JPH0493782A - Three-dimensional integrating fluxmeter - Google Patents

Three-dimensional integrating fluxmeter

Info

Publication number
JPH0493782A
JPH0493782A JP2212993A JP21299390A JPH0493782A JP H0493782 A JPH0493782 A JP H0493782A JP 2212993 A JP2212993 A JP 2212993A JP 21299390 A JP21299390 A JP 21299390A JP H0493782 A JPH0493782 A JP H0493782A
Authority
JP
Japan
Prior art keywords
axis
magnetic
magnetic field
time
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212993A
Other languages
Japanese (ja)
Inventor
Yasushi Nakabayashi
中林 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2212993A priority Critical patent/JPH0493782A/en
Publication of JPH0493782A publication Critical patent/JPH0493782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To attain reduction of consumption of current, i.e. long lifetime of an incorporated battery, by a method wherein detecting means disposed three-dimensionally are driven in a time-sharing manner for each measuring period. CONSTITUTION:Signals of an X-axis detecting means 1, a Y-axis detecting means 3 and a Z-axis detecting means 5, which are amplified by an X-axis amplifying means 2, a Y-axis amplifying means 4 and a Z-axis amplifying means 6 respectively, are selected by a multiplexer 8 in accordance with a control signal 18 which an operation control means 7 generates from output signals of a timing generation means 12 and a frequency-dividing circuit 11, and converted into digital values by an A/D conversion means 9 in accordance with a control signal 22. Next, and arithmetic means 13 converts electric signals from the conversion means 9 into magnetic field strengths and computes an actual magnetic filed strength from the components of the magnetic field strengths on the axes X, Y and Z. Moreover, the arithmetic means 13 executes computation of the product of the computed magnetic field strength and the time of a measuring period, adds it to the content of an integrated value storage means 14 and stores the result therein again. The content of the storage means 14 and the content of a time counting means 15 counting the entire measuring time from the start of measure ment are displayed in a display device 17 through the intermediary of a display control means 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 非電離放射線というカテゴリで統括される電波や磁界の
生物に与える影響について研究が進められている。本発
明は特に磁界に関して、磁界の方向に関係なく磁界強度
を測定し、磁界強度の積分値を測定する三次元積分磁束
計に関する。
[Detailed Description of the Invention] [Field of Industrial Application] Research is underway on the effects of radio waves and magnetic fields, which are classified under the category of non-ionizing radiation, on living things. In particular, the present invention relates to a three-dimensional integrating magnetometer that measures the magnetic field intensity regardless of the direction of the magnetic field and measures the integral value of the magnetic field intensity.

(従来の技術〕 一般的に、強磁性体から発せられる磁束の測定にはフラ
ックスゲート(飽和鉄芯型)と称される磁束計が使用さ
れてきた。しかし、測定環境における瞬間的な磁束を計
測するだけのものであった。
(Prior art) Generally, a flux meter called a fluxgate (saturated iron core type) has been used to measure the magnetic flux emitted from a ferromagnetic material. It was just for measuring.

磁界は地磁気あるいは永久磁石や!磁石を用いた各種電
気装置などによって身の回りにあまねく存在している。
The magnetic field is earth's magnetism or a permanent magnet! Magnets are ubiquitous around us through various electrical devices that use magnets.

しかし、これらは通常磁界の強さが極めて小さいか、ま
たは磁界が一部の空間に局在しており、環境および人体
に及ぼす影響は少なかった。
However, in these cases, the magnetic field strength is usually extremely small or the magnetic field is localized in a certain area, and the effect on the environment and the human body is small.

しかるに最近、科学技術の発達により強い磁界に直接人
体がさらされる機会が増えてきた。これらの磁界の発生
源としては、希±1!磁石などの強力な磁石、あるいは
超電導磁石である。この磁気力を利用した車両輸送シス
テム、角磁気共鳴吸収測定装置などの機器分析装置、核
磁気共鳴吸収を利用し人間の頭部の細胞などの状態を輪
切りにして観測することのできるNMR−CT、あるい
はLHD等大型核融合実験装置などがあり、使用磁界は
1〜5T(テスラ)にも及び、その周辺での漏れ磁界も
無視できないほど大きい値となっている。
However, recently, due to the development of science and technology, opportunities for the human body to be directly exposed to strong magnetic fields have increased. The sources of these magnetic fields are rare ±1! A strong magnet such as a magnet, or a superconducting magnet. A vehicle transportation system that uses this magnetic force, an analytical device such as an angular magnetic resonance absorption measuring device, and an NMR-CT that uses nuclear magnetic resonance absorption to observe the state of cells in the human head in slices. , or large-scale nuclear fusion experimental devices such as LHD, the magnetic field used is as high as 1 to 5 T (Tesla), and the leakage magnetic field in the vicinity is too large to be ignored.

