JPH0493783A - Imaging device of magnetic field - Google Patents

Imaging device of magnetic field

Info

Publication number
JPH0493783A
JPH0493783A JP20915490A JP20915490A JPH0493783A JP H0493783 A JPH0493783 A JP H0493783A JP 20915490 A JP20915490 A JP 20915490A JP 20915490 A JP20915490 A JP 20915490A JP H0493783 A JPH0493783 A JP H0493783A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic flux
linear conductor
difference
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20915490A
Other languages
Japanese (ja)
Inventor
Yoshio Koshikawa
越川 誉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20915490A priority Critical patent/JPH0493783A/en
Publication of JPH0493783A publication Critical patent/JPH0493783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the detecting resolution of a magnetic flux distribution by disposing a coil of a large height and a coil of a small height in proximity and by computing a difference between the electromagnetic induction voltage thereof. CONSTITUTION:A coil 21 of a large height and a coil 22 of a small height which are vertical to a sectional plane (plane of measurement) to be imaged are disposed in proximity. On the occasion of measurement, first a magnetic field generating source 23 is moved relatively in relation to a linear conductor 20 by a straight advance stage 25, electromagnetic induction voltages generated in the coils 21 nd 22 respectively are amplified by amplifiers 26 and 27, converted into digital values by A/D converters 28 and 29 and read by a computer 30. Then, a difference between the electromagnetic induction voltages of the coils 21 and 22 is computed. With a rotary stage 24 rotated, next, the operation by the stage 25 is conducted again and the difference between the electromagnetic induction voltages of the coils 21 and 22 is read by the computer 30. By applying a computed tomography to a detected voltage, the magnetic flux distribution of the magnetic field generating source is imaged.

Description

【発明の詳細な説明】 〔概要〕 微細形状の磁界発生源の発生する水平磁界の空間分布を
映像化する磁界の映像化装置に関し、線状導体幅よりも
微小な領域の磁束分布も正確に検出することができる磁
界の映像化装置の提供を目的とし、 磁界発生源により発生した磁界領域のある断層面の磁束
分布の映像化装置を、映像化を行う断層面に対して垂直
で高さ方向に平行な2辺を備えた第1の線状導体と、映
像化を行う断層面に対して垂直で高さ方向に平行な2辺
を備え、その一方の辺が第1の線状導体の一方の辺と同
じ高さに隣接して設けられ、他方の辺が第1の線状導体
の他方の辺と異なる高さにある第2の線状導体と、2組
の線状導体に誘起される電磁誘導電圧を検出する電圧検
出手段と、第1と第2の線状導体に発生する電磁誘導電
圧の差分を演算する差分演算手段と、前記磁界発生源と
線状導体を相対的に一定速度で移動させると共に、両者
の相対的な移動方向を変更可能な移動手段と、得られた
検出値にコンピュータ断層映像手法を通用して、前記磁
束分布を一次元映像に変換する映像変換装置とから構成
する。
[Detailed Description of the Invention] [Summary] Regarding a magnetic field imaging device that visualizes the spatial distribution of a horizontal magnetic field generated by a microscopic magnetic field generation source, the magnetic flux distribution in a region smaller than the width of a linear conductor can also be accurately recorded. In order to provide an imaging device that can detect magnetic fields, the imaging device is designed to visualize the magnetic flux distribution of a fault plane in a magnetic field area generated by a magnetic field source, at a height perpendicular to the fault plane to be visualized. A first linear conductor having two sides parallel to the direction, and two sides perpendicular to the tomographic plane to be imaged and parallel to the height direction, one of which is the first linear conductor. a second linear conductor that is provided adjacent to the same height as one side of the first linear conductor and whose other side is at a different height from the other side of the first linear conductor; a voltage detection means for detecting an induced electromagnetic induction voltage; a difference calculation means for calculating a difference between electromagnetic induction voltages generated in the first and second linear conductors; a moving means capable of moving the magnetic flux distribution at a constant speed and changing the relative direction of movement between the two, and an image conversion method that converts the magnetic flux distribution into a one-dimensional image by applying a computer tomographic imaging method to the detected values obtained. It consists of a device.

