy characterized by containing 0.01 to 2.0% by weight of one or more of e and Sr, with the remainder consisting of unavoidable impurities and A1.

以下、本発明の構成を詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

先ず第1発明と第2発明に共通する組成について説明す
る。
First, the composition common to the first invention and the second invention will be explained.

Snは潤滑性向上を主目的として添加される元素である
。Snの含有量が2%未満であると、潤滑性がなく、一
方25%を超えると合金全体が軟質になって耐荷重性、
耐疲労性および耐食性が低下する。好ましいSnの含有
量は3〜20%である。より好ましいSnの含有量は8
〜15%である。
Sn is an element added primarily to improve lubricity. If the Sn content is less than 2%, there will be no lubricity, while if it exceeds 25%, the entire alloy will become soft and the load resistance will deteriorate.
Fatigue resistance and corrosion resistance are reduced. The preferred Sn content is 3 to 20%. More preferable Sn content is 8
~15%.

Pb、Bi、In (以下rpbなど」と総称すること
もある)は一部はアルミニウム基地に分散するが、その
pbなとの分散相の一部はSnに固溶しあるいは共晶合
金を作り、Sn相の親油性や相手軸との凝着性を改善す
る。また、pbなとはそれ自体でなじみ性を高める作用
をもつ。このようにpbなどとSnは作用が類似しまた
pbなとの添加によりSnが安定化するために、pbな
どを添加するとSnの好ましい量を3〜20%のより低
い範囲とすることができ、この結果耐疲労性も向上する
Part of Pb, Bi, and In (hereinafter sometimes collectively referred to as rpb, etc.) is dispersed in the aluminum base, but part of the dispersed phase with Pb is dissolved in Sn or forms a eutectic alloy. , improves the lipophilicity of the Sn phase and the adhesion with the mating shaft. In addition, pbna itself has the effect of increasing familiarity. In this way, PB etc. and Sn have similar effects, and since Sn is stabilized by adding PB etc., the preferable amount of Sn can be set to a lower range of 3 to 20% by adding PB etc. As a result, fatigue resistance is also improved.

pbなとの添加量が0.1%未満では上記の作用がなく
、一方8.0%(2種以上添加の場合は合計量)を超え
ると、pbなどはアルミニウム合金中でAl−Pb−S
n、Al−In−SnAl−Bi−Snは低融点の共晶
組織を作り易く、耐疲労性や耐荷重性が低下するので、
pbなとの添加量は0.1〜8.0%とする必要がある
If the amount of Pb added is less than 0.1%, the above effect will not occur, while if it exceeds 8.0% (total amount if two or more types are added), Pb etc. will cause Al-Pb- in the aluminum alloy. S
n, Al-In-SnAl-Bi-Sn tends to form a eutectic structure with a low melting point, which reduces fatigue resistance and load resistance.
The amount of pb added must be 0.1 to 8.0%.

Zrはアルミニウム基地に固溶することによって、Al
の再結晶温度を上げかつ固溶強化する。
By dissolving Zr in the aluminum base, it becomes Al
Raise the recrystallization temperature and solid solution strengthen.

また、再結晶温度を上げることは軸受がさらされる内燃
機関の高温環境でも安定した機械的性質を維持するのに
効果がある。
Furthermore, increasing the recrystallization temperature is effective in maintaining stable mechanical properties even in the high-temperature environment of an internal combustion engine to which the bearing is exposed.

Zrを添加した本発明合金の特に優れた性質は高温硬さ
が高いことである。これは固溶強化が顕著であるために
基地の高温での硬度低下が少ないこと、および再結晶軟
化温度が高温側にずれることによる。
A particularly excellent property of the Zr-added alloy according to the invention is its high high temperature hardness. This is because solid solution strengthening is significant, so the hardness of the matrix decreases little at high temperatures, and the recrystallization softening temperature shifts to the high temperature side.

