JPH0493559A - Reverse stirling refrigeration machine having circulating oil - Google Patents

Reverse stirling refrigeration machine having circulating oil

Info

Publication number
JPH0493559A
JPH0493559A JP21047190A JP21047190A JPH0493559A JP H0493559 A JPH0493559 A JP H0493559A JP 21047190 A JP21047190 A JP 21047190A JP 21047190 A JP21047190 A JP 21047190A JP H0493559 A JPH0493559 A JP H0493559A
Authority
JP
Japan
Prior art keywords
oil
space
heat
working gas
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21047190A
Other languages
Japanese (ja)
Inventor
Naoji Isshiki
一色 尚次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21047190A priority Critical patent/JPH0493559A/en
Publication of JPH0493559A publication Critical patent/JPH0493559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a reverse Stirling refrigeration machine, which is usable even at a range of a small temperature drop and fluorocarbon as a refrigerant is not necessary, by a method wherein circulating oil is injected in an expansion space and in a compression space, and the phase change of working-gas in each of the spaces is made in approximate isothermal change. CONSTITUTION:A loop 34 of circulating-oil on the side of low temperature is composed of an injection pump 28, an oil-sending pipe 30, an injection nozzle 20, a cyclone 22, an oil basin 24, an oil-lowering pipe line 26 and a heat exchanger 15 for absorbing heat, and code heat by heat-absorbing action is used. A loop 35 of the circulating oil on the side of high temperature is composed of an injection pump 29, an injection nozzle 21, a cyclone 23, an oil basin 25, an oil-lowering pipe line 27, a heat exchanger 17 for radiating heat and an oil-sending pipe 31, and heat-radiating action is performed. At each of the injection pumps 28, 29, the circulating oil having such the amount as a thermal equivalent of the circulating oil injected is about 5 to 10 times as many as a thermal equivalent, per unit time, of working- gas such as high pressure helium which is sucked or exhausted in an expansion space 11 and a compression space 12, is injected. The expansion and compression of the working gas, which are performed in the expansion space 11 and the compression space 12, make slow the temperature change of the working gas since the liquid drops of the circulating oil exist. Therefore, the expansion and compression approaching to isothermal change are performed, and the working gas performs an approximate isothermal change approaching to the theory of reverse Stirling cycle.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフロンを使用しないで低温を生ずる逆スターリ
ングサイクル冷凍器の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a reverse Stirling cycle refrigerator that produces low temperatures without using fluorocarbons.

[従来の技術] フロンを使用しない冷凍機として注目を浴びている逆ス
ターリングサイクル冷凍機は本来高い温度降下を生ずる
クライオクーラーとして発達して来たもので、家庭用冷
蔵庫やルームクーラー程度の20℃〜40℃くらいの小
温度降下を目的とする場合にはかえってCOPも低くか
つ重量や容積あたりの比出力も小さい欠点があった。
[Prior art] The reverse Stirling cycle refrigerator, which is attracting attention as a refrigerator that does not use fluorocarbons, was originally developed as a cryocooler that produces a high temperature drop, and the temperature is about 20℃, which is about the same as that of a home refrigerator or room cooler. When the objective is to lower the temperature by as low as 40° C., the disadvantages are that the COP is low and the specific output per weight and volume is low.

参考として 第1図に従来の代表的な逆スターリングサイクル冷凍機
の側面図を示す。1はクランクケースでその中に外部動
力をうける回転軸2と、それにより矢印3の方向に回転
されるクランク4があり同クランク4はロッド5,6に
よってピストン7゜8を往復運動させて、約90°のV
形をなす二つのシリンダー9,10の中を動かす。シリ
ンダー9の頭部にあってピストン7の上方となる空間は
膨張空間11であり、またシリンダーlOの中にあって
ピストン8の上方となる空間は圧縮空間12であって、
該膨張空間11と該圧縮空間12との間はそれぞれの出
口管13.14.および低温熱交換器15.再生熱交換
器16.放熱熱交換器17が図のように直列に連通され
ている。18は低温熱交換器15より冷熱を除去輸送す
る冷凍用ブライン管であり、 19は放熱熱交換器の放
熱を行う冷却水管である。
For reference, FIG. 1 shows a side view of a typical conventional reverse Stirling cycle refrigerator. Reference numeral 1 designates a crankcase, which includes a rotating shaft 2 that receives external power, and a crank 4 that is rotated by the shaft in the direction of arrow 3. The crank 4 causes a piston 7.8 to reciprocate by means of rods 5 and 6. V of about 90°
It moves inside the two cylinders 9 and 10 that form the shape. The space in the head of the cylinder 9 above the piston 7 is an expansion space 11, and the space in the cylinder 1O above the piston 8 is a compression space 12.
Between the expansion space 11 and the compression space 12 are respective outlet pipes 13, 14. and low temperature heat exchanger 15. Regenerative heat exchanger 16. Radiation heat exchangers 17 are connected in series as shown in the figure. 18 is a refrigeration brine pipe that removes and transports cold heat from the low-temperature heat exchanger 15, and 19 is a cooling water pipe that radiates heat from the radiation heat exchanger.

