JPH0493009A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH0493009A
JPH0493009A JP2209161A JP20916190A JPH0493009A JP H0493009 A JPH0493009 A JP H0493009A JP 2209161 A JP2209161 A JP 2209161A JP 20916190 A JP20916190 A JP 20916190A JP H0493009 A JPH0493009 A JP H0493009A
Authority
JP
Japan
Prior art keywords
heat
organic polymer
resistant organic
fibers
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2209161A
Other languages
Japanese (ja)
Other versions
JP2965335B2 (en
Inventor
Toshiaki Sasaki
佐々木 稔昌
Makoto Shimizu
誠 清水
Kentaro Nakaaki
健太郎 仲秋
Akihiro Shimada
晶弘 島田
Takahito Ito
伊藤 隆人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2209161A priority Critical patent/JP2965335B2/en
Publication of JPH0493009A publication Critical patent/JPH0493009A/en
Application granted granted Critical
Publication of JP2965335B2 publication Critical patent/JP2965335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To decrease impedance through improvement in tensile strength by forming a separator from a mixed unwoven of cloth glass fibers and heat- resistant organic polymer fibers having predetermined glass transition point and hot-welding property at a temperature above the melting point or glass transition temperature. CONSTITUTION:A separator consists of a mixed unwoven cloth of glass fibers and heat-resistant organic polymer fibers having a glass transition temperature of 130 deg.C or more and hot-welding property at a temperature above the melting point and glass transition temperature. A preferable heat-resistant organic polymer fiber is aromatic polyamide or polyphenylenesulfide. The thickness of a glass fiber yarn is preferably 1-10mum, and that of a heat-resistant organic polymer fiber yarn 0.5-5mum. For the purpose of mixing glass fiber yarns and heat-resistant organic polymer fiber yarns, their preferable proportion is 4:608:12 by weight ratio.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、独特のセパレータを備える電解コンデンサに
関し、更に詳しくは、コンデンサの長寿命化を実現でき
る化学的にも熱的にも安定な素材からなり、所定の処理
によって引張り強度を向上させて低密度化を可能とする
ことにより、コンデンサの低インピーダンス化を図るこ
とができるセパレータを備える電解コンデンサに関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolytic capacitor with a unique separator, and more particularly to a chemically and thermally stable material that can extend the life of the capacitor. The present invention relates to an electrolytic capacitor equipped with a separator that can lower the impedance of the capacitor by improving its tensile strength through a predetermined treatment and making it possible to lower the density of the capacitor.

[従来の技術] 電解コンデンサは、小形、大容量、安価で整流出力の平
滑化等に衝れた特性を示し、各種電気・電子機器の重要
な構成要素の1つである。一般に電解コンデンサには電
解液式と固体式とがあり、前者か、陽極と陰極との間に
電解液を介在させるのに対し、後者は、二酸化マンカン
、二酸化鉛、テ1〜ラシアノキノジメタン錯塩またはポ
リピロールのような導電性の酸化Thまたは有機物を固
体電解質として介在させる。
[Prior Art] Electrolytic capacitors are small, large in capacity, inexpensive, and have excellent characteristics such as smoothing of rectified output, and are one of the important components of various electrical and electronic devices. In general, there are two types of electrolytic capacitors: an electrolyte type and a solid type.The former uses an electrolyte between the anode and the cathode, while the latter uses mankan dioxide, lead dioxide, Te1-lacyanoquinodimethane, etc. A conductive oxidized Th or organic substance such as a complex salt or polypyrrole is interposed as a solid electrolyte.

電解液式または固体式の電解コンデンサいずれの場合に
あっても、陽極箔と集電陰極箔との間に一般に多孔質の
素材からなるセパレータを挾持させることにより、電解
Wj、または固体電解質の浸漬および保持を確実にし、
製品における陽極箔と陰極箔との隔離を確実にする手段
がしばしば用いられる。
In either case of electrolyte type or solid type electrolytic capacitor, electrolytic Wj or immersion of solid electrolyte can be achieved by sandwiching a separator generally made of a porous material between the anode foil and the collector cathode foil. and ensure retention;
Means are often used to ensure separation of the anode and cathode foils in the product.