ZrのAl中の最大固溶量は平衡状態図から0.28%
程度であると考えられる。一方、平衡状態ではない鋳造
時にはさらに固溶量を増し、過飽和固溶体を作るが、本
発明の含有量範囲でZrの一部は析出する。Zrの析出
物が微細に不分散することは高温硬さの維持に良い影響
を与え、またS n粒子の粗大化やその移動を直接妨げ
、またA1の結晶粒界の移動を阻止し、結晶粒界の移動
に伴うSn粒子の粗大化を間接的に妨げる。したがって
、圧延と焼鈍の繰り返しによって微細化されたSn粒子
を軸受使用中に微細に保つことができる。また、Sn粒
子が微細なまま保持されてアルミニウム基地中に存在す
ることは232℃という低融点をもつSn粒子が高温で
溶は出すと言う溶出現象を防止するためにも効果的であ
る。
The maximum solid solution amount of Zr in Al is 0.28% from the equilibrium phase diagram.
It is considered that the On the other hand, when casting is not in an equilibrium state, the amount of solid solution is further increased to form a supersaturated solid solution, but a part of Zr precipitates within the content range of the present invention. The fine dispersion of Zr precipitates has a positive effect on maintaining high-temperature hardness, directly prevents the coarsening and movement of Sn particles, and also prevents the movement of grain boundaries of A1, resulting in crystal growth. This indirectly prevents Sn particles from becoming coarser due to movement of grain boundaries. Therefore, the Sn particles made fine by repeated rolling and annealing can be kept fine during use of the bearing. Furthermore, keeping the Sn particles as fine as they are in the aluminum matrix is effective in preventing the elution phenomenon in which Sn particles, which have a low melting point of 232° C., melt out at high temperatures.

Zrの添加量が0.02%未満であると上記した作用が
発現せず、1.0%を超えるとAl−Zrの金属間化合
物が多量かつ粗大に析出し、合金が硬くかつ脆(なり軸
受の本質的性能が失われてしまいかつ、軸受が非調質軸
を著しく疵付ける。好ましいZrの添加量は0.05〜
0.3%である。
If the amount of Zr added is less than 0.02%, the above effects will not occur, and if it exceeds 1.0%, a large amount of Al-Zr intermetallic compounds will precipitate coarsely, making the alloy hard and brittle. The essential performance of the bearing will be lost, and the bearing will seriously damage the non-tempered shaft.The preferred amount of Zr added is 0.05~
It is 0.3%.

CuおよびMgは主として高温での高硬度を確保するた
めに、1種または2種添加される。Cuおよび/または
Mgを添加しないAl−Sn−pb金合金、Cuおよび
/またはMgを添加したAl−Sn−Pb合金についZ
rの作用を比較すると、後者の方がZrの作用が量的に
顕著であることが認められる。したがって、α−A1相
中にCuおよびMgを溶質原子として存在させることは
Zrの上記作用を高める面からも有利である。
One or two types of Cu and Mg are added mainly to ensure high hardness at high temperatures. Z for Al-Sn-Pb gold alloys without the addition of Cu and/or Mg, and Al-Sn-Pb alloys with the addition of Cu and/or Mg.
Comparing the effect of r, it is recognized that the effect of Zr is quantitatively more significant in the latter case. Therefore, the presence of Cu and Mg as solute atoms in the α-A1 phase is advantageous in terms of enhancing the above-mentioned effect of Zr.

本発明の第2の軸受台金は上記した組成にさらに、Mn
、V、Sb、Nb%Mo、Co%Ti、TiB、Feお
よびSrの1種以上を0.01〜2.0%含有すること
を特徴とする。これらの元素は硬質物を発生させ、耐摩
耗性を向上するが、2.0%を超えると軸受が相手材を
疵つける傾向が現れるので2.0%以下に制限して添加
しなければならない、また添加量が0,01%未満では
効果がない。
The second bearing base metal of the present invention further includes Mn in addition to the above-described composition.
, V, Sb, Nb%Mo, Co%Ti, TiB, Fe, and Sr in an amount of 0.01 to 2.0%. These elements generate hard substances and improve wear resistance, but if they exceed 2.0%, the bearing tends to scratch the mating material, so the addition must be limited to 2.0% or less. Also, if the amount added is less than 0.01%, there is no effect.