〔産業上の利用分野〕 本発明は磁界の映像化装置に関し、特に、微細形状の磁
界発生源の発生する水平方向の磁界の空間分布を映像化
する装置に関するものである。
[Industrial Application Field] The present invention relates to a magnetic field imaging device, and more particularly to a device for imaging the spatial distribution of a horizontal magnetic field generated by a microscopic magnetic field generation source.

近年、磁気を使用する装置の数が増大するにつれ、それ
ぞれの装置が発生する磁気が相互に干渉することがある
。このため、各種装置は自己の発生する磁界の自己およ
び他の機器への磁界の影響を考慮して設計されることが
必要となってきている。そこで、磁界発生源、例えば、
磁石、磁気ヘッド、磁気テープ、磁気ディスク、モータ
等の磁界発生源が発生する磁界の空間分布を映像化する
ことにより、磁界発生源の磁化状態を簡単に評価するこ
とを可能とし、各種設計や品質管理を容易にすることが
できる装置が望まれている。また、近年、各種磁気使用
装置の小型化により、特に微細形状の磁界発生源の発生
する磁界の空間分布を映像化する装置が望まれている。
In recent years, as the number of devices that use magnetism has increased, the magnetism generated by each device may interfere with each other. For this reason, it has become necessary for various devices to be designed in consideration of the influence of the magnetic field generated by the device itself and on other devices. Therefore, magnetic field sources, e.g.
By visualizing the spatial distribution of the magnetic field generated by magnetic field sources such as magnets, magnetic heads, magnetic tapes, magnetic disks, and motors, it is possible to easily evaluate the magnetization state of the magnetic field sources, which can be used to improve various designs and A device that can facilitate quality control is desired. Furthermore, in recent years, with the miniaturization of various magnetic devices, there has been a demand for a device that visualizes the spatial distribution of a magnetic field generated by a particularly minute magnetic field generating source.

〔従来の技術〕[Conventional technology]

一般に、第4図に示すように、長さ!、高さhの矩形状
の線状導体91が磁束密度B (Wb/mz〕の中にあ
り、磁束密度Bに対して垂直方向の線状導体91の面を
一定速度VsでX方向に移動させると、この線状導体9
1には電磁誘導の法則tこ従って次式に示すような電圧
■が生じる。
In general, as shown in Figure 4, the length! , a rectangular linear conductor 91 with a height h is in a magnetic flux density B (Wb/mz), and the surface of the linear conductor 91 perpendicular to the magnetic flux density B is moved in the X direction at a constant speed Vs. This linear conductor 9
According to the law of electromagnetic induction t, a voltage 2 as shown in the following equation is generated.

V=−dΦ/dt  ・・・ ■ このとき、Φは線状導体91に鎖交する磁束であるから
、磁束密度Bを線状導体91の面内で面積骨した値にな
る。よって、線状導体91を貫く磁束Φは次式のように
表すことができる。
V=-dΦ/dt... ■ At this time, since Φ is the magnetic flux interlinking with the linear conductor 91, it becomes the value obtained by multiplying the magnetic flux density B by the area within the plane of the linear conductor 91. Therefore, the magnetic flux Φ penetrating the linear conductor 91 can be expressed as in the following equation.

Φ=hSBdffi  ・・・ ■ ここで、線状導体91の移動速度Vs=dx/dtであ
ることに注意して、■弐に0式を代入すると0式は次の
ように変形することができる。
Φ=hSBdffi... ■Here, by paying attention to the fact that the moving speed of the linear conductor 91 is Vs=dx/dt, and substituting the 0 formula into 2, the 0 formula can be transformed as follows. .

V−−hVsd/dx  5Bdl  −■ところで、
コンピュータ断層映像手法(C7手法)とは、1断面内
において多方向に収集した任意に物理量分布の線積分値
群(投影データ)から、その断面内の物理量分布を計算
により断層像として再構成する手法である。
V--hVsd/dx 5Bdl -■By the way,
The computerized tomographic imaging method (C7 method) reconstructs a tomographic image by calculating the distribution of physical quantities within a cross section from a group of line integral values (projection data) of the distribution of physical quantities arbitrarily collected in multiple directions within one cross section. It is a method.

