JPH0493710A - Shape measuring apparatus - Google Patents

Shape measuring apparatus

Info

Publication number
JPH0493710A
JPH0493710A JP21190590A JP21190590A JPH0493710A JP H0493710 A JPH0493710 A JP H0493710A JP 21190590 A JP21190590 A JP 21190590A JP 21190590 A JP21190590 A JP 21190590A JP H0493710 A JPH0493710 A JP H0493710A
Authority
JP
Japan
Prior art keywords
measured
light
probe
distance
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21190590A
Other languages
Japanese (ja)
Inventor
Tsutomu Fujita
勉 藤田
Toshio Takitani
俊夫 滝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP21190590A priority Critical patent/JPH0493710A/en
Publication of JPH0493710A publication Critical patent/JPH0493710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To make it possible to perform highly accurate measurement without special calibration for a reference surface by providing a reflection-photoelectric-type optical fiber sensor and an air-micro-type displacement controlling mechanism, moving a measuring probe, and performing the measurement. CONSTITUTION:An edge 3 of a probe 2 of a reflection-photoelectric-type fiber sensor 1 is made to face a surface to be measured 4. Optical fibers and bundled and inserted into the probe 2. The reflected light is measured. The distance between the edge 3 and the surface to be measured 4 is kept constant all the time with an air micro-type displacement controlling mechanism. When the light is emitted from a light emitting element 10 through the base end of a light projecting fiber 5, the light is reflected from the surface to be measured 4. the reflected light reaches photodetectors 13 and 11 through light receiving optical fibers 6 and the light projecting fibers 5 which are divided in front and rear and right and left parts. The currents which are generated in response to the amounts of the received lights are converted into voltage signals in current/voltage converter circuits 14 and 12, respectively. The signals are inputted into reflectivity compensating circuits 15 in every direction. The signals are converted into the detected distance signal which does not depend on the reflectivity of the surface to be measured 4. As a result, the distance of the position which is slightly displaced in the directions of front and rear and right and left at the measuring positions of the surface to be measured is detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は形状測定装置に関し、特に比較的大型の平面の
凹凸形状を高精度に測定できる形状測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a shape measuring device, and more particularly to a shape measuring device capable of measuring the uneven shape of a relatively large plane with high accuracy.

従来の技術 従来、平面の凹凸形状を測定する形状測定装置において
は、はとんどの場合、被測定面とほぼ平行なガイドに沿
ってエアマイクロメータ等の測定子を直進移動させなが
ら被測定面を順次測定することによってその形状を測定
するように構成されている。そして、測定子の移動機構
による誤差に対して測定精度を確保するために、通常は
測定装置か保証する測定精度以上の精度の基準参照面を
用いて同じ条件で測定を行い、それによって測定結果の
較正を行うようにしている。
Conventional technology Conventionally, in a shape measuring device that measures the uneven shape of a plane, in most cases, a measuring point such as an air micrometer is moved straight along a guide that is approximately parallel to the surface to be measured. It is configured to measure its shape by sequentially measuring . In order to ensure measurement accuracy against errors caused by the movement mechanism of the measuring head, measurements are usually performed under the same conditions using a standard reference surface that is more accurate than the measurement accuracy guaranteed by the measuring device, and the measurement result is then I am trying to calibrate it.

発明か解決しようとする課題 ところか、被測定物か大型化してくると、必要な大きさ
の基準参照面の製作コストか著しく高くなり、又そのよ
うな基準参照面で測定装置を較正すること自体人件費か
かかったり、経年変化により較正値かずれてくることか
あるという問題かあった。
Problems to be Solved by the Invention However, as the size of the object to be measured increases, the cost of producing a standard reference surface of the necessary size increases significantly, and it becomes difficult to calibrate a measuring device using such a standard reference surface. There were problems with the labor costs involved and the fact that the calibration values could deviate due to changes over time.