本発明の軸受け、鋳造、冷間圧延、中間焼鈍、裏金への
圧接等の工程により製造される。圧延品が著しく加工硬
化しているときは必要により最終焼鈍を行ってもよい。
The bearing of the present invention is manufactured by processes such as casting, cold rolling, intermediate annealing, and pressure welding to a backing metal. If the rolled product is significantly work hardened, final annealing may be performed if necessary.

中間焼鈍および最終焼鈍の温度は220〜520℃の範
囲内であることが好ましい。温度が220℃未満である
とAl−Cu、Al−Mgの時効析出は起こるがAl−
Cu、Al −Mgの析出は本発明の特性達成のために
本質的ではなく、また圧延過程における加工硬化かを取
り除くために220’C以上の温度が好ましい。さらに
Zrの過飽和固溶部分を微細析出させるには300〜5
20℃が好ましい。焼鈍温度が520℃を超えると、A
l−Cu−X系の多元共晶温度に近付き、Sn以外にA
lの液相が表れ、合金の強度が低下しさらにSn相が粗
大化するので、520℃以下の焼鈍温度が好ましい。
The temperature of intermediate annealing and final annealing is preferably within the range of 220 to 520°C. If the temperature is below 220°C, aging precipitation of Al-Cu and Al-Mg will occur, but Al-
Precipitation of Cu, Al-Mg is not essential for achieving the characteristics of the present invention, and a temperature of 220'C or higher is preferred to eliminate work hardening during the rolling process. Furthermore, in order to finely precipitate the supersaturated solid solution part of Zr, 300 to 5
20°C is preferred. When the annealing temperature exceeds 520°C, A
It approaches the multi-component eutectic temperature of the l-Cu-X system, and in addition to Sn, A
The annealing temperature is preferably 520° C. or lower because the liquid phase of L appears, the strength of the alloy decreases, and the Sn phase becomes coarser.

本発明の軸受の相手軸は焼入鋼材、調質鋼材(鋳鉄は含
まない、以下同じ)軸あるいは非調質鋼材である。鋼材
としては炭素鋼が一般に使用される。Vなどの硬化元素
を微量添加した炭素鋼の非調質鋼が軸として使用される
場合にも本発明の軸受が使用される。m材の炭素量は一
般に0.4〜0,65%の中炭素含有量である0本発明
の軸受の相手材としては鋳鉄は使用されない。また「非
調質Jとは圧延あるいは鍛造のままと言う意味であり、
硬さでは特にHv= 180〜330の状態を指してい
る。
The mating shaft of the bearing of the present invention is made of hardened steel, tempered steel (excluding cast iron, the same applies hereinafter), or non-tempered steel. Carbon steel is generally used as the steel material. The bearing of the present invention can also be used when a non-heat treated carbon steel to which a small amount of a hardening element such as V is added is used as the shaft. The carbon content of the m material is generally a medium carbon content of 0.4 to 0.65%. Cast iron is not used as a mating material for the bearing of the present invention. Also, ``Non-tempered J'' means that it is as rolled or forged,
In particular, hardness refers to Hv=180 to 330.

(作用) 実施例で説明する試験方法により下記の4種類の合金の
特性を評価した。
(Function) The characteristics of the following four types of alloys were evaluated by the test method described in the examples.