いまクランクケース1.シリンダー9.IQの内部等す
べての内部空間に高圧ヘリウムガス等の作動ガスをみた
し、クランク4を矢印3の方向に回転すると2逆スタ一
リングサイクル機器の原理によって該膨張空間1jの中
には低温が発生し、該圧縮空間12の中には高温が発生
することは公知である。
Now crankcase 1. Cylinder 9. When all internal spaces such as the inside of the IQ are filled with working gas such as high-pressure helium gas and the crank 4 is rotated in the direction of the arrow 3, a low temperature is generated in the expansion space 1j due to the principle of a two-way reverse stirring cycle device. It is known that high temperatures occur in the compression space 12.

しかしこのさい、それぞれの空間の中のガスは理論上は
等温変化をすべきではあるが、実際上は断熱変化をする
のでその膨張と圧縮で生ずる温度降下と上昇はかなり大
きくなり、エクセルギ損失が増大するので小温度降下で
はCOPは在来のフロン圧縮冷凍機よりはるかに小さく
なり、とくに日常の冷蔵庫やクーラー等の小さい温度降
下の用途に対して不向きであった。
However, in this case, although the gas in each space should change isothermally in theory, it actually changes adiabatically, so the temperature drop and rise caused by expansion and compression become quite large, resulting in exergy loss. As a result, the COP is much smaller than that of conventional fluorocarbon compression refrigerators at small temperature drops, making it particularly unsuitable for applications with small temperature drops such as everyday refrigerators and coolers.

[発明が解決しようとする諌聞コ 以上のように従来の逆スターリングサイクル冷凍機はと
くに膨張空間と圧縮空間内のガスの状態変化が期待され
る等温変化ではなく断熱変化に近く、よって作動ガス自
体の温度変化が要求される温度差より大きくなり過ぎる
ためであるので、その変化を等温変化に近づけるのが最
大の課題である。
[Immon to be solved by the invention] As described above, in the conventional reverse Stirling cycle refrigerator, the state change of the gas in the expansion space and the compression space is close to an adiabatic change rather than the expected isothermal change, and therefore the working gas This is because the temperature change itself becomes too large than the required temperature difference, so the biggest challenge is to bring the change closer to isothermal change.

[課耽を解決するための手段] それに対し本発明は膨張空間と圧縮空間に低粘度の循環
油を十分な量だけ微細な噴霧として噴射してその油滴の
存在によって作動ガスの温度変化を十分小さくして等温
変化に近づけ、かつその循環油は各空間出口で分離して
それぞれ別個のWI環抽油管路流下させ1作動ガスの熱
交換の代りに循1泊を熱交換器に通してその顕熱をもっ
て冷凍及び放熱を行わせるものであり、よって作動ガス
のサイクルは所期の等温サイクルに近づくので小温度降
下でもCOPが理論値に近づき十分大きくなり、また作
動ガスの熱交換器が不要になるので油滴分離装置が十分
小さければ、ガスの死空間が小さくなり全体の比出力も
上昇する。
[Means for solving the problem] In contrast, the present invention injects a sufficient amount of low-viscosity circulating oil into the expansion space and the compression space as a fine spray, and the presence of the oil droplets suppresses the temperature change of the working gas. The circulating oil is made sufficiently small to approximate isothermal change, and the circulating oil is separated at the outlet of each space and flows down a separate WI ring oil extraction pipe, and instead of the heat exchange of one working gas, the circulating oil is passed through a heat exchanger. The sensible heat is used to perform refrigeration and heat dissipation, and as a result, the working gas cycle approaches the intended isothermal cycle, so even with a small temperature drop, the COP approaches the theoretical value and becomes sufficiently large, and the working gas heat exchanger Since this becomes unnecessary, if the oil droplet separator is sufficiently small, the dead space for gas will become smaller and the overall specific output will also increase.