電解コンデンサ用セパレータとしては、マニラ紙、29
71〜紙等のセルロース系繊維が広く使用されているか
、従来のセパレータを用いた電解コンデンサにおいては
、長期間コンデンサを使用すると電解液とセパレータと
の化学反応等が生じ、安定した特性を十分に維持できな
い欠点があった。すなわち、従来のセパレータを用いた
電解コンデンサにおいては、例えば、苛酷な条件で長期
間使用した場合における静電容量(Cap、)、誘電正
接(tanδ)、インピータンス(l1np、 )等の
電解コンデンサ特性の低下が顕著に認められ、これらの
特性低下を回避または緩和することか望まれていた。
As a separator for electrolytic capacitors, Manila paper, 29
71 ~ Cellulose fibers such as paper are widely used, and in electrolytic capacitors using conventional separators, chemical reactions between the electrolyte and the separator occur when the capacitor is used for a long period of time, making it difficult to maintain stable characteristics sufficiently. There were some drawbacks that made it unsustainable. In other words, in an electrolytic capacitor using a conventional separator, for example, electrolytic capacitor characteristics such as capacitance (Cap, ), dielectric loss tangent (tan δ), and impedance (l1np, ) when used for a long period of time under harsh conditions A significant decrease in properties was observed, and it has been desired to avoid or alleviate this decrease in properties.

安定した特性を十分に維持できない原因として、特性低
下の際に何らかの不都合な化学反応か生起し、結果的に
セパレータの劣化を招くことか考えられるが、この際に
起こり得る化学反応としては、セルロース系繊維の水酸
基と特に電解液式コンデンサの電解液の成分であるカル
ホン酸とのエステル化反応を挙げることができる。この
エステル化反応は、特性を維持するのに有効なイオンの
消費を招き、コンデンサ特性を特に低下させると考えら
れる。
One possible reason for not being able to maintain stable properties is that some kind of inconvenient chemical reaction occurs when the properties deteriorate, resulting in deterioration of the separator. An example of this is an esterification reaction between the hydroxyl groups of the fibers and carbonic acid, which is a component of the electrolyte of the electrolyte type capacitor. It is believed that this esterification reaction leads to the consumption of ions that are effective in maintaining the properties, and particularly deteriorates the capacitor properties.

[発明が解決しようとする課題] 本発明は、電解コンデンサのセパレータを改良して、コ
ンデンサの長か命化を実現できる化学的にも熱的にも安
定な素材からなり、所定の処理によって引張り強度を向
上させて低密度化を可能とし、コンデンサの低インピー
ダンス化を実現するセパレータを提供し、これを倫える
電解コンデンサを提供することを目的とする。
[Problems to be Solved by the Invention] The present invention improves the separator of an electrolytic capacitor, and makes it made of a chemically and thermally stable material that can extend the life of the capacitor. The purpose of the present invention is to provide a separator that improves strength, enables lower density, and lowers the impedance of a capacitor, and to provide an electrolytic capacitor that achieves this.

[課題を解決するための手段] 本発明によれは、陽極箔と陰極箔との間にセパレータが
介在する電解コンデンサにおいて、前記セパレータが、
ガラス繊維と、ガラス転移温度130℃以上を有し融点
もしくはガラス転移温度以上の温度にて融着性を有する
耐熱性有機高分子繊維との混抄不織布からなる電解コン
デンサ用セパレータであることを特徴とする電解コンデ
ンサが提供される。
[Means for Solving the Problems] According to the present invention, in an electrolytic capacitor in which a separator is interposed between an anode foil and a cathode foil, the separator comprises:
A separator for an electrolytic capacitor made of a mixed nonwoven fabric of glass fiber and a heat-resistant organic polymer fiber having a glass transition temperature of 130° C. or higher and having fusion properties at a melting point or a temperature higher than the glass transition temperature. An electrolytic capacitor is provided.

耐熱性有機高分子繊維が、芳香族ポリアミド(アラミド
)またはポリフェニレンサルファイド(PPS)であれ
は好適である。
It is preferable that the heat-resistant organic polymer fiber is aromatic polyamide (aramid) or polyphenylene sulfide (PPS).

ガラス繊維糸の太さは好ましくは1〜10μmとし、太
さの異なる繊維糸を適宜混合して使用することができる
。また、耐熱性有機高分子繊維糸の太さは好ましくは0
.5〜5μmとし、太さの異なる繊維糸を適宜混合して
使用することかできる。ガラス繊維糸と耐熱性有機高分
子繊維糸とを混抄するに際し、これらの割合を重量比で
4=6〜8:12とずれは好適である。
The thickness of the glass fiber yarn is preferably 1 to 10 μm, and fiber yarns of different thicknesses can be mixed as appropriate. In addition, the thickness of the heat-resistant organic polymer fiber yarn is preferably 0.
.. The thickness may be 5 to 5 μm, and fiber threads of different thicknesses may be mixed as appropriate. When mixing and paper-making the glass fiber yarn and the heat-resistant organic polymer fiber yarn, it is preferable that the weight ratio of these yarns be different from 4=6 to 8:12.