本発明は上記問題を解決するもので、測定子を移動させ
て測定しなから、基準参照面も、特別な較正も必要とせ
ずに高精度の測定かできる形状測定装置を提供すること
を目的とするものである。
The present invention solves the above-mentioned problems, and aims to provide a shape measuring device that can perform highly accurate measurements without requiring a standard reference surface or special calibration, without moving the measuring head. That is.

課題を解決するための手段 上記問題を解決するために本発明は、同心円型のプロー
ブを存するとともにその端面か放射状に複数分割された
反射光電式光フアイバセンサと、このセンサのプローブ
端面と被測定面との間の距離を一定に保つエアマイクロ
式変位制御機構とを備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a reflective photoelectric optical fiber sensor that includes a concentric probe and whose end face is divided into a plurality of radial parts, and a probe end face of this sensor and a measured object. It is equipped with an air micro displacement control mechanism that maintains a constant distance from the surface.

作用 上記構成により、反射光電式ファイバセンサを被測定面
に沿って移動させてもそのプローブの端面ばエアマイク
ロ式変位制御機構にて被測定面との距離か常に一定に保
たれ、その状態で被測定面のプローブ端面との対向部位
における複数方向の反射光を測定することによって被測
定面の形状の測定部位における微分値を得ることができ
、これを積分することによって形状測定を行なうことが
できる。
Effect With the above configuration, even when the reflective photoelectric fiber sensor is moved along the surface to be measured, the end face of the probe is always kept at a constant distance from the surface to be measured by the air micro displacement control mechanism. By measuring the reflected light in multiple directions at the portion of the surface to be measured that faces the end surface of the probe, it is possible to obtain the differential value of the shape of the surface to be measured at the measurement portion, and by integrating this, the shape can be measured. can.

実施例 以下、本発明の一実施例を第1図〜第3図を参照しなか
ら説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図において、1は反射光電式ファイバセンサてあり
、光ファイバを束ねて挿通されたプローブ2の端面3を
被測定面4に対向させ、被測定面の反射光を測定するこ
とによって端面3と測定面の距離を測定するように構成
されている。プローブ2は、第1図及び第2図に示すよ
うに、中央部に投光用ファイバ5か、その周囲に受光用
ファイバ6か配置され、その外周かアルミ合金等の保護
筒体7にて保護されている。投光用ファイバ5及び受光
用ファイバ6は軸心位置から放射状に延びる分割面8に
よって前後及び左右方向に4分割されている。尚、前後
2方向に分割するたけても良い。
In FIG. 1, reference numeral 1 denotes a reflective photoelectric fiber sensor, in which the end face 3 of a probe 2 inserted through a bundle of optical fibers is opposed to a surface to be measured 4, and the reflected light from the surface to be measured is measured. and a measuring surface. As shown in FIGS. 1 and 2, the probe 2 has a light emitting fiber 5 in the center, a light receiving fiber 6 around it, and a protective cylinder 7 made of aluminum alloy or the like around its outer periphery. protected. The light emitting fiber 5 and the light receiving fiber 6 are divided into four parts in the front-rear and left-right directions by a dividing surface 8 extending radially from the axial center position. Note that it may be divided into two directions, front and rear.