よって本発明により、家庭用冷蔵庫やルームクーラーな
どノ」)fIA度降下にも使用できるフロン不要の逆ス
ターリング冷凍機が出現し、産業と地球環境上極めて貢
献する所が大きい。
Therefore, according to the present invention, an inverted Stirling refrigerator that does not require fluorocarbons and can be used for household refrigerators, room coolers, etc. to reduce fIA degrees has appeared, which will greatly contribute to industry and the global environment.

〔実施例〕〔Example〕

本発明を説明するため実施例の図面によってその構成と
作用を説明する。
In order to explain the present invention, its structure and operation will be explained with reference to drawings of embodiments.

第2図に本発明の一実施例の側面図を示す。FIG. 2 shows a side view of an embodiment of the present invention.

同図において1から19までの番号の部品の名称作動は
、第1図と全く同じである。
In this figure, the names and operations of parts numbered 1 to 19 are exactly the same as in FIG. 1.

第2図の実施例においては、シリンダー9.10の頂部
附近に循環油を膨張空間11および圧縮空間12の中に
微細な霧として吹く噴射ノズル20.21を設け、出口
管13.14の直後には油滴を分離するサイクロン22
.23が設けられ1作動ガス内の循環油の油滴を分離し
て各サイクロンの下部の油だまり24、25に流下させ
るように構成しである。
In the embodiment of FIG. 2, an injection nozzle 20.21 is provided near the top of the cylinder 9.10 for blowing the circulating oil into the expansion space 11 and the compression space 12 as a fine mist, immediately after the outlet pipe 13.14. A cyclone 22 separates oil droplets.
.. 23 is provided to separate oil droplets of circulating oil in the working gas and allow them to flow down into oil pools 24 and 25 at the bottom of each cyclone.

また液たまり24.25内の循環油はそれぞれ別系統と
なって油下降管2111.27でそれぞれ下方に導かれ
、それぞれ冷熱熱交換器15.放熱熱交換器17を経由
した後循環液の循環と噴射を司どる噴射ポンプ28.2
9と油導管30.31を経てそれぞれ噴射ノズル20.
21へ再循環される。
In addition, the circulating oil in the liquid pools 24, 25 are respectively guided downward by oil downcomer pipes 2111, 27 in separate systems, and are respectively guided to the cold heat exchanger 15. Injection pump 28.2 that controls the circulation and injection of the circulating fluid after passing through the radiation heat exchanger 17
9 and oil conduits 30.31 to the injection nozzles 20.31, respectively.
21.

またサイクロン22.23の上部出口には作動ガス管路
32.33が取りつけられ、中央に作動ガス用再生熱交
換器16が設けられて両サイクロンと結ばれている。
Further, a working gas pipe line 32,33 is attached to the upper outlet of the cyclone 22,23, and a regenerative heat exchanger 16 for the working gas is provided in the center, and is connected to both cyclones.

ここで本発明のもっとも特長とする点として。Here, the most distinctive feature of the present invention.