磁束密度Bに対して垂直方向に面を持つ線状導体91を
測定面内で定速で移動させた時のこの線状導体91に生
じる電圧は、0式から磁束密度Bの線積分の形になって
いることが分かる。そこで、線状導体91の移動に伴っ
て測定される電圧■は導体91の通過した面内における
磁束分布の投影データと考えることができる。一方、こ
の投影データを各方向から収集してC7手法を運用する
場合には、磁束密度Bと線状導体91とのなす角度θを
考慮しなければならない。そこで、水平方向の磁束密度
Bがある面をx−y平面とし、磁束密度Bと線状導体9
1とのなす角度θとした時に線状導体91に鎖交する磁
束密度のX成分Bxと、y成分nyに関する投影データ
は次式のようになる。
When a linear conductor 91 with a surface perpendicular to the magnetic flux density B is moved at a constant speed within the measurement plane, the voltage generated in the linear conductor 91 is expressed by the form of the line integral of the magnetic flux density B from equation 0. You can see that it is. Therefore, the voltage (2) measured as the linear conductor 91 moves can be considered to be projection data of the magnetic flux distribution within the plane through which the conductor 91 passes. On the other hand, when collecting this projection data from each direction and applying the C7 method, the angle θ between the magnetic flux density B and the linear conductor 91 must be considered. Therefore, let the plane where the horizontal magnetic flux density B is located be the x-y plane, and the magnetic flux density B and the linear conductor 9
1, the projection data regarding the X component Bx and the y component ny of the magnetic flux density interlinking with the linear conductor 91 is expressed by the following equation.

j13X(X、y)dl= cosθfBdjl!SB
y (x、  y)dl= sinθJBd7!このよ
うに、さまざまな投影角θにおいて測定される投影デー
タ群にC7手法を適用することによリ、Bx (x、y
)、By (x、y)の再構成が可能になる。
j13X(X,y)dl= cosθfBdjl! S.B.
y (x, y)dl= sinθJBd7! In this way, by applying the C7 method to a group of projection data measured at various projection angles θ, Bx (x, y
), By (x, y) becomes possible.

第5図は、本出願人が従来より提案している水平方向の
磁界分布を測定する磁界の映像化装置の一例を示すもの
であり、以上説明したC7手法を用いたものである。こ
の装置では、映像化を行う断層面(測定面)に垂直に配
置された線状導体(コイル)93と磁界発生源94が相
対運動しくこの例では直進ステージ95により磁界発生
源94が移動)、コイル93に錯交する磁束の変化から
発生する電磁誘導電圧をアンプ97で増幅、A/D変換
器98でディジタル値に変換してコンピュータ99が逐
次読み取るようになっている。磁界発生源94の一方向
の直線運動が終了すると、磁界発生源94は回転ステー
ジ96によって微小角度回転させられ、次いで直線ステ
ージ95により磁界発生源94が移動して同様な電圧検
出が行われる。このような電圧検出は磁界発生源94を
微小角度ずつ回転させて180°もしくは360°の範
囲で行なわれ、検出電圧にC7手法を適用して磁界発生
源94の断層面に水平な磁束分布を映像化するものであ
る。
FIG. 5 shows an example of a magnetic field imaging device for measuring horizontal magnetic field distribution proposed by the applicant of the present invention, which uses the C7 method described above. In this device, a linear conductor (coil) 93 placed perpendicular to the tomographic plane (measurement plane) to be visualized and a magnetic field generation source 94 move relative to each other (in this example, the magnetic field generation source 94 is moved by a linear stage 95). , an electromagnetic induction voltage generated from a change in the magnetic flux intersecting the coil 93 is amplified by an amplifier 97, converted to a digital value by an A/D converter 98, and read out sequentially by a computer 99. When the linear motion of the magnetic field generating source 94 in one direction is completed, the magnetic field generating source 94 is rotated by a small angle by the rotary stage 96, and then the magnetic field generating source 94 is moved by the linear stage 95, and similar voltage detection is performed. Such voltage detection is performed in a range of 180° or 360° by rotating the magnetic field source 94 by minute angles, and by applying the C7 method to the detected voltage, a magnetic flux distribution horizontal to the fault plane of the magnetic field source 94 is detected. It is something that is visualized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来提案の磁界の映像化装置では、電圧検出
時の断層面に水平な方向の分解能はコイル93の高さ方
向の幅で制約されてしまうという問題点がある。すなわ
ち、第6図に簡単なモデルで示すように、点線で示す水
平方向の磁束分布を正確に検出するためには、検出コイ
ル93の高さ (検出幅)hを小さくする必要があるが
、検出コイル93の高さを小さくするにつれて誘導電圧
は小さくなり、雑音成分は変化しないため、検出感度が
下がり、分解能が制限されるという問題がある。
However, the conventionally proposed magnetic field imaging apparatus has a problem in that the resolution in the direction horizontal to the tomographic plane during voltage detection is limited by the width of the coil 93 in the height direction. That is, as shown in the simple model in FIG. 6, in order to accurately detect the horizontal magnetic flux distribution shown by the dotted line, it is necessary to reduce the height (detection width) h of the detection coil 93. As the height of the detection coil 93 is reduced, the induced voltage becomes smaller and the noise component remains unchanged, resulting in a problem of lower detection sensitivity and limited resolution.