磁気が環境あるいは人体に与える影響についてはまだ詳
細には究明されていない。しかし、非常に強い磁界は環
境あるいは人体に悪影響を及ぼすであろうとする報告や
、適度の磁界を浴びるのは健康によいという報告がある
。例えば、英国放射線防護委員会の助言として、 静磁場1.57を越えないこと。
The effects of magnetism on the environment or the human body have not yet been investigated in detail. However, there are reports that extremely strong magnetic fields may have a negative effect on the environment or the human body, and that exposure to moderate magnetic fields is good for health. For example, as advised by the British Radiological Protection Board, static magnetic fields should not exceed 1.57.

時間変化磁場: 変化時間10ms以上の場合は20 
SIT/5−rn+s Soを越えないこと。変化時間
10ms未満の場合 は(dB/d t) ” t<4゜ 高周波:全身での吸収率を0.451−・kg 52〜
ISO以下。
Time-varying magnetic field: 20 if the changing time is 10ms or more
Do not exceed SIT/5-rn+s So. If the change time is less than 10 ms, (dB/d t) ” t < 4° High frequency: Absorption rate in the whole body is 0.451-・kg 52 ~
Below ISO.

作業者のM爆: 長期−全身0.02T、手腕0.2T 15分以内−全身0.2T、手腕 2Tゆ とし、また米国食品医薬品層(FDA)の指針として、 静磁場: 身体の全部または一部の被爆は2Tを越えな
い。
M explosion for workers: Long-term: 0.02T for the whole body, 0.2T for the hands and arms; Within 15 minutes - 0.2T for the whole body, 2T for the hands and arms. Also, according to the guidelines of the U.S. Food and Drug Administration (FDA), static magnetic field: whole body or Some exposures do not exceed 2T.

時間変化磁場: 身体の全部または一部の被爆は3 T
 / sを越えない。
Time-varying magnetic field: 3 T for exposure of all or part of the body
Do not exceed /s.

高周波のtm場: 比吸収率は平均で0.4W/kg局
所で2W/瞳を越えない。
High frequency tm field: The specific absorption rate is 0.4 W/kg on average and does not exceed 2 W/pupil locally.

作業者の被爆(米国エネルギー省の暫定試案)=8時間
労働日−全*0.OIT、手0.111時間以下の暴露
:全身0.IT、手lT10分以下の暴ts:全10.
5T、 手2Tとしている。
Workers' exposure to radiation (U.S. Department of Energy's tentative proposal) = 8-hour workday - total *0. OIT, hand 0.111 hours or less exposure: whole body 0. IT, hand IT assault for less than 10 minutes: Total 10.
5T, hand 2T.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる現状においては例えば人体に強い磁界を浴びるの
はなるべく避け、比較的弱い磁界であっても長時間磁界
にさらされるのは避けるというのが賢明と言わざるを得
ない。しかしかかる注意をしても種々の強さの磁界に種
々の条件でさらされる機会は多く、延べで、どれ程の磁
界にさらされたかを知ることは重要であり、特に磁界環
境で仕事に従事する人にとっては是非とも必要なことで
ある。ところが、磁界の強さに応して磁気にさらされた
時間の積算を行う簡便な装置は、いまだ開発されていな
い。
Under the current circumstances, it must be said that it is wise to avoid exposing the human body to strong magnetic fields as much as possible, and to avoid being exposed to magnetic fields for long periods even if the field is relatively weak. However, even if you take such precautions, there are many opportunities to be exposed to magnetic fields of various strengths under various conditions, and it is important to know how much magnetic field you have been exposed to in total, especially if you work in a magnetic field environment. This is absolutely necessary for those who do. However, a simple device that integrates the time of exposure to magnetism according to the strength of the magnetic field has not yet been developed.

したがって、本発明の目的は、簡便な積分磁束計を提供
することにある。
Therefore, an object of the present invention is to provide a simple integrating magnetometer.

【課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明は三次元に配置され
た検出手段を用いて被爆した磁束量の積分値を計数する
携帯型の磁束計において、測定周期のタイミングを決め
るタイミング発生手段と、三次元に配置された検出手段
とそれぞれの検出出力を増幅する増幅手段の動作を制御
する動作制御手段を有する構成とし、消費電流の低減化
を図れるようにした。
In order to solve the above problems, the present invention provides a portable magnetometer that counts the integral value of the amount of magnetic flux exposed using three-dimensionally arranged detection means, including a timing generation means for determining the timing of a measurement cycle; The configuration includes detection means arranged three-dimensionally and operation control means for controlling the operation of amplification means for amplifying the respective detection outputs, thereby reducing current consumption.