噴射ポンプ2B、油導管30.噴射ノズル20.サイク
ロン22.油だまり24.油下降管路26.冷熱熱交換
!115をもって低温側の循環油が回る低温側循環油ル
ープ34が形成されて冷熱利用作用が行われ、また一方
で噴射ポンプ29.噴射ノズル21.サイクロン23.
油だまり25.油下降管路27.放熱熱交換器!?、油
導管31をもって高温側の循環油が回る高温側循環油ル
ープ35がさぎの低温側1!11ループ34とは全く別
個で温度の異なるループとして設けられて放熱作用を行
なうことである。
Injection pump 2B, oil conduit 30. Injection nozzle 20. Cyclone 22. Oil pool 24. Oil descending pipe line 26. Cold heat heat exchange! 115 forms a low-temperature side circulating oil loop 34 in which the low-temperature side circulating oil circulates to perform cold energy utilization, and on the other hand, the injection pump 29. Injection nozzle 21. Cyclone 23.
Oil puddle 25. Oil descending pipe line 27. Radiation heat exchanger! ? The high-temperature side circulation oil loop 35, in which the high-temperature side circulation oil circulates through the oil conduit 31, is completely separate from the low-temperature side 1!11 loop 34 and is provided as a loop having a different temperature to perform heat dissipation.

いま各噴射ポンプ28.29では、それぞれそこに噴射
される循環油の単位時間当りの熱当量が膨張空間11お
よび圧縮空間12に出入する高圧ヘリウム等作動ガスの
単位時間当りの熱当量の5倍ないし10倍程度となるよ
うな流量にて循環油を噴射する。
In each of the injection pumps 28 and 29, the heat equivalent per unit time of the circulating oil injected therein is five times the heat equivalent per unit time of the working gas such as high-pressure helium flowing into and out of the expansion space 11 and the compression space 12. Circulating oil is injected at a flow rate that is about 10 times higher.

しかる時は逆スターリングサイクルの原理によって膨張
空間11および圧縮空間12の中に生ずる作動ガスの膨
張と圧縮は霧状となった循環油の液滴の存在によってガ
スの温度変化は緩衝されて第1図の実施例におけるよう
な断熱膨張による大きい温度変化を生ずることなく、そ
の6分の1ないし11分の1という極めて等温変化に近
い膨張及び圧縮を生ずることとなり1作動ガスは逆スタ
ーリングサイクルの理論に近い近似的等温変化をするこ
ととなる。
At that time, the expansion and compression of the working gas that occurs in the expansion space 11 and the compression space 12 according to the principle of the reverse Stirling cycle is buffered by the presence of the circulating oil droplets in the form of mist, and the temperature change of the gas is buffered. Without causing large temperature changes due to adiabatic expansion as in the example shown in the figure, expansion and compression occur that are extremely close to isothermal changes of one-sixth to one-eleventh of the temperature changes. This results in an approximately isothermal change close to .

よってまず所期の20℃ないし40℃という小温度降下
クーラーに対してもエクセルギ損失は小さくなりかつC
OPは極めて大きくなり、また比出力も大きくなる。
Therefore, even for a cooler with a small temperature drop of 20°C to 40°C, the exergy loss will be small and the C
OP becomes extremely large, and the specific power also becomes large.

また第1図の在来の逆スターリング冷凍機では熱変換器
15.17がガスと液の熱交換であるに反し本発明によ
る第2図の実施例においては、熱はすべて循環油に移さ
れているので熱交換器15.17は熱伝達率が高い液・
液熱交換器となるので熱交換器がコンパクトとなる。
Furthermore, while in the conventional reverse Stirling refrigerator shown in Fig. 1, the heat converters 15 and 17 exchange heat between gas and liquid, in the embodiment shown in Fig. 2 according to the present invention, all the heat is transferred to the circulating oil. Therefore, the heat exchanger 15.17 uses a liquid with a high heat transfer coefficient.
Since it is a liquid heat exchanger, the heat exchanger becomes compact.

また循環油は潤滑作用があるのでピストンやピストンリ
ングの摩耗も小さい利点もある。
Additionally, since the circulating oil has a lubricating effect, it also has the advantage of reducing wear on the piston and piston rings.

第3図には間欠噴射ポンプをもつ場合の本発明の他の一
実施例を示す。
FIG. 3 shows another embodiment of the present invention having an intermittent injection pump.