本発明   A fi −13%Sn−2%Pb−1%
Cu−0,2%Zr比較例■  A n −13%Sn
   −1%Cu−0,2%Zr比較例■  A A 
−13%Sn−2%Pb−1%Cu−0,2%Cr比較
例■  A I2−13%Sn−2%Pb−1%Cu−
0,2%Zr−3%Si各材料は鋳造により製造したス
トリップを6回圧延し、最終板厚が1mmの板に加工し
た。圧延の途中で220〜520℃で中間焼鈍を行った
。得られた板をNiめっきされた裏金鋼板(SPCC)
に圧接してバイメタルを作り、これを試験片形状に加工
した。試験結果は以下のとおりでありた。
This invention A fi -13%Sn-2%Pb-1%
Cu-0,2%Zr comparative example ■ A n -13%Sn
-1%Cu-0,2%Zr comparative example■ A A
-13%Sn-2%Pb-1%Cu-0,2%Cr Comparative example■ A I2-13%Sn-2%Pb-1%Cu-
Each of the 0.2% Zr-3% Si materials was produced by casting a strip and rolling it six times to form a plate with a final thickness of 1 mm. Intermediate annealing was performed at 220 to 520°C during rolling. The obtained plate is made of Ni-plated backing steel plate (SPCC).
A bimetal was created by pressure welding, and this was processed into the shape of a test piece. The test results were as follows.

本発明 比較例■ 比較例■ 焼付面圧(kg/emz) FCD70  550C−1(550C−R疲労面圧 
高温 」h凶15」肚 700  19.8 680  20.4 680  18.5 この結果の比較より各成分の作用が分かる。
Comparative example of the present invention ■ Comparative example ■ Seizure surface pressure (kg/emz) FCD70 550C-1 (550C-R fatigue surface pressure
High temperature "h15" 700 19.8 680 20.4 680 18.5 Comparison of these results reveals the effects of each component.

まず、相手軸が球状黒鉛鋳鉄(FC:D)であると、S
iを含有させることによりすぐれた特性が得られる(比
較例■)。
First, if the mating shaft is made of spheroidal graphite cast iron (FC:D), S
By containing i, excellent properties can be obtained (Comparative Example ■).

次に、焼入鋼(S50C−I1硬さHv=600)や圧
延のままの鋼(550C−R) 、硬さHv=230)
が相手軸であると、Siは特性を却って低下させている
(比較例■または比較例■と比較例■の対比)。
Next, hardened steel (S50C-I1 hardness Hv = 600) and as-rolled steel (550C-R), hardness Hv = 230)
is the other axis, Si actually deteriorates the characteristics (Comparative Example ■ or Comparison of Comparative Example ■ and Comparative Example ■).

比較例■は本発明の添加成分ではないCrを含有するが
、特開昭53−87917号公報においてCrがZrと
代替可能であると(実施例には基づかない)一般説明が
あるので、CrとZrの作用をデータに基づいて比較す
るために比較例■を示したacrとZrの耐焼付性向上
作用は量的に同じであるが、耐疲労性向上の面ではZr
の作用がCrの作用よりも量的に優れている(比較例■
と本発明との比較)、また、高温硬さもZrの方がCr
よりも優れている。
Comparative example (2) contains Cr, which is not an additive component of the present invention, but since there is a general explanation in JP-A-53-87917 that Cr can be substituted for Zr (not based on the examples), Cr In order to compare the effects of acr and Zr on the basis of data, Comparative Example
The effect of is quantitatively superior to that of Cr (Comparative example ■
and the present invention), and the high temperature hardness of Zr is also higher than that of Cr.
better than.

CrはZrよりも再結晶を遅らせる効果が少ない。第1
図は「本発明」材と比較例■の材料の60%冷間圧延後
の再結晶軟化を示し、横軸は加熱温度(℃)、縦軸は室
温へ冷却後測定した硬さ(Hv)をである0本発明の材
料は360℃から再結晶軟化が始まり、比較例材は30
0℃から軟化が始まっていること分かる。
Cr is less effective than Zr in delaying recrystallization. 1st
The figure shows the recrystallization softening after 60% cold rolling of the "invention" material and the comparative example ■ material, the horizontal axis is the heating temperature (℃), and the vertical axis is the hardness measured after cooling to room temperature (Hv). The material of the present invention starts recrystallization softening at 360°C, and the comparative example material starts to soften at 360°C.
It can be seen that softening begins at 0°C.

pbは耐焼付性を向上させる(比較例■と本発明の比較
)。pbの添加により高温硬さは若干低下するが、特性
は優れている。これはSnが潤滑油との親油性が改善さ
れるためであると考えられろ。
PB improves the seizure resistance (comparison between Comparative Example 3 and the present invention). Although the high temperature hardness slightly decreases due to the addition of PB, the properties are excellent. This is thought to be due to the improved lipophilicity of Sn with lubricating oil.