〔作用〕[Effect]

上記のように構成された被爆した磁束量の積分値を計数
する携帯型の磁束計においては、測定周期毎に三次元に
配置した検出手段を時分割駆動して消費電流の低減化を
図ることにより、組み込まれた電池での動作時間の長寿
命化が成されることになる。
In the portable magnetometer configured as described above that counts the integral value of the amount of exposed magnetic flux, the detection means arranged three-dimensionally is time-divisionally driven for each measurement period to reduce current consumption. As a result, the operating time of the built-in battery can be extended.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の実施例を示すブロック図である。X
軸に配置された検出手段1の検出信号は、X軸増幅手段
2により増幅される。同様に、Y軸に配置された検出手
段3の検出信号は、Y軸増幅手段4により増幅され、z
軸に配置された検出手段5の検出信号は、Z軸増幅手段
6により増幅される。前記各検出手段1.3.5と前記
各増幅手段2.4.6は、動作制御手段7の制御信号I
9.20.21により制御されている。前記各増幅手段
2.4.6の出力信号は、前記動作制御手段7の制御信
号18に応じてマルチプレクサ8により選択され、前記
動作制御手段7の制御信号22に応して、アナログ値で
ある前記各増幅手段2.4.6の出力信号をデジタル値
にA/D変換手段9により変換される。第2図に前記動
作制御手段7の出力する制御信号18.19.20.2
1.22のタイムチャートを示している。
FIG. 1 is a block diagram showing an embodiment of the present invention. X
The detection signal of the detection means 1 arranged on the axis is amplified by the X-axis amplification means 2. Similarly, the detection signal of the detection means 3 arranged on the Y-axis is amplified by the Y-axis amplification means 4,
The detection signal of the detection means 5 arranged on the axis is amplified by the Z-axis amplification means 6. Each of the detection means 1.3.5 and each amplification means 2.4.6 receives a control signal I of the operation control means 7.
9.20.21. The output signal of each said amplifying means 2.4.6 is selected by a multiplexer 8 depending on the control signal 18 of said operation control means 7 and is an analog value, depending on the control signal 22 of said operation control means 7. The output signals of each of the amplification means 2, 4 and 6 are converted into digital values by the A/D conversion means 9. FIG. 2 shows control signals 18, 19, 20, 2 output from the operation control means 7.
1.22 time chart is shown.

前記動作制御手段7の出力する制御信号は、発振回路1
0の出力信号を分周回路11で分周し、前記分周回路1
1の出力信号から測定周期のタイミングを生成するタイ
ミング発生手段12の出力信号と前記分周回路11の出
力信号とから生成される。
The control signal output from the operation control means 7 is transmitted to the oscillation circuit 1.
The frequency of the output signal of 0 is divided by the frequency dividing circuit 11, and the frequency of the output signal of
It is generated from the output signal of the timing generating means 12 which generates the timing of the measurement period from the output signal of 1 and the output signal of the frequency dividing circuit 11.

演算手段13は、前記A/D変換手段9により検出した
電気信号を磁界強度に変換し、x、y、z軸の磁界強度
成分から実際の磁界強度を演算する。
The calculating means 13 converts the electrical signal detected by the A/D converting means 9 into magnetic field strength, and calculates the actual magnetic field strength from the magnetic field strength components of the x, y, and z axes.

第3図に磁界強度を3軸(X、Y、z軸)に分解した図
を示している。第4図より磁界強度(磁束密度)Bは、 B=、7’  (B x  S22 So  +B Y
  S22 So  +B zS22 SQ )  1
式 1式で表され、この演算を行う。更に演算手段13は、
演算された磁界強度Bと測定周期の時間との積の計算を
行い、積算値記憶手段14の内容に加算して再度格納す
る・、第4図に積算方法の1例を示し、前記積算値記憶
手段14には磁束量であるBhが格納されていて、磁束
量Bhは、 Bh−Σ(磁束強度B*待時間)   2式2式で表せ
る。
FIG. 3 shows a diagram in which the magnetic field strength is broken down into three axes (X, Y, and z axes). From Figure 4, the magnetic field strength (magnetic flux density) B is: B=, 7' (B x S22 So +B Y
S22 So +B zS22 SQ ) 1
This calculation is expressed by Equation 1. Furthermore, the calculation means 13
The product of the calculated magnetic field strength B and the measurement cycle time is calculated, added to the contents of the integrated value storage means 14, and stored again. Fig. 4 shows an example of the integration method, and the integrated value The storage means 14 stores the amount of magnetic flux Bh, and the amount of magnetic flux Bh can be expressed by the following equation: Bh - Σ (magnetic flux strength B*waiting time).