さぎの第2図の実施例が連続作動するポンプ2829を
使用しているのにだいし1本実施例はクランク4から副
ロッド36.37を出し、小さい径のピストン38.3
9を油シリンダー40.41内で往復させるレシプロ形
の噴射ポンプ42.43を用い循環油をシリンダー1.
1.12内に間欠的に噴射させるものであってとくに図
のような配置をすることによってピストン7.8がシリ
ンダー9.10内を下降した作動ガスを吸入する行程に
おいて循環油を最も多く噴射することによって各シリン
ダー内へ入る作動ガスと循環油とがよく混合するように
するもので。
Although the embodiment shown in FIG. 2 uses a pump 2829 that operates continuously, this embodiment has an auxiliary rod 36.37 extending from the crank 4 and a small diameter piston 38.3.
A reciprocating type injection pump 42.43 that reciprocates oil in the oil cylinder 40.41 circulates oil into the cylinder 1.9.
1.12 is intermittently injected, and by arranging the arrangement as shown in the figure, the maximum amount of circulating oil is injected during the stroke in which the piston 7.8 sucks the working gas that has descended within the cylinder 9.10. This allows the working gas entering each cylinder to mix well with the circulating oil.

また作動ガスが排出される行程においては循環油をそれ
以上噴射しないことによりシリンダー空間内への循環油
の過剰噴射によるオイルハンマー現象を生じさせない効
果がある。なお番号が1ないし35の部品は第2図の実
施例と全く同一である。
Furthermore, by not injecting circulating oil any further during the stroke in which the working gas is discharged, there is an effect of preventing an oil hammer phenomenon caused by excessive injection of circulating oil into the cylinder space. The parts numbered 1 to 35 are exactly the same as those in the embodiment shown in FIG.

また44.45.46.47は図の方向の循環油逆止弁
である。
Further, 44, 45, 46, 47 are circulation oil check valves in the direction shown in the figure.

第4図にはディスプレーサ−形逆スターリングサイクル
冷凍機に対して本発明を適用したさいの一実施例の側面
図を示す。
FIG. 4 shows a side view of an embodiment in which the present invention is applied to a displacer type reverse Stirling cycle refrigerator.

本実施例においては48がデイスプレーサービストンで
あり、49がパワーピストンであって、それぞれクラン
ク50.51の運動によって約90″の位相差をもって
往復運動し、膨張空間11と圧縮空間12を位相差をも
って容積変化させ、それぞれの空間内に入った作動ガス
に冷熱と圧縮熱を発生させる。
In this embodiment, 48 is a display service ton, and 49 is a power piston, which reciprocate with a phase difference of about 90'' by the movement of cranks 50 and 51, and position the expansion space 11 and compression space 12. The volume changes based on the phase difference, and cold heat and compression heat are generated in the working gas that enters each space.

本発明はさぎの第2図の実施例と全く同様に低温側と高
温側の油循環ループ34.35を有して、冷熱利用と放
熱を行なうのでその作動原理は前と同様である。ただし
本実施例では冷熱側の熱交換器15は冷蔵庫52の中に
細いコイル管53として置かれていて、温度が低くなっ
た循環油が直接に冷蔵庫52の内部を直接冷却するよう
に構成している。
The present invention has cold side and hot side oil circulation loops 34, 35, just like the embodiment of Fig. 2, to utilize cold heat and dissipate heat, so the operating principle is the same as before. However, in this embodiment, the heat exchanger 15 on the cold side is placed in the refrigerator 52 as a thin coiled tube 53, and the circulating oil having a lower temperature is configured to directly cool the inside of the refrigerator 52. ing.

以上が実施例による本発明の原理であるが、なお補言と
して、各機器及び各管路の外部は十分に断熱保温されて
いるものとし、またクランク室に流出した漏洩循環油を
噴射ポンプで再吸引する細管や、二つのサイクロンの液
面のアンバランスを調節するための連通細管のような任
意の形式の補助装置をつけることは自由であり、また逆
スターリングサイクル冷凍機の形式は自由であり、また
循環油の種類9作動ガスの種類、圧力、気液分離装置の
形式、噴射ポンプの形式等は全く自由であって本発明の
原理を損なうものではない。
The above is the principle of the present invention according to the embodiments, but as a supplementary note, it is assumed that the outside of each device and each pipe line is sufficiently insulated, and that leaked circulating oil that has leaked into the crank chamber is removed by an injection pump. It is free to attach any type of auxiliary device such as a capillary for re-suction or a communicating capillary for adjusting the unbalance of the liquid level between the two cyclones, and the type of reverse Stirling cycle refrigerator is free. In addition, the type of circulating oil, the type of working gas, the pressure, the type of gas-liquid separator, the type of injection pump, etc. are completely free and do not impair the principles of the present invention.