以下、実施例によりさらに詳しく本発明を説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 表1の組成の合金を溶解し、前述の方法でバイメタル状
の軸受とし、以下の条件で試験を行った。
(Example) An alloy having the composition shown in Table 1 was melted, a bimetallic bearing was prepared by the method described above, and a test was conducted under the following conditions.

焼付試験 (1)ジャーナル型焼付き試験機 (2)回転数−1500rpm (3)荷重増加法−50Kg/c+o”を30分毎に増
加(焼付いた時の面圧測定) (4)潤滑油−5AE10W30 (51k油温度−140℃ (6)相手軸−350C鍛造のまま(硬度Hv=230
) 疲労試験 (1)往復動荷重試験機 (2)回転数−3000rp+m (3)荷重 −107回で疲労する面圧を測定潤滑油−
5AE10W30 給油温度− 140℃ (以下、 余白) (発明の効果) 以上説明したように、本発明請求項1記載の軸受台金は
特開昭53−87918号(Cr添加)のものに比較し
て耐疲労性が優れ、また特開昭62−63636号(S
i含有)に比較して耐焼付性および耐疲労性に優れてい
る。
Seizure test (1) Journal type seizure tester (2) Rotation speed - 1500 rpm (3) Load increase method - Increase 50Kg/c+o'' every 30 minutes (measurement of surface pressure at the time of seizure) (4) Lubricating oil - 5AE10W30 (51k oil temperature -140℃ (6) Mating shaft - 350C as forged (hardness Hv = 230
) Fatigue test (1) Reciprocating load testing machine (2) Rotation speed - 3000 rpm + m (3) Load - Measure the surface pressure that causes fatigue at 107 times Lubricating oil -
5AE10W30 Oil supply temperature - 140°C (hereinafter referred to as margin) (Effects of the invention) As explained above, the bearing base metal according to claim 1 of the present invention has a lower temperature than that of JP-A-53-87918 (Cr addition). It has excellent fatigue resistance and is
It has superior seizure resistance and fatigue resistance compared to (containing i).

さらに、必要により請求項2記載のように硬質物形成元
素を添加して耐摩耗性を向上させることができる。
Furthermore, if necessary, a hard substance forming element can be added as described in claim 2 to improve the wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZr(本発明材)とCr(比較材■)添加によ
る再結晶軟化に及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the influence of addition of Zr (invention material) and Cr (comparative material 2) on recrystallization softening.

Claims (2)

【特許請求の範囲】[Claims] 1.Sn2〜25重量%、 Zr0.02〜1.0重量%、 CuおよびMgの少なくとも1種0.1〜2.5重量%
、 Pb、BiおよびInの1種以上0.1〜8.0重量%
、 を含有し、残部が不可避的不純物及びAlからなること
を特徴とするアルミニウム系軸受合金。
1. 2-25% by weight of Sn, 0.02-1.0% by weight of Zr, 0.1-2.5% by weight of at least one of Cu and Mg.
, 0.1 to 8.0% by weight of one or more of Pb, Bi and In
An aluminum-based bearing alloy comprising: , and the remainder consisting of inevitable impurities and Al.
2.Sn2〜25重量%、 Zr0.02〜1.0重量%、 CuおよびMgの少なくとも1種0.1〜2.5重量%
、 Pb、BiおよびInの1種以上0.1〜8.0重量%
、 Mn、V、Sb、Nb、Mo、Co、 Ti、TiB、FeおよびSrの1種以上0.01〜2
.0重量%、 を含有し、残部が不可避的不純物及びAlからなること
を特徴とするアルミニウム系軸受合金。
2. 2-25% by weight of Sn, 0.02-1.0% by weight of Zr, 0.1-2.5% by weight of at least one of Cu and Mg.
, 0.1 to 8.0% by weight of one or more of Pb, Bi and In
, Mn, V, Sb, Nb, Mo, Co, Ti, TiB, Fe and Sr 0.01 to 2
.. 0% by weight, and the remainder consists of inevitable impurities and Al.
JP11021190A 1990-04-27 1990-04-27 Aluminum bearing alloy Expired - Fee Related JP3298635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11021190A JP3298635B2 (en) 1990-04-27 1990-04-27 Aluminum bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11021190A JP3298635B2 (en) 1990-04-27 1990-04-27 Aluminum bearing alloy