混抄不織布を構成する耐熱性有機高分子繊維が、融点も
しくはガラス転移温度以上の温度で処理され、ガラス繊
維と耐熱性有機高分子繊維との間および耐熱性有機高分
子繊維同士の間の繊維間交銘部にて融着もしくは接着さ
れていれば好適である。
The heat-resistant organic polymer fibers constituting the mixed nonwoven fabric are treated at a temperature higher than their melting point or glass transition temperature, and the fibers between the glass fibers and the heat-resistant organic polymer fibers and between the heat-resistant organic polymer fibers are It is preferable if they are fused or bonded at the intersection.

混抄不織布の密度が0.05〜50 g / cm3で
あり、厚さが10〜200μmであれば好適である。
It is preferable that the mixed nonwoven fabric has a density of 0.05 to 50 g/cm3 and a thickness of 10 to 200 μm.

[作用] 前記したように、電解コンデンサ用セパレータとしては
、マニラ紙、2971〜紙等のセルロース系繊維が広く
使用されている。この種の先行技術としては、特開昭5
0−122662号、特開昭52−366号、特開昭6
3−207114号、実開昭61−27328号、実開
昭61−38926号並びに実開昭62−162830
号に記載された技術がある。
[Function] As described above, cellulose fibers such as Manila paper and 2971-paper are widely used as separators for electrolytic capacitors. As a prior art of this kind, JP-A No. 5
No. 0-122662, JP-A No. 52-366, JP-A No. 6
3-207114, Utility Model Application No. 61-27328, Utility Model Application No. 61-38926, and Utility Model Application No. 62-162830
There is a technology described in the issue.

しかしながら、このような従来のセパレータを用いた電
解コンデンサにおいては、長期間コンデンサを使用する
と電解液とセパレータとの化学反応等が生じ、安定した
特性を十分に維持できない等の欠点かあった。この化学
反応の原因として、セルロース系繊維の水酸基の寄与が
考えられるか、本発明は、このような従来のセパレータ
の化学反応性を抑制する観点から検討を行った結果完成
されたものである。
However, such conventional electrolytic capacitors using separators have drawbacks such as chemical reactions between the electrolyte and the separator when the capacitors are used for a long period of time, making it impossible to maintain sufficiently stable characteristics. The present invention was completed as a result of studies conducted from the viewpoint of suppressing the chemical reactivity of such conventional separators as to whether the contribution of hydroxyl groups in cellulose fibers is considered to be the cause of this chemical reaction.

化学反応の抑制という観点からは、セルロース系繊維と
性質を全く異にするガラス繊維を単独で電解コンデンサ
のセパレータに使用する手段もあるか、ガラス繊維単独
では繊維間のからみ合いが殆ど無いため、ガラス繊維に
PPSあるいはアラミド繊維を混抄して抄紙したものを
熱処理(加熱加圧処理)することにより繊維間を融着(
あるいは接@)させて不織布の強度を向上させる。
From the perspective of suppressing chemical reactions, there is a way to use glass fiber alone in the separator of electrolytic capacitors, which has properties completely different from cellulose fibers, or because glass fiber alone has almost no intertwining between the fibers. Paper made by mixing PPS or aramid fibers with glass fibers is heat treated (heating and pressure treatment) to fuse the fibers (
Alternatively, the strength of the nonwoven fabric can be improved by contacting it.

本発明で用いるガラス、アラミド、ポリフェニレンサル
ファイドは、化学的にも熱的にも安定であり、電解コン
デンサの長寿命化を実現することができるものである。
Glass, aramid, and polyphenylene sulfide used in the present invention are chemically and thermally stable, and can extend the life of an electrolytic capacitor.

また、繊維間交錯部で融着することにより、不織布の引
張り強度を高くすることができるため、セパレータの低
密度化が可能となり、これによりコンデンサの低インピ
ーダンス化の実現を図ることかできる。
Furthermore, by fusing at the intersections between the fibers, the tensile strength of the nonwoven fabric can be increased, making it possible to lower the density of the separator, thereby achieving lower impedance of the capacitor.

「発明の効果」 本発明によれは、電解コンデンサのセパレータを改良し
て、コンデンサの長欠白化を実現できる化学的にも熱的
にも安定な素材からなり、所定の処理によって引張り強
度を向上させて低密度化を可能とし、コンデンサの低イ
ンピータンス化を実現するセパレータをf萌える電解コ
ンデンサが提供される。
"Effects of the Invention" According to the present invention, the separator of an electrolytic capacitor is made of a chemically and thermally stable material that can achieve long-cut whitening of the capacitor, and its tensile strength is improved by a predetermined treatment. An electrolytic capacitor is provided in which a separator is formed, which enables lower density and lower impedance of the capacitor.