[効 果] 以上の実施例の説明でわかるように、膨張空間と圧縮空
間内にfl!環油を噴射することによって。
[Effect] As can be seen from the explanation of the above embodiments, fl! is present in the expansion space and the compression space. By injecting ring oil.

作動ガスの各空間内状態変化を等温変化に近づけること
によって、小温度降下のクーラーにおいても理論的逆ス
ターリングサイクルに近いCOPを与える逆スターリン
グサイクル冷凍機を得ることができ、フロンを用いない
ことによって地球環境保護に有益であり、コンパクトで
耐久力の高い冷凍機を得ることができる。
By bringing the state changes in each space of the working gas closer to isothermal changes, it is possible to obtain a reverse Stirling cycle refrigerator that provides a COP close to the theoretical reverse Stirling cycle even in a cooler with a small temperature drop, and by not using CFCs. A compact and highly durable refrigerator that is beneficial to global environmental protection can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図には従来の代表的な逆スターリングサイクル冷凍
機の側面図を示す。 第2図には本発明の一実施例の側面図を示す。 第3図には間欠噴射ポンプを持つ場合の本発明の他の一
実施例を示す。 第4図にはディスプレーサ−形逆スターリングサイクル
冷凍機に対して本発明を適用したさいの一実施例の側面
図を示す。 +1  III張空間。 】2 圧縮空間。 20、21  噴射ノズル 23、24  サイクロン 2B、 29.42.43  噴射ポンプ15  W熟
熱交換器。 17  放熱器。 34  低温@循環油ループ 35  高温@循環油ループ
FIG. 1 shows a side view of a typical conventional reverse Stirling cycle refrigerator. FIG. 2 shows a side view of an embodiment of the present invention. FIG. 3 shows another embodiment of the present invention having an intermittent injection pump. FIG. 4 shows a side view of an embodiment in which the present invention is applied to a displacer type reverse Stirling cycle refrigerator. +1 III Zhang space. ]2 Compressed space. 20, 21 Injection nozzle 23, 24 Cyclone 2B, 29.42.43 Injection pump 15 W mature heat exchanger. 17 Heat sink. 34 Low temperature @ circulating oil loop 35 High temperature @ circulating oil loop

Claims (1)