投光用ファイバ5の基端には定電流回路9によって駆動
される発光素子10か設けられ、さらに前後左右の各分
割領域毎に分けられてその基端にそれぞれ電流/電圧変
換回路12に接続された受光素子11か設けられている
。又、受光用ファイバ6の基端部も前後左右の各分割領
域毎に分けられてその基端にそれぞれ電流/電圧変換回
路14に接続された受光素子13か設けられている。受
光ファイバ6側の電流/電圧変換回路14と投光ファイ
バ5側の電流/電圧変換回路12の出力はそれぞれ前後
左右の分割領域毎に反射率補償回路15に入力されてい
る。そして、前後の分割領域と左右の分割領域にそれぞ
れ対応する反射率補償回路15の出力か各々差動増幅回
路16に入力されている(左右方向については図示を省
略している)。
A light emitting element 10 driven by a constant current circuit 9 is provided at the base end of the light emitting fiber 5, and the light emitting element 10 is further divided into front, rear, left, and right divided regions, and each of the light emitting elements 10 is connected to a current/voltage conversion circuit 12 at the base end. A light receiving element 11 is provided. The base end of the light-receiving fiber 6 is also divided into front, rear, left, and right divided regions, and a light-receiving element 13 connected to a current/voltage conversion circuit 14 is provided at each of the base ends. The outputs of the current/voltage conversion circuit 14 on the light receiving fiber 6 side and the current/voltage conversion circuit 12 on the light emitting fiber 5 side are input to the reflectance compensation circuit 15 for each of the front, rear, left, and right divided regions. The outputs of the reflectance compensation circuits 15 corresponding to the front and rear divided regions and the left and right divided regions are respectively input to the differential amplifier circuit 16 (the left and right directions are not shown).

次に、上記反射光電式ファイバセンサ1のプローブ2を
被測定面4に対して一定距離で保持するエアマイクロ式
変位制御機構21について、第3図に基ついて説明する
。これは、ノズル隙間を一定に保つように構成されてい
る周知のエアマイクロセンサにプローブ2を組み込んで
構成したものである。22はプローブ2の先端部に取付
けられたノズルであり、上部の定圧室23と下部のノズ
ル隙間26に開口する背圧室25との間にオリフィス2
4か形成されており、背圧室25の圧力はノズル隙間2
6の大きさに応じて変動する。この背圧室25の圧力は
、上部圧力室28に一定圧の空気か導入されているエア
・アクチュエータ27の下部圧力室29に導入され、上
部と下部の圧力室28.29を区画するピストン30か
プローブ2に固定されている。
Next, the air micro displacement control mechanism 21 that holds the probe 2 of the reflective photoelectric fiber sensor 1 at a constant distance from the surface to be measured 4 will be explained with reference to FIG. This is constructed by incorporating the probe 2 into a well-known air microsensor configured to maintain a constant nozzle gap. 22 is a nozzle attached to the tip of the probe 2, and an orifice 2 is provided between the constant pressure chamber 23 in the upper part and the back pressure chamber 25 opening into the nozzle gap 26 in the lower part.
4 is formed, and the pressure in the back pressure chamber 25 is equal to the nozzle gap 2.
It varies depending on the size of 6. The pressure of this back pressure chamber 25 is introduced into the lower pressure chamber 29 of the air actuator 27, which has air at a constant pressure introduced into the upper pressure chamber 28, and is introduced into the lower pressure chamber 29 of the air actuator 27, which is connected to the piston 30 that partitions the upper and lower pressure chambers 28, 29. or fixed to probe 2.

以上の構成によると、プローブ2を被測定面4に沿って
移動走査する際に、プローブ2の端面3と被測定面4の
距離はエアマイクロ式変位制御機構21にて常に一定に
保持される。即ち、プローブ2の端面3と被測定面4の
距離(=ノズル隙間26)か大きくなると、背圧室25
の圧力か低下し、その結果上部と下部の圧力室28.2
9に差圧を生してピストン30にてプローブ2か下げら
れ、ノズル隙間26か小さくなる。すると、背圧室25
の圧力か上昇するため、圧力か均衡したところで停止す
る。こうして、ノズル隙間26か一定に保持され、プロ
ーブ2の端面3と被測定面4の距離か一定に保持される
のである。
According to the above configuration, when the probe 2 is moved and scanned along the surface to be measured 4, the distance between the end surface 3 of the probe 2 and the surface to be measured 4 is always maintained constant by the air micro displacement control mechanism 21. . That is, when the distance between the end surface 3 of the probe 2 and the surface to be measured 4 (=nozzle gap 26) increases, the back pressure chamber 25
The pressure in the upper and lower pressure chambers 28.2 decreases.
Probe 2 is lowered by piston 30 by creating a pressure difference at 9, and nozzle gap 26 becomes smaller. Then, the back pressure chamber 25
As the pressure increases, it stops when the pressure is balanced. In this way, the nozzle gap 26 is kept constant, and the distance between the end surface 3 of the probe 2 and the surface to be measured 4 is kept constant.