[実施例] 以下に実施例により本発明を更に詳細に説明するか、本
発明は以下の実施例にのみ限定されるものではない。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited only to the following Examples.

電解コン−ン の作製 第1表に示す電解液およびセパレータを用い、これらを
組合せて常法によりザイズ10φx20j、定格電圧i
ov、定格静電容量ioo。
Preparation of electrolytic cone Using the electrolytic solution and separator shown in Table 1, combine them and make the size 10φ x 20j and the rated voltage i by the usual method.
ov, rated capacitance ioo.

μFの電解コンデンサを作製した。表中の記号は次の電
解液およびセパレータを示す。
A μF electrolytic capacitor was fabricated. The symbols in the table indicate the following electrolytes and separators.

電解液 A:γ−プチロラク1〜ン/マレイン酸テトラエチルア
ンモニウム塩系電解液 B:γ−ブヂロラクトン/フタル酸テトラメチルアンモ
ニウム塩系電解液 C:エチレングリコール/アジピン酸アンモニウム塩系
電解液 セパレータ HER:マニラ/ニスハル1〜(重量比60:40)混
抄紙 G1:ガラス繊維/PPS繊維混抄不織布G2:ガラス
繊維/アラミド繊維混抄不織布G3:ガラス繊維/PP
S繊維混抄不織布なお、G1は9μmおよび6μmのガ
ラス繊維糸(1:1重量比)と3μmのPPS繊維糸と
からなり(ガラス: PP5=1 : 1重量比)、G
2は9μmおよび3μmのガラス繊維糸(4:6重量比
)と2μmのアラミド繊維糸とからなり(ガラス:アラ
ミド−7=3重量比)、G3は6μmのガラス繊維糸と
2μmのPPS繊維糸とからなる(ガラス:PP5=4
 : 6重量比)。
Electrolyte A: γ-butyrolactone/tetraethylammonium maleate electrolyte B: γ-butyrolactone/tetramethylammonium phthalate electrolyte C: Ethylene glycol/ammonium adipate electrolyte Separator HER: Manila /Nishal 1 ~ (weight ratio 60:40) Mixed paper G1: Glass fiber/PPS fiber mixed nonwoven fabric G2: Glass fiber/aramid fiber mixed nonwoven fabric G3: Glass fiber/PP
S fiber-mixed nonwoven fabric G1 consists of 9 μm and 6 μm glass fiber threads (1:1 weight ratio) and 3 μm PPS fiber threads (glass: PP5 = 1:1 weight ratio),
G3 consists of 9 μm and 3 μm glass fiber yarns (4:6 weight ratio) and 2 μm aramid fiber yarns (glass:aramid-7=3 weight ratio), and G3 consists of 6 μm glass fiber yarns and 2 μm PPS fiber yarns. (Glass: PP5=4
: 6 weight ratio).

第1表 電解液  セパレータ 4苅 髭尺 仄上 A   Gl  O,18100 A   G2 0.19 112 A   G3 0.21 102 A   HERO,4540 B   Gl  O,18100 実施9111 実施l111−2 実施旧−3 比11i11 実施例2−1 実流1)12−2    8     G2  0.1
9  112実!例2−3     B     G3
  0.20  115比較1112       B
      HERO,4540実施旧−I    C
GI   O,18100実H3−2CG2  0.1
9  112実施例3−3     CG3  0.1
7  100比較例3       CHERO,、+
5   40表中、密度の単位はg/cm3であり、厚
さの単位はμmである。
1st table Electrolyte Separator 4 Stalks A Gl O, 18100 A G2 0.19 112 A G3 0.21 102 A HERO, 4540 B Gl O, 18100 Implementation 9111 Implementation 111-2 Implementation old-3 Ratio 11i11 Example 2-1 Actual flow 1) 12-2 8 G2 0.1
9 112 fruits! Example 2-3 B G3
0.20 115 comparison 1112 B
HERO, 4540 implementation old-IC
GI O, 18100 Actual H3-2CG2 0.1
9 112 Example 3-3 CG3 0.1
7 100 Comparative Example 3 CHERO,,+
5 In Table 40, the unit of density is g/cm3, and the unit of thickness is μm.

試験結果 初期特性および105℃で5000時間使用後の特性と
して静電容量、誘電正接並びにインピータンスの測定値
を第2表に示ず。表中、Cap、は120 Hzにおけ