前記積算値記憶手段14の内容及び前記分周回路11の
出力信号を計数する計測開始からの全計測時間を計数す
る時間計数手段15の内容を表示制御手段16を介して
表示装置17に表示する。
The contents of the integrated value storage means 14 and the contents of the time counting means 15 that counts the total measurement time from the start of the measurement counting the output signal of the frequency dividing circuit 11 are displayed on the display device 17 via the display control means 16. .

第5図に検出手段及び増幅手段の本発明における一回路
実施例を示す。検出手段lは、磁気検出素子23と電流
制御用抵抗R1とトランジスタTr1が直列に接続され
て構成される。磁気検出素子23の2本の出力端子は増
幅用の抵抗R2、R3を介してアンプ24に入力します
。前記アンプ24の+側入力端子は、抵抗R4を介して
接地され、−個入力端子は抵抗R5を介して負帰還され
ている。この回路構成により、2本の入力電圧の差をと
り増幅する差動増幅回路と成る。出力電圧V OUTは
、VOUT =R5(V[N1−VIN2 ) /R4
3式3式で表現され、R5/R4が増幅率と成る。トラ
ンジスタTr2は、アンプ24のt′tJ端子と接地の
間に接続される。トランジスタTri 、Tr2のゲー
ト端子は、動作制御手段7の出力する制御信号19によ
り制御され、測定時制御信号19はH”を出力し、ON
状態としてX軸検出手段1とX軸増幅手段2を動作状態
とする。また、前記制御信号19の出力を°L”とする
ことにより非動作状態として、動作電流をカントする。
FIG. 5 shows one circuit embodiment of the detection means and amplification means according to the present invention. The detection means 1 includes a magnetic detection element 23, a current control resistor R1, and a transistor Tr1 connected in series. The two output terminals of the magnetic detection element 23 are input to the amplifier 24 via amplification resistors R2 and R3. The + input terminal of the amplifier 24 is grounded via a resistor R4, and the - input terminals are negatively fed back via a resistor R5. This circuit configuration provides a differential amplifier circuit that takes and amplifies the difference between two input voltages. The output voltage VOUT is VOUT=R5(V[N1-VIN2)/R4
It is expressed by Equation 3 and R5/R4 is the amplification factor. Transistor Tr2 is connected between the t'tJ terminal of amplifier 24 and ground. The gate terminals of the transistors Tri and Tr2 are controlled by the control signal 19 output from the operation control means 7, and the control signal 19 outputs H'' during measurement and is turned ON.
As a state, the X-axis detection means 1 and the X-axis amplification means 2 are brought into operation. Further, by setting the output of the control signal 19 to .degree.L'', the device is brought into a non-operating state and the operating current is canted.

Y軸検出手段3、Y軸増幅段4、Z軸検出手段5、Z軸
増幅手段6も同様の構成である。
The Y-axis detection means 3, the Y-axis amplification stage 4, the Z-axis detection means 5, and the Z-axis amplification means 6 have similar configurations.

次に、第6図に示すマイクロコンピュータにより制御さ
れる本発明の一実施例のブロック図について説明する。
Next, a block diagram of an embodiment of the present invention controlled by a microcomputer shown in FIG. 6 will be described.

第6図に示したように、論理演算手段27を中心にプロ
グラムメモリ (ROM)2B、データメモリ(RAM
)29などでマイクロコンピュータが構成される。論理
演算処理回路27は、ALU、演算用レジスタ、アドレ
ス制御用レジスタ、インストラクションデコーダ等で構
成され、周辺回路とはデータバス及びアドレスバス32
.33で接続される。
As shown in FIG.
) 29 etc. constitute a microcomputer. The logical operation processing circuit 27 is composed of an ALU, an operation register, an address control register, an instruction decoder, etc., and peripheral circuits include a data bus and an address bus 32.
.. Connected at 33.

ROM2Bは、処理手順をインストラクションに置き換
えたソフトウェアを格納するプログラムメモリである。
The ROM 2B is a program memory that stores software in which processing procedures are replaced with instructions.

RAM29は、データメモリであり、各種情報の一時的
格納に用いられる。
The RAM 29 is a data memory and is used for temporarily storing various information.

システムクロンク発生回路25は、発振回路10の出力
を受けて、前記論理演算処理回路27の動作に必要なシ
ステムクロックを生成する。
The system clock generation circuit 25 receives the output of the oscillation circuit 10 and generates a system clock necessary for the operation of the logic operation processing circuit 27.