本発明の目的は前記従来の磁界の映像化装置における課
題を解消し、コイルの検出感度を下げることなく、水平
方向の磁束分布の検出分解能を向上させることができる
磁界の映像化装置を捷供することにある。
An object of the present invention is to provide a magnetic field imaging device that can solve the problems of the conventional magnetic field imaging device and improve the detection resolution of horizontal magnetic flux distribution without lowering the detection sensitivity of the coil. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成する本発明の磁界の映像化装置の構成が
第1図に示される。
The configuration of a magnetic field imaging apparatus according to the present invention that achieves the above object is shown in FIG.

第1図(a)は磁界発生源1により発生した磁界領域の
ある断層面の磁束分布の映像化を行う本発明の第1の形
態の装置の構成を示している。第1の線状導体2は、映
像化を行う断層面に対して垂直で高さ方向に平行な2辺
2a、 2bを備えており、第2の線状導体3は、映像
化を行う断層面に対して垂直で高さ方向に平行な2辺3
a、 3bを備え、その一方の辺3aが第1の線状導体
2の一方の辺2aと同じ高さに隣接して設けられ、他方
の辺3bが第1の線状導体2の他方の辺2bと異なる高
さにある。電圧検出手段4は、2組の線状導体2,3に
誘起される電磁誘導電圧を検出し、差分演算手段5は、
第1と第2の線状導体2,3に発生する電磁誘導電圧の
差分を演算する。また、移動手段6は、磁界発生源1と
線状導体2,3を相対的に一定速度で移動させると共に
、両者の相対的な移動方向を変更する。そして、映像変
換手段7は、得られた検出値にコンピュータ断層映像手
法を適用して、磁束分布を二次元映像に変換する。
FIG. 1(a) shows the configuration of a device according to a first embodiment of the present invention that visualizes the magnetic flux distribution on a certain cross-sectional plane in a magnetic field region generated by a magnetic field generation source 1. The first linear conductor 2 has two sides 2a and 2b that are perpendicular to the tomographic plane to be visualized and parallel to the height direction, and the second linear conductor 3 has two sides 2a and 2b that are perpendicular to the tomographic plane to be visualized and parallel to the height direction. 2 sides perpendicular to the surface and parallel to the height direction 3
a, 3b, one side 3a of which is provided adjacent to and at the same height as one side 2a of the first linear conductor 2, and the other side 3b of which is adjacent to the other side 2a of the first linear conductor 2. It is at a different height from side 2b. The voltage detection means 4 detects the electromagnetic induction voltage induced in the two sets of linear conductors 2 and 3, and the difference calculation means 5
The difference between the electromagnetic induction voltages generated in the first and second linear conductors 2 and 3 is calculated. Moreover, the moving means 6 moves the magnetic field generation source 1 and the linear conductors 2 and 3 relatively at a constant speed, and changes the relative moving direction of both. Then, the image converting means 7 converts the magnetic flux distribution into a two-dimensional image by applying a computerized tomographic image method to the obtained detected values.