このような状態で、投光ファイバ5の基端から発光素子
10にて光を送ると、光は被測定面4て反射する。反射
光は、前後左右に分割された受光ファイバ6及び投光フ
ァイバ5を通って各受光素子13.11に到達し、受光
量に応じて発生した電流かそれぞれ電流/電圧変換回路
14.12にて電圧信号に変換され、さらに各方向毎に
反射率補償回路15に入力されて被測定面4の反射率に
依存しない距離検出信号に変換される。こうして、被測
定面4の測定部位における前後左右方向に僅かに変位し
た位置の距離か検出される。次に、この前後及び左右の
距離検出信号かそれぞれ作動増幅回路16に入力される
ことによって被測定面4の測定部位の形状の前後方向と
左右方向の微分値か出力される。従って、この微分値を
逐次積分して行くことによって被測定面の形状を求める
ことかできる。
In this state, when light is sent from the base end of the light emitting fiber 5 to the light emitting element 10, the light is reflected by the surface to be measured 4. The reflected light reaches each light receiving element 13.11 through the light receiving fiber 6 and the light emitting fiber 5 which are divided into front, back, left and right, and a current generated according to the amount of light received is sent to each current/voltage conversion circuit 14.12. The signal is converted into a voltage signal, and further input to the reflectance compensation circuit 15 in each direction, where it is converted into a distance detection signal that does not depend on the reflectance of the surface to be measured 4. In this way, the distance of a position slightly displaced in the front, rear, left, and right directions at the measurement site on the surface to be measured 4 is detected. Next, the front-rear and left-right distance detection signals are respectively input to the differential amplifier circuit 16, thereby outputting differential values of the shape of the measurement site on the surface 4 to be measured in the front-rear and left-right directions. Therefore, by successively integrating these differential values, the shape of the surface to be measured can be determined.

尚、本発明によれば上記のように容易に被測定面の形状
測定を行うことができるか、エアマイクロ式変位制御機
構によるプローブの動きを何らかの別のセンサて検出す
るようにすれば、移動機構の移動誤差を測定することも
できる。
According to the present invention, the shape of the surface to be measured can be easily measured as described above, or if the movement of the probe by the air micro displacement control mechanism is detected by some other sensor, the movement can be easily measured. It is also possible to measure the movement error of the mechanism.