割込制御回路26は、前記発振回路10の出力を分周す
る分周回路11の出力を受けて、前記論理演算処理回路
27の動作開始の起動信号を生成するとともに割込の内
容は、データバス32を介して読み取られる。
The interrupt control circuit 26 receives the output of the frequency dividing circuit 11 that divides the output of the oscillation circuit 10, and generates an activation signal for starting the operation of the logical operation processing circuit 27. Read via bus 32.

前記分周回路11の出力信号から測定周期のタイミング
を生成するタイミング発生手段12の出力信号と前記分
周回路11の出力信号とから生成され、動作制御手段7
において、前記分周回路11の出力信号とから検出手段
30及び増幅手段31の制御信号を生成する。検出手段
30は、第1図における各X、Y、Z軸検出手段l、3
.5をまとめて総称したものであり、同様に増幅手段3
1は、第1図における各x、y、z軸増幅手段2.4.
6をまとめて総称したものである。
It is generated from the output signal of the timing generating means 12 which generates the timing of the measurement period from the output signal of the frequency dividing circuit 11 and the output signal of the frequency dividing circuit 11.
In this step, control signals for the detection means 30 and the amplification means 31 are generated from the output signal of the frequency dividing circuit 11. The detection means 30 includes the X, Y, and Z axis detection means 1 and 3 in FIG.
.. 5 collectively, and similarly the amplifying means 3
1 represents each x, y, and z axis amplification means 2.4 in FIG.
This is a general term for all 6.

前記増幅手段31の出力は、マルチプレクサ8で選択さ
れ、A/D変換手段9でデジタル信号に変換され前記デ
ータバス32を介して論理演算処理手段に読み込まれる
。表示制御手段16は、前記データバス32を介して供
給される情報を表示装置17に供給する。
The output of the amplification means 31 is selected by the multiplexer 8, converted into a digital signal by the A/D conversion means 9, and read into the logic operation processing means via the data bus 32. The display control means 16 supplies the information supplied via the data bus 32 to the display device 17.

第6図のマイクロコンピュータにより制御される場合の
動作手順を第7図の本発明の動作手順を示すフローチャ
ートにしたがって説明する。
The operating procedure when controlled by the microcomputer shown in FIG. 6 will be explained with reference to the flowchart shown in FIG. 7 showing the operating procedure of the present invention.

割込制御回路26から論理演算処理回路27に対して、
割込が発生すると処理71において動作制御手段7に対
してY軸の駆動を選択すると、第1図における制御信号
19を出力しX軸検出手段1、X軸増幅手段2が駆動す
る。マルチプレクサ8は前記X軸増幅手段2の出力信号
を選択する。処理72で増幅手段の動作が安定するまで
の一定時間のWAITを行い、処理73においてA/D
変換手段9を動作させ、データバス32を介して変換さ
れたデータを論理演算手段に読み込み、−旦RAMに格
納する。処理74において動作制御手段7に対してY軸
の駆動を選択すると、第1図における制御信号20を出
力しY軸検出手段3、Y軸増幅手段4が駆動する。マル
チプレクサ8は前記Y軸増幅手段4の出力信号を選択す
る。処理75で増幅手段の動作が安定するまでの一定時
間のWAITを行い、処理76においてA/D変換手段
9を動作させ、データバス32を介して変換されたデー
タを論理演算手段に読み込み、−旦RAMに格納する。
From the interrupt control circuit 26 to the logical operation processing circuit 27,
When an interrupt occurs, Y-axis drive is selected for the operation control means 7 in process 71, and the control signal 19 shown in FIG. 1 is output, and the X-axis detection means 1 and the X-axis amplification means 2 are driven. A multiplexer 8 selects the output signal of the X-axis amplifying means 2. In process 72, WAIT is performed for a certain period of time until the operation of the amplification means becomes stable, and in process 73, the A/D
The converting means 9 is operated, the converted data is read into the logical operation means via the data bus 32, and then stored in the RAM. When Y-axis drive is selected for the operation control means 7 in process 74, the control signal 20 shown in FIG. 1 is output, and the Y-axis detection means 3 and the Y-axis amplification means 4 are driven. A multiplexer 8 selects the output signal of the Y-axis amplification means 4. In process 75, a WAIT period is performed for a certain period of time until the operation of the amplification means becomes stable, and in process 76, the A/D conversion means 9 is operated, and the converted data is read into the logic operation means via the data bus 32, and - It is then stored in RAM.