【特許請求の範囲】  クランクによつて動かされる二つのピストンの運動に
より作動ガスが膨張してシリンダー内に低温を生ずる膨
張空間と,作動ガスが圧縮されて高温を生ずる圧縮空間
とを有し,両空間の間の管路に再生熱交換器を設けた任
意形式の,逆スターリングサイクル冷凍機において,該
膨張空間と該圧縮空間のそれぞれの出口と該再生熱交換
器の間にサイクロン状の気液分離装置を設け,かつ,該
膨張空間と該圧縮空間のそれぞれの頂部には噴射ノズル
を設けて,適当な低粘度冷凍機油等を主体とする循環油
を,膨張空間内に向けては膨張空間側の噴射ポンプより
,圧縮空間内に向けては圧縮空間側の噴射ポンプより,
それぞれの空間を出入する作動ガスの重量流量に数倍す
る流量にて,該油噴射ノズルを通じて微細な噴霧として
それぞれの空間の内部に噴射し両空間の作動ガス内に十
分な比熱をもつ油滴の存在することによつて,それぞれ
の空間に生ずる作動ガスの膨張と圧縮とを等温変化に近
づけて温度の降下と上昇をかなり小さいものとし,それ
ぞれの空間より流出する作動ガス内の循環油の該油滴を
再生熱交換器にいたる前に前出のサイクロン状の気液分
離装置によって分離捕捉して液状として別個の管路にそ
れぞれ流下させ,膨張空間側よりは噴射時より若干低温
となって出る循環油の冷熱を直接に冷凍に利用するか,
もしくは低温熱交換器にてブラインに移して冷凍利用し
た後該膨張空間側噴射ポンプにもどして再循環させるよ
うに構成し,また圧縮空間側より噴射時より若干高温と
なって出る循環油の熱は適当な放熱器によって外部に放
熱した後,該圧縮空間側の噴射ポンプにもどして再循環
するように構成することにより,作動ガスの発生する冷
熱量と圧縮熱とを作動ガスの顕熱によることなく互いに
混合しない別個の管路の循環油の顕熱によって冷凍利用
及び放熱させるようにした逆スターリングサイクル冷凍
機の原理。 なおこのさい,各機器及び各管路の外側は十分に断熱保
温するものとし,また逆スターリングサイクル冷凍器の
シリンダ配置形式は二気筒形でもディスプレーサー形で
も,リネヤ形でもよい。 また循環油の種類,圧力,作動ガスの種類,気液分離器
や噴射ポンプ等補機の形式材質等は自由である。
[Scope of Claims] The cylinder has an expansion space in which working gas is expanded by the movement of two pistons moved by a crank and produces a low temperature in the cylinder, and a compression space in which the working gas is compressed and produces a high temperature; In any type of inverted Stirling cycle refrigerator in which a regenerative heat exchanger is provided in the conduit between both spaces, a cyclone-like air is provided between the respective outlets of the expansion space and the compression space and the regenerative heat exchanger. A liquid separation device is provided, and an injection nozzle is provided at the top of each of the expansion space and the compression space, and circulating oil mainly composed of suitable low-viscosity refrigerating machine oil is directed into the expansion space for expansion. From the injection pump on the space side, towards the compression space, from the injection pump on the compression space side,
Oil droplets with sufficient specific heat are injected into each space as a fine spray through the oil injection nozzle at a flow rate several times the weight flow rate of the working gas entering and exiting each space. Due to the existence of the working gas, the expansion and compression of the working gas occurring in each space are brought closer to isothermal changes, and the drop and rise in temperature are made considerably small, and the circulating oil in the working gas flowing out from each space is reduced. Before reaching the regenerative heat exchanger, the oil droplets are separated and captured by the aforementioned cyclone-like gas-liquid separator and flowed down as liquid into separate pipes, so that the temperature on the expansion space side is slightly lower than that at the time of injection. Is the cold energy of the circulating oil directly used for freezing?
Alternatively, the structure is such that the oil is transferred to brine in a low-temperature heat exchanger, frozen, and then returned to the injection pump on the expansion space side for recirculation. By radiating heat to the outside by a suitable radiator and then returning it to the injection pump on the compression space side for recirculation, the amount of cold heat generated by the working gas and the heat of compression can be converted to the sensible heat of the working gas. The principle of an inverted Stirling cycle refrigerator is that the sensible heat of circulating oil in separate pipes that do not mix with each other is used for refrigeration and heat is radiated. In this case, the outside of each device and each conduit shall be sufficiently insulated and the cylinder arrangement type of the reverse Stirling cycle refrigerator may be a two-cylinder type, a displacer type, or a linear type. In addition, the type and pressure of circulating oil, the type of working gas, the type and material of auxiliary equipment such as gas-liquid separators and injection pumps, etc. are free.
JP21047190A 1990-08-10 1990-08-10 Reverse stirling refrigeration machine having circulating oil Pending JPH0493559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21047190A JPH0493559A (en) 1990-08-10 1990-08-10 Reverse stirling refrigeration machine having circulating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21047190A JPH0493559A (en) 1990-08-10 1990-08-10 Reverse stirling refrigeration machine having circulating oil

Publications (1)

Publication Number Publication Date
JPH0493559A true JPH0493559A (en) 1992-03-26

Family

ID=16589890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21047190A Pending JPH0493559A (en) 1990-08-10 1990-08-10 Reverse stirling refrigeration machine having circulating oil

Country Status (1)