第1図(b)は磁界発生源1により発生した磁界領域の
ある断層面の磁束分布の映像化を行う本発明の第2の形
態の装置の構成を示している。この形態の磁界の映像化
装置が第1の形態と異なる点は、映像変換手段7が、電
圧検出手段4から得られた2組の線状導体2.3に誘起
される電磁誘導電圧の検出値にコンピュータ断層映像手
法を適用して、個々の磁束分布をまず二次元映像に変換
し、次いで差分演算手段5が二次元映像に変換された個
々の磁束分布の差分を演算して、線状導体2,3の重な
らない部分の磁束分布の二次元映像を得ることにある。
FIG. 1(b) shows the configuration of an apparatus according to a second embodiment of the present invention, which visualizes the magnetic flux distribution on a certain tomographic plane in a magnetic field region generated by the magnetic field generation source 1. This form of magnetic field imaging device is different from the first form in that the image conversion means 7 detects electromagnetic induced voltages induced in the two sets of linear conductors 2.3 obtained from the voltage detection means 4. By applying a computerized tomographic imaging method to the values, each magnetic flux distribution is first converted into a two-dimensional image, and then the difference calculation means 5 calculates the difference between the individual magnetic flux distributions converted into two-dimensional images, and a linear The objective is to obtain a two-dimensional image of the magnetic flux distribution in the non-overlapping portion of the conductors 2 and 3.

〔作用〕[Effect]

本発明の磁界の映像化装置によれば、第1の線状導体と
第2の線状導体の重なり合わない部分の磁束分布が、第
1の線状導体の検出値と、第2の線状導体の検出値の差
分として求められる。この結果、2つの線状導体の高さ
の差が実効検出値となるため、線状導体の重なり合わな
い領域の磁束分布が、雑音成分が除かれて分解能良く正
確に検出される。
According to the magnetic field imaging device of the present invention, the magnetic flux distribution in the non-overlapping portion of the first linear conductor and the second linear conductor is determined by the detected value of the first linear conductor and the detected value of the second linear conductor. It is obtained as the difference between the detected values of the shaped conductor. As a result, the difference in height between the two linear conductors becomes the effective detection value, so that the magnetic flux distribution in the non-overlapping region of the linear conductors is accurately detected with good resolution, with noise components removed.

〔実施例〕〔Example〕

以下添付図面を用いて本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第2図は本発明の一実施例の構成を示すものである。図
において20は線状導体であり、この実施例では映像化
を行う断層面(測定面)に垂直で高さの大きいコイル2
1と高さの小さいコイル22とを近接して配置している
。具体的には第3図に示すように、コイル21の高さh
+=10如、コイル22の高さh2−8IImのように
構成し、コイル21とコイル22の上側の辺の磁界発佳
源23からの高さを一致させる。
FIG. 2 shows the configuration of an embodiment of the present invention. In the figure, 20 is a linear conductor, and in this example, the coil 2 is perpendicular to the tomographic plane (measurement plane) on which imaging is performed and has a large height.
1 and a coil 22 having a small height are arranged close to each other. Specifically, as shown in FIG. 3, the height h of the coil 21
+=10, the height of the coil 22 is h2-8IIm, and the heights of the upper sides of the coils 21 and 22 from the magnetic field source 23 are made to match.

この2mのコイル2L 22のそれぞれの端子に発生す
る電圧は、それぞれ対応するアンプ26.27において
増幅し、A/D変換器28.29によってディジタル値
に変換した後にコンピュータ30に入力して、各コイル
21.22における検出値を読み取るようにする。また
、磁界発生源23の下部には回転ステージ24と直進ス
テージ25を設けておき、この実施例では磁界発生源2
3側が線状導体20に対して移動するように構成する。
The voltage generated at each terminal of this 2m long coil 2L 22 is amplified by the corresponding amplifier 26, 27, converted into a digital value by the A/D converter 28, 29, and then input to the computer 30. The detected values at the coils 21 and 22 are read. Further, a rotating stage 24 and a linear stage 25 are provided below the magnetic field generating source 23, and in this embodiment, the magnetic field generating source 23
The third side is configured to move relative to the linear conductor 20.