処理77において動作制御手段7に対してY軸の駆動を
選択すると、第1図における制御信号21を出力しZ軸
検出手段5、Z軸増幅手段6が駆動する。マルチプレク
サ8は前記Z軸増幅手段6の出力信号を選択する。処理
78で増幅手段の動作が安定するまでの一定時間のWA
ITを行い、処理79においてA/D変換手段9を動作
させ、データバス32を介して変換されたデータを論理
演算手段に読み込み、−旦RAMに格納する。処理80
において、前記X、Y、Z軸方向におけるデジタル信号
化されたデータを磁界強度に変換し、((B x S2
2 So +B VS22 SO+B z S22 S
O)の演算を行う。処理81において、処理80で演算
された磁界強度Bに測定周期の時間の積の演算を行う。
When Y-axis drive is selected for the operation control means 7 in process 77, the control signal 21 shown in FIG. 1 is output, and the Z-axis detection means 5 and Z-axis amplification means 6 are driven. A multiplexer 8 selects the output signal of the Z-axis amplifying means 6. WA for a certain period of time until the operation of the amplification means stabilizes in process 78
IT is performed, and in process 79, the A/D conversion means 9 is operated, the converted data is read into the logic operation means via the data bus 32, and is stored in the RAM. Processing 80
, the digital signal data in the X, Y, and Z axis directions is converted into magnetic field strength, and ((B x S2
2 So +B VS22 SO+B z S22 S
O) is calculated. In process 81, the product of the magnetic field strength B calculated in process 80 and the measurement cycle time is calculated.

処理82において、処理81で演算された結果を積算知
記憶手段13に加算し、再び格納する。
In process 82, the result calculated in process 81 is added to the integrated knowledge storage means 13 and stored again.

処理83において、時間計数手段15に測定周期の時間
を加算して、再び格納し、処理84において表示装置1
7に対する表示の処理を行って、処理85のHALT状
態に戻る。
In process 83, the time of the measurement cycle is added to the time counting means 15 and stored again, and in process 84, the display device 1
After performing the display processing for 7, the process returns to the HALT state in step 85.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明してように被爆した磁束量の積分値
を計数する携帯型の磁束計において、測定周期のタイミ
ングを決めるタイミング発生手段と、三次元に配置され
た検出手段とそれぞれの検出出力を増幅する増幅手段の
動作を制御する動作制御手段を存する構成を用いること
により、消費iii流の低減化が図れ、組み込まれた電
池での動作時間の長寿命化が成されるという効果がある
The present invention provides a portable magnetometer that counts the integral value of the amount of magnetic flux exposed to radiation as described above, and provides a timing generation means for determining the timing of a measurement cycle, a three-dimensionally arranged detection means, and respective detection means. By using a configuration including an operation control means for controlling the operation of the amplification means for amplifying the output, it is possible to reduce the current consumption and extend the operating life of the built-in battery. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は動
作制御手段7の出力する制御信号のタイムチャート、第
3図は磁界強度を3軸(X、Y、Z軸)に分解した図、
第4図は積算方法の1例を示す図、第5図は検出手段、
増幅手段の本発明における一回路実施例、第6図はマイ
クロコンピュータにより制御される本発明の実施例を示
すブロック図、第7図は本発明の動作手順を示すフロー
チャートである。 1・・・X軸検出手段 2・・・X軸増幅手段 3・・・Y軸検出手段 4・・・Y軸増幅手段 5・・・X軸検出手段 6・・・Z軸増幅手段 7・・・動作制御手段 8・・・マルチプレクサ 9・・・A/D変換手段 10・・・発振回路 11・・・分周回路 12・・・タイミング発生手段 13・・・演算手段 14・・・積算値記憶手段 15・・・時間計数手段 16・・・表示制御手段 17・・・表示装置 1B、 19.20.21.22・・・制御信号23・
・・検出素子 24・・・アンプ 25・・・ソステムクロフク発生回路 26・・・割込制御回路 27・・・論理演算処理回路 28・・・ROM 29・・・RAM 30・・・検出手段 31・・・増幅手段 32・・・データバス 33・・・アドレスバス 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助 磁界強度を3vJ(X、Y、 zl)に分解した図第 
3 口 時間h ←測定点 1Mの方法の1例を示す図 454 図 填 区 マイクロコンピユータにより制御される本発明の実施例
を示すブロック図づも  6  圓 「−]
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a time chart of control signals output from the operation control means 7, and Fig. 3 is a breakdown of magnetic field strength into three axes (X, Y, Z axes). diagram,
Fig. 4 is a diagram showing an example of the integration method, Fig. 5 is a detection means,
FIG. 6 is a block diagram showing an embodiment of the amplifying means according to the present invention controlled by a microcomputer, and FIG. 7 is a flowchart showing the operating procedure of the present invention. 1...X-axis detection means 2...X-axis amplification means 3...Y-axis detection means 4...Y-axis amplification means 5...X-axis detection means 6...Z-axis amplification means 7.・・Operation control means 8 ・Multiplexer 9 ・A/D conversion means 10 ・Oscillation circuit 11 ・Frequency dividing circuit 12 ・Timing generation means 13 ・Arithmetic means 14 ・Integration Value storage means 15...Time counting means 16...Display control means 17...Display device 1B, 19.20.21.22...Control signal 23.
...detecting element 24...amplifier 25...system clock generation circuit 26...interrupt control circuit 27...logical operation processing circuit 28...ROM 29...RAM 30...detecting means 31... ...Amplification means 32...Data bus 33...Address bus and above Applicant: Seiko Electronic Industries Co., Ltd. Agent Patent attorney: Takayuki Hayashi Diagram showing the auxiliary magnetic field strength broken down into 3vJ (X, Y, zl)
3 Figure 454 showing an example of the method for measuring time h ← measurement point 1M Figure 454 Block diagram showing an embodiment of the present invention controlled by a microcomputer 6 Circle "-"