Country Link
JP (1) JPH0493559A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638684A (en) * 1995-01-16 1997-06-17 Bayer Aktiengesellschaft Stirling engine with injection of heat transfer medium
WO2007025027A2 (en) * 2005-08-24 2007-03-01 Purdue Research Foundation Thermodynamic systems operating with near-isothermal compression and expansion cycles
US7617680B1 (en) 2006-08-28 2009-11-17 Cool Energy, Inc. Power generation using low-temperature liquids
US7694514B2 (en) 2007-08-08 2010-04-13 Cool Energy, Inc. Direct contact thermal exchange heat engine or heat pump
US7805934B1 (en) 2007-04-13 2010-10-05 Cool Energy, Inc. Displacer motion control within air engines
US7810330B1 (en) 2006-08-28 2010-10-12 Cool Energy, Inc. Power generation using thermal gradients maintained by phase transitions
US7877999B2 (en) 2007-04-13 2011-02-01 Cool Energy, Inc. Power generation and space conditioning using a thermodynamic engine driven through environmental heating and cooling
US8061132B2 (en) 2009-06-29 2011-11-22 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US8353156B2 (en) 2009-06-29 2013-01-15 Lightsail Energy Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
WO2022198246A1 (en) * 2021-03-26 2022-09-29 Hofbauer Fritz Hot-fluid machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638684A (en) * 1995-01-16 1997-06-17 Bayer Aktiengesellschaft Stirling engine with injection of heat transfer medium
WO2007025027A2 (en) * 2005-08-24 2007-03-01 Purdue Research Foundation Thermodynamic systems operating with near-isothermal compression and expansion cycles
WO2007025027A3 (en) * 2005-08-24 2007-05-03 Purdue Research Foundation Thermodynamic systems operating with near-isothermal compression and expansion cycles
US7617680B1 (en) 2006-08-28 2009-11-17 Cool Energy, Inc. Power generation using low-temperature liquids
US7810330B1 (en) 2006-08-28 2010-10-12 Cool Energy, Inc. Power generation using thermal gradients maintained by phase transitions
US7805934B1 (en) 2007-04-13 2010-10-05 Cool Energy, Inc. Displacer motion control within air engines
US7877999B2 (en) 2007-04-13 2011-02-01 Cool Energy, Inc. Power generation and space conditioning using a thermodynamic engine driven through environmental heating and cooling
US7694514B2 (en) 2007-08-08 2010-04-13 Cool Energy, Inc. Direct contact thermal exchange heat engine or heat pump
US8061132B2 (en) 2009-06-29 2011-11-22 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8065874B2 (en) 2009-06-29 2011-11-29 Lightsale Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8191360B2 (en) 2009-06-29 2012-06-05 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8240142B2 (en) 2009-06-29 2012-08-14 Lightsail Energy Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8353156B2 (en) 2009-06-29 2013-01-15 Lightsail Energy Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
WO2022198246A1 (en) * 2021-03-26 2022-09-29 Hofbauer Fritz Hot-fluid machine

Similar Documents

Publication Publication Date Title
US4873831A (en) Cryogenic refrigerator employing counterflow passageways
CN105485953B (en) Ultra-low temperature refrigerating device
JPH0493559A (en) Reverse stirling refrigeration machine having circulating oil
US3221509A (en) Refrigeration method and apparatus
KR101239846B1 (en) Stirling engine of which the heat-exchange parts are improved
US5609034A (en) Cooling system
JP5714461B2 (en) Cryogenic refrigerator
US3673809A (en) In-line multistage cryogenic apparatus
CN106247661B (en) A kind of multi-stage pulse tube refrigeration machine
JP6188619B2 (en) Cryogenic refrigerator
JP6109057B2 (en) Regenerator type refrigerator
JP3751613B2 (en) Heat exchange system and Stirling refrigerator
CN110849055A (en) Low-temperature refrigerator
CN107036320A (en) Cold compression formula vascular refrigerator and pre-cooling type refrigerator system
JP2941558B2 (en) Stirling refrigeration equipment
CN100427848C (en) Heat sound driving pulse pipe refrigeration machine system
Hachem et al. Impact of operating parameters on beta type regenerative Stirling machine performances
US3365896A (en) Low temperature refrigerating arrangement
CN209041062U (en) A kind of air compressor machine water-cooled cylinder structure
CN109990496A (en) A kind of tandem vascular refrigerator
CN1271833A (en) Supercritical backheat heated heat pump unit driven thermodynamically
CN2510796Y (en) Inertial energy-saving pneumatic returning-type refrigerating compressor
KR940010579B1 (en) Stirring cycle
TWI512190B (en) Cooling and heating hybrid device having thermal-lag stirling engine and control method thereof
JP3363697B2 (en) Refrigeration equipment