そして、測定時にはまず回転ステージ24を回転させず
に、直進ステージ25により磁界発生源23を線状導体
20に対して相対移動させ、このときコイル2L 22
にそれぞれ発生する電磁誘導電圧をアンプ26.27で
増幅して、A/D変換器28.29でディジタル値に変
換し、コンピュータ30に逐次読み取らせる。
Then, during measurement, first, without rotating the rotary stage 24, the magnetic field generation source 23 is moved relative to the linear conductor 20 by the linear stage 25, and at this time, the coil 2L 22
The electromagnetic induction voltages generated respectively are amplified by amplifiers 26 and 27, converted into digital values by A/D converters 28 and 29, and read out sequentially by a computer 30.

ここで、コンピュータ30はコイル21.22に発生す
る電磁誘導電圧の差分■を演算する。この差分■の特性
は第3図に示すコイル21とコイル22との高さの差d
の部分のコイルで読み取られた磁界分布に相当する。即
ち、高さd=2茸の高さのコイルで検出した場合と実効
的に同等の磁束分布を得ることができる。
Here, the computer 30 calculates the difference (2) between the electromagnetic induction voltages generated in the coils 21 and 22. The characteristic of this difference ■ is the height difference d between the coil 21 and the coil 22 shown in FIG.
This corresponds to the magnetic field distribution read by the coil in the area. That is, it is possible to obtain a magnetic flux distribution that is effectively equivalent to that detected by a coil having a height of d=2 mushrooms.

なお、各々のコイル21.22の検出電圧の差分演算は
、コンピュータ30に取り込む前に処理しても、また、
コンピュータ30に取り込んでから処理しても構わない
Note that the difference calculation of the detected voltages of the respective coils 21 and 22 may be performed before being input into the computer 30, or
It is also possible to process the data after importing it into the computer 30.

このようにして、直進ステージ25の動作を緋了すると
、回転ステージ24によって磁界発生源23を所定角度
回転させ、直線ステージ25による動作を再び行ってコ
イル21.22にそれぞれ発生する電磁誘導電圧の差分
をコンピュータ30に読み取らせる。
In this way, when the operation of the linear stage 25 is completed, the magnetic field generation source 23 is rotated by a predetermined angle by the rotary stage 24, and the operation by the linear stage 25 is performed again to reduce the electromagnetic induction voltage generated in the coils 21 and 22. The computer 30 is made to read the difference.

以上の説明と同様の検出は、180°もしくは360゜
に渡って行ない、検出電圧にCT (コンピュータ断層
映像)手法を適用して磁界発生源の磁束分布を映像化す
る。
Detection similar to the above description is performed over 180° or 360°, and the magnetic flux distribution of the magnetic field source is visualized by applying a CT (computed tomography) technique to the detection voltage.