Claims (5)

【特許請求の範囲】[Claims] (1)磁界強度の積分値を測定する三次元積分磁束計に
おいて、 (a)X軸、Y軸、Z軸方向の三次元に配置された3個
の磁気検出手段と、 (b)前記3個の磁気検出手段それぞれの検出信号を増
幅する3個の増幅手段と、 (c)前記磁気検出手段と前記増幅手段の動作を制御す
る動作制御手段と、 (d)前記動作制御手段の制御信号に応じて前記3個の
増幅手段の出力信号を選択するマルチプレクサと、 (e)前記マルチプレクサの出力するアナログ信号をデ
ジタル信号に変換するA/D変換手段と、(f)測定周
期を発生するタイミング発生手段と、(g)前記3軸方
向のデジタル信号から磁界強度のベクトル計算し、前記
タイミング発生手段の測定間隔である時間と磁束強度の
積を演算する演算手段と、 (h)前記時間と磁束強度の積の総和を記憶する積算値
記憶手段と、 (i)前記積算値記憶手段の内容を表示する表示装置と
から成ることを特徴とする三次元積算磁束計。
(1) In a three-dimensional integrating magnetometer that measures the integral value of magnetic field strength, (a) three magnetic detection means arranged three-dimensionally in the X-axis, Y-axis, and Z-axis directions; (b) the above three three amplifying means for amplifying the detection signals of the respective magnetic detecting means; (c) operation control means for controlling the operations of the magnetic detecting means and the amplifying means; and (d) a control signal for the operation control means. (e) A/D conversion means for converting the analog signal output from the multiplexer into a digital signal; and (f) timing for generating a measurement cycle. generating means; (g) calculating means for calculating a vector of magnetic field strength from the digital signals in the three-axis directions and calculating the product of the time, which is the measurement interval of the timing generating means, and the magnetic flux strength; (h) the time and A three-dimensional integrated magnetometer comprising: integrated value storage means for storing the sum of products of magnetic flux intensities; and (i) a display device for displaying the contents of the integrated value storage means.
(2)前記磁気検出手段がホール素子である請求項1記
載の三次元積算磁束計。
(2) The three-dimensional integrating magnetometer according to claim 1, wherein the magnetic detection means is a Hall element.
(3)前記磁気検出手段が磁気抵抗素子である請求項1
記載の三次元積算磁束計。
(3) Claim 1, wherein the magnetic detection means is a magnetoresistive element.
The three-dimensional integrated flux meter described.
(4)前記動作制御手段が前記3個の検出手段とそれぞ
れに対応する増幅手段とを時分割駆動することを請求項
1記載の三次元積算磁束計。
(4) The three-dimensional integrated flux meter according to claim 1, wherein said operation control means time-divisionally drives said three detection means and their corresponding amplification means.
(5)前記動作制御手段が、非測定時、前記3個の検出
手段とそれぞれに対応する増幅手段とを電流遮断するこ
とを特徴とする請求項1記載の三次元積算磁束計。
(5) The three-dimensional integrated flux meter according to claim 1, wherein the operation control means cuts off current between the three detection means and their corresponding amplification means when not measuring.
JP2212993A 1990-08-09 1990-08-09 Three-dimensional integrating fluxmeter Pending JPH0493782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212993A JPH0493782A (en) 1990-08-09 1990-08-09 Three-dimensional integrating fluxmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212993A JPH0493782A (en) 1990-08-09 1990-08-09 Three-dimensional integrating fluxmeter

Publications (1)

Publication Number Publication Date
JPH0493782A true JPH0493782A (en) 1992-03-26

Family

ID=16631693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212993A Pending JPH0493782A (en) 1990-08-09 1990-08-09 Three-dimensional integrating fluxmeter

Country Status (1)

Country Link
JP (1) JPH0493782A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336043B1 (en) 1997-10-02 2002-01-01 Hitachi, Ltd. Method for processing biomagnetic field data, magnetic field contour mapping, forming their waveforms and a biomagnetic instrument using the same
US6473518B1 (en) 1997-10-02 2002-10-29 Hitachi, Ltd. Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, method of displaying biomagnetic field data, and apparatus therefor
JP2006098305A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
JP2006098307A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
JP2006098306A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
JP2006308405A (en) * 2005-04-28 2006-11-09 Hioki Ee Corp Exposure measurement apparatus
JP2006343181A (en) * 2005-06-08 2006-12-21 Hioki Ee Corp Magnetic field measurement apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336043B1 (en) 1997-10-02 2002-01-01 Hitachi, Ltd. Method for processing biomagnetic field data, magnetic field contour mapping, forming their waveforms and a biomagnetic instrument using the same
US6473518B1 (en) 1997-10-02 2002-10-29 Hitachi, Ltd. Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, method of displaying biomagnetic field data, and apparatus therefor
US6711281B2 (en) 1997-10-02 2004-03-23 Hitachi, Ltd. Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, and method of displaying biomagnetic field data, and apparatus therefor
US6961605B2 (en) 1997-10-02 2005-11-01 Hitachi, Ltd. Method for processing biomagnetic field data, magnetic field contour mapping, forming their waveforms and a biomagnetic instrument using the same
US7194121B2 (en) 1997-10-02 2007-03-20 Hitachi, Ltd. Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, method of displaying biomagnetic field data, and an apparatus therefor
US7433506B2 (en) 1997-10-02 2008-10-07 Hitachi, Ltd. Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, method of displaying biomagnetic field data, and an apparatus therefor
JP2006098305A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
JP2006098307A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
JP2006098306A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
JP2006308405A (en) * 2005-04-28 2006-11-09 Hioki Ee Corp Exposure measurement apparatus
JP4576285B2 (en) * 2005-04-28 2010-11-04 日置電機株式会社 Exposure meter
JP2006343181A (en) * 2005-06-08 2006-12-21 Hioki Ee Corp Magnetic field measurement apparatus

Similar Documents

Publication Publication Date Title
EP1810045B1 (en) Magnetic field dosimeter
JPH0493782A (en) Three-dimensional integrating fluxmeter
US20170067981A1 (en) Magnetometer and accelerometer calibration for cart navigation system
US20190377035A1 (en) Magnetic field measurement apparatus, magnetic field measurement method, and storage medium with magnetic field measurement program stored thereon
US20240142555A1 (en) Systems and methods for low-field fast spin echo imaging
US5842980A (en) Magnetic resonance inspecting method and apparatus
JPH0493781A (en) Three-dimensional integrating fluxmeter
JPH05288818A (en) Three-dimensional integral magnetic fluxmeter
JPH04109184A (en) Three-dimensional integrated flux meter
Enokizono et al. Constitutive equation of magnetic materials and magnetic field analysis
JP4789237B2 (en) Magnetic resonance imaging system
JPH06174471A (en) Electronic azimuth meter
JPH04104806U (en) SAR monitoring device in MR equipment
Harada et al. A new magnetometer using a small ring core and MOS-FETs
CN116203491B (en) Comprehensive arbitration method and device for satellite magnetometer
Normann et al. Simple boundary element method for three-dimensional magnetostatic problems
JPH0467848A (en) Static magnetic field strength measuring/display method for magnetic resonance imaging device
RU93048377A (en) MAGNETOMETER / ITS OPTIONS /
JPS61289970A (en) Measuring instrument
KR200321613Y1 (en) Measuring and absorbing portable instrument for Electromagnetic wave
Shi et al. Two-and three-dimensional numerical analysis of gradient and parasitic gradient fields of a three-channel surface gradient coil for magnetic resonance imaging
AU2005289378B2 (en) Magnetic field dosimeter
RU93058054A (en) MAGNETOMETER (OPTIONS)
Marinelli et al. A PERSONAL MAGNETIC FIELDS DOSIMETER: DESIGN, TECNICAL DATA AND PRELIMINARY MEASUREMENTS
Jackson et al. Metal speciation in biofluids-Application to magnetic resonance imaging.