発明の効果 以上のように、本発明によれば、反射光電式ファイバセ
ンサを被測定面に沿って移動させてもそのプローブの端
面はエアマイクロ式変位制御機構にて被測定面との距離
か常に一定に保たれ、その状態で被測定面のプローブ端
面との対向部位における複数方向の反射光を測定するこ
とによって被測定面の形状の測定部位における微分値を
得ることかでき、これを積分することによって形状測定
を行なうことかでき、従って移動機構における移動誤差
の影響を直接受けず、移動に関する較正等を一切必要と
しない高精度の形状測定を行うことかできる。
Effects of the Invention As described above, according to the present invention, even when the reflective photoelectric fiber sensor is moved along the surface to be measured, the end face of the probe is controlled by the air micro displacement control mechanism to adjust the distance from the surface to be measured. By measuring the reflected light in multiple directions at the part of the surface to be measured that is always kept constant and facing the probe end face in that state, it is possible to obtain the differential value of the shape of the surface to be measured at the measurement part, and this can be integrated. By doing so, it is possible to perform shape measurement, and therefore, it is possible to perform highly accurate shape measurement without being directly affected by movement errors in the movement mechanism and without requiring any calibration regarding movement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における反射光電式ファイバ
センサの構成図、第2図は第1図のAA線断面図、第3
図はエアマイクロ式変位制御機構の半断面正面図である
。 1・・・反射光電式ファイバセンサ、2・・・プローブ
、3・・・端面、4・・・被測定面、21・・・エアマ
イクロ式変位制御機構。
FIG. 1 is a configuration diagram of a reflective photoelectric fiber sensor according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG.
The figure is a half-sectional front view of the air micro displacement control mechanism. DESCRIPTION OF SYMBOLS 1... Reflection photoelectric fiber sensor, 2... Probe, 3... End face, 4... Surface to be measured, 21... Air micro type displacement control mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1、同心円型のプローブを有するとともにその端面が放
射状に複数分割された反射光電式光ファイバセンサと、
このセンサのプローブ端面と被測定面との間の距離を一
定に保つエアマイクロ式変位制御機構とを備えたことを
特徴とする形状測定装置。
1. A reflective photoelectric optical fiber sensor that has a concentric probe and whose end face is divided into multiple radial sections;
A shape measuring device characterized by comprising an air micro-type displacement control mechanism that maintains a constant distance between the probe end face of the sensor and the surface to be measured.
JP21190590A 1990-08-10 1990-08-10 Shape measuring apparatus Pending JPH0493710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21190590A JPH0493710A (en) 1990-08-10 1990-08-10 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21190590A JPH0493710A (en) 1990-08-10 1990-08-10 Shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0493710A true JPH0493710A (en) 1992-03-26

Family

ID=16613595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21190590A Pending JPH0493710A (en) 1990-08-10 1990-08-10 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0493710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284376A (en) * 2005-03-31 2006-10-19 Aisin Aw Co Ltd Positioning device, air micro measuring device, and measuring method thereof
CN103776843A (en) * 2014-01-26 2014-05-07 济南大学 Compensation method of steel ball surface detect measuring system based on optical fiber sensing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284376A (en) * 2005-03-31 2006-10-19 Aisin Aw Co Ltd Positioning device, air micro measuring device, and measuring method thereof
CN103776843A (en) * 2014-01-26 2014-05-07 济南大学 Compensation method of steel ball surface detect measuring system based on optical fiber sensing

Similar Documents

Publication Publication Date Title
JP3171446B2 (en) Probe
US4891509A (en) Device and method for determining displacement
JPS6085302A (en) Length measuring device based on principle of two beam laserinterferometer
JPH07181007A (en) Measuring device wherein interferometer is applied
JPH0726806B2 (en) Distance measuring device
US20110235049A1 (en) Wavefront Sensing Method and Apparatus
US4711578A (en) Optical displacement sensors
JPH048724B2 (en)
JPH0493710A (en) Shape measuring apparatus
US4938062A (en) Barometric meter
US4600836A (en) Diaphragm deflection sensor for fused silica diaphragm module
CN105371755A (en) Wavelength correction type multi-beam step plane reflecting mirror laser interferometer and wavelength correction method
TWI712773B (en) Laser interferometer positioning system
JP2021143938A (en) Optical interference measuring device
CN106225726B (en) The big working distance autocollimation of array zeroing high-precision laser and method
JPH08304020A (en) Movement-accuracy measuring apparatus
EP0851210A2 (en) Non-contact type of strain meter
KR100326170B1 (en) Measuring device for waveguides pitch of optical device
JPS6230903A (en) Optical displacement detecting apparatus and method for it
JPH0282109A (en) Optical sensor and measuring instrument using same
CN106225728B (en) The big working distance autocollimation of array zeroing high-precision and method
CN104930968A (en) Magnetic micro-displacement platform-type step planar mirror laser interferometer, calibration method, and measuring method
JPH09311024A (en) Shape measuring device
SE522366C2 (en) RANGE-FINDER
TW202024588A (en) Automatic calibration optical interferometer and automatic calibration method of optical interferometer