以上のようムこして、2つのコイルの高さ21.22が
大きい場合でも、その高さの差d=h、−h2の高さの
小さいコイルを使用したように、磁界の分布状態を分解
能良く、かつ正確に検出することができる。また、両コ
イル2L 22の検出値の差分をとるので、コモンノイ
ズが除去されることになり、S/N比の良い磁界分布が
得られる。
As described above, even if the height 21.22 of the two coils is large, the distribution state of the magnetic field can be resolved as if the height difference d=h, -h2 was used and a coil with a smaller height was used. It can be detected well and accurately. Further, since the difference between the detected values of both coils 2L 22 is taken, common noise is removed, and a magnetic field distribution with a good S/N ratio can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の磁界の映像化装置によれ
ば、コイルの検出感度を下げることなく2つのコイルの
高さの差まで水平方向の磁束分布の検出分解能を向上さ
せることができるという効果がある。
As explained above, according to the magnetic field imaging device of the present invention, it is possible to improve the detection resolution of horizontal magnetic flux distribution up to the difference in height between two coils without reducing the detection sensitivity of the coils. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の磁界の映像化装置の第1の形態
の構成を示す原理図、 第1図(b)は本発明の磁界の映像化装置の第2の形態
の構成を示す原理図、 第2図は本発明の磁界の映像化装置の一実施例の構成を
示す構成図、 第3図は第2図の実施例の線状導体の部分拡大図、 第4図は磁界の映像化の原理を説明する説明図、第5図
は従来の磁界の映像化装置の構成を示す構成図、 第6図は第5図の線状導体の部分拡大図である。 20・・・線状導体、 2L 22・・・コイル、 23・・・磁界発生源、 24・・・回転ステージ、 25・・・直進ステージ、 26、27・・・アンプ、 28、29・・・A/D変換器、 30・・・コンピュータ、
FIG. 1(a) is a principle diagram showing the configuration of the first form of the magnetic field imaging device of the present invention, and FIG. 1(b) is a diagram showing the configuration of the second form of the magnetic field imaging device of the present invention. FIG. 2 is a configuration diagram showing the configuration of an embodiment of the magnetic field imaging device of the present invention, FIG. 3 is a partially enlarged view of the linear conductor of the embodiment of FIG. 2, and FIG. FIG. 5 is a diagram illustrating the principle of imaging a magnetic field. FIG. 5 is a block diagram showing the configuration of a conventional magnetic field imaging device. FIG. 6 is a partially enlarged view of the linear conductor shown in FIG. 5. 20... Linear conductor, 2L 22... Coil, 23... Magnetic field generation source, 24... Rotating stage, 25... Linear stage, 26, 27... Amplifier, 28, 29...・A/D converter, 30...computer,

Claims (1)

【特許請求の範囲】 1、磁界発生源(1)により発生した磁界領域のある断
層面の磁束分布の映像化装置であって、映像化を行う断
層面に対して垂直で高さ方向に平行な2辺(2a、2b
)を備えた第1の線状導体(2)と、映像化を行う断層
面に対して垂直で高さ方向に平行な2辺(3a、3b)
を備え、その一方の辺(3a)が第1の線状導体(2)
の一方の辺(2a)と同じ高さに隣接して設けられ、他
方の辺(3b)が第1の線状導体(2)の他方の辺(2
b)と異なる高さにある第2の線状導体(3)と、 2組の線状導体(2、3)に誘起される電磁誘導電圧を
検出する電圧検出手段(4)と、 第1と第2の線状導体(2、3)に発生する電磁誘導電
圧の差分を演算する差分演算手段(5)と、前記磁界発
生源(1)と線状導体(2、3)を相対的に一定速度で
移動させると共に、両者の相対的な移動方向を変更可能
な移動手段(6)と、 得られた検出値にコンピュータ断層映像手法を適用して
、前記磁束分布を二次元映像に変換する映像変換手段(
7)とを備えることを特徴とする磁界の映像化装置。 2、前記映像変換手段(7)が、前記電圧検出手段(4
)から得られた2組の線状導体(2、3)に誘起される
電磁誘導電圧の検出値に、コンピュータ断層映像手法を
適用して個々の磁束分布を二次元映像に変換し、 前記差分演算手段(5)が二次元映像に変換された個々
の磁束分布の差分を演算して、線状導体(2、3)の重
ならない部分の磁束分布の二次元映像を得ることを特徴
とする請求項1に記載の磁界の映像化装置。
[Claims] 1. A device for imaging the magnetic flux distribution of a tomographic plane in which a magnetic field region is generated by a magnetic field generation source (1), which is perpendicular to the tomographic plane to be visualized and parallel to the height direction. 2 sides (2a, 2b
) and two sides (3a, 3b) perpendicular to the tomographic plane to be imaged and parallel to the height direction.
, one side (3a) of which is the first linear conductor (2)
is provided adjacent to one side (2a) of the first linear conductor (2), and the other side (3b) is adjacent to the other side (2a) of the first linear conductor (2).
a second linear conductor (3) located at a different height from the second linear conductor (3); a voltage detection means (4) for detecting electromagnetic induction voltage induced in the two sets of linear conductors (2, 3); and a difference calculation means (5) for calculating the difference between the electromagnetic induction voltages generated in the second linear conductor (2, 3), and the magnetic field generation source (1) and the linear conductor (2, 3) relative to each other. a moving means (6) capable of moving the magnetic flux distribution at a constant speed and changing the relative movement direction of the two, and applying a computer tomography imaging method to the obtained detected values to convert the magnetic flux distribution into a two-dimensional image. video conversion means (
7) A magnetic field imaging device comprising: 2. The video converting means (7) is connected to the voltage detecting means (4).
) to the detected values of the electromagnetic induction voltage induced in the two sets of linear conductors (2, 3), applying a computerized tomographic imaging method to convert each magnetic flux distribution into a two-dimensional image, and calculating the difference between the two. The calculation means (5) calculates the difference between the individual magnetic flux distributions converted into two-dimensional images to obtain a two-dimensional image of the magnetic flux distribution in non-overlapping parts of the linear conductors (2, 3). The magnetic field imaging device according to claim 1.
JP20915490A 1990-08-09 1990-08-09 Imaging device of magnetic field Pending JPH0493783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20915490A JPH0493783A (en) 1990-08-09 1990-08-09 Imaging device of magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20915490A JPH0493783A (en) 1990-08-09 1990-08-09 Imaging device of magnetic field

Publications (1)

Publication Number Publication Date
JPH0493783A true JPH0493783A (en) 1992-03-26

Family

ID=16568212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20915490A Pending JPH0493783A (en) 1990-08-09 1990-08-09 Imaging device of magnetic field

Country Status (1)

Country Link
JP (1) JPH0493783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125220B2 (en) 2005-12-22 2012-02-28 Koninklijke Philips Electronics N.V. Magnetic induction tomography system and method
EP2544016A4 (en) * 2010-03-01 2015-09-30 Nat Univ Corp Univ Kobe Potential obtaining device, magnetic field microscope, inspection device and method of obtaining potential

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125220B2 (en) 2005-12-22 2012-02-28 Koninklijke Philips Electronics N.V. Magnetic induction tomography system and method
EP2544016A4 (en) * 2010-03-01 2015-09-30 Nat Univ Corp Univ Kobe Potential obtaining device, magnetic field microscope, inspection device and method of obtaining potential

Similar Documents

Publication Publication Date Title
JP4671770B2 (en) Magnetic field measuring device
JP2014023950A (en) System and method of magnetic induction tomography
TWI463161B (en) Distributed analysis device
JPH0984777A (en) Vital magnetic field measuring device
JPH0493783A (en) Imaging device of magnetic field
JPH07104403B2 (en) Magnetic field measuring method and apparatus thereof
KR102179084B1 (en) Method and device for measuring a magnetic field distribution of a magnet along a main surface of said magnet
US9837108B2 (en) Magnetic sensor and a method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
JP7426955B2 (en) Magnetic sensor and inspection equipment
US11946975B2 (en) Magnetic sensor and inspection device
JPH04164274A (en) Visualizing device and visualizing method for magnetic field
JPH0489587A (en) Imaging device for magnetic field
JP2021177164A (en) Magnetic encoder
JPH03199986A (en) Magnetic-field imaging apparatus
JP2022134693A (en) Magnetic sensor and inspection device
JP2564866B2 (en) Magnetic field visualization
JPH03251776A (en) Apparatus for imaging magnetic field
Sasayama et al. Improving estimation accuracy of nasogastric tube tip position using predata
JP3749955B2 (en) Inductive two-dimensional position detector
US20230266410A1 (en) Sensor and inspection device
US20240003998A1 (en) Sensor and inspection device
JPH0498174A (en) Magnetic field imaging device
JPH03222102A (en) Method for measuring displacement of track and device for measuring displacement
US20240003999A1 (en) Sensor and inspection device
JP7482046B2 (en) Magnetic sensor and inspection device