Publications (2)

Publication Number Publication Date
JPH049443A true JPH049443A (en) 1992-01-14
JP3298635B2 JP3298635B2 (en) 2002-07-02

Family

ID=14529878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11021190A Expired - Fee Related JP3298635B2 (en) 1990-04-27 1990-04-27 Aluminum bearing alloy

Country Status (1)

Country Link
JP (1) JP3298635B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017833A3 (en) * 1996-10-18 1998-08-06 Miba Gleitlager Ag Sliding bearing material made from an aluminium alloy which is silicon-free apart from impurities necessitated by steel production
AT405296B (en) * 1995-12-20 1999-06-25 Miba Gleitlager Ag SLIDING BEARING MATERIAL FROM ONE UP TO MELTING-BASED IMPURITIES SILICON-FREE ALUMINUM ALLOY
US6673168B1 (en) * 1998-07-23 2004-01-06 Ks Gleitlager Gmbh Material on an aluminum basis for anti-friction bearings
EP1475449A1 (en) * 2003-03-14 2004-11-10 Miba Gleitlager GmbH Wrought aluminium alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405296B (en) * 1995-12-20 1999-06-25 Miba Gleitlager Ag SLIDING BEARING MATERIAL FROM ONE UP TO MELTING-BASED IMPURITIES SILICON-FREE ALUMINUM ALLOY
WO1998017833A3 (en) * 1996-10-18 1998-08-06 Miba Gleitlager Ag Sliding bearing material made from an aluminium alloy which is silicon-free apart from impurities necessitated by steel production
US6673168B1 (en) * 1998-07-23 2004-01-06 Ks Gleitlager Gmbh Material on an aluminum basis for anti-friction bearings
EP1475449A1 (en) * 2003-03-14 2004-11-10 Miba Gleitlager GmbH Wrought aluminium alloy

Also Published As

Publication number Publication date
JP3298635B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
KR100505928B1 (en) Aluminum Bearing Alloy
US4375499A (en) Aluminum-tin base bearing alloy and composite
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
EP0371760B1 (en) High strength high chromium cast iron and valve rocker arm made thereof
JP3185219B2 (en) Aluminum bearing alloy
JPH06104874B2 (en) Aluminum alloy bearing for low rigidity housing and manufacturing method thereof
JP2761181B2 (en) Tin-based white metal bearing alloy with excellent heat and fatigue resistance
JPS6263637A (en) Aluminum bearing alloy
JPH0633175A (en) Aluminum alloy bearing
US6706242B2 (en) Heat resistant Al die cast material
JPH049443A (en) Aluminum series bearing alloy
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JP2000017363A (en) Aluminum alloy for plain bearing and plain bearing
JP2923578B2 (en) Wear resistant aluminum alloy
GB2066846A (en) Aluminum-tin base bearing alloy
JPH0320451B2 (en)
JPH0235020B2 (en) ALLSNNPBKEIJIKUKEGOKIN
GB2067220A (en) Aluminium-tin base bearing alloy
JPS6263638A (en) Aluminum bearing alloy
JP2952006B2 (en) Piston ring material
JPS6263639A (en) Aluminum bearing alloy
JPS61117244A (en) Sliding aluminum alloy
JPH06235038A (en) Al-sn series bearing alloy
US5051316A (en) Overlay alloy or plain bearing
JPS6045700B2 (en) plain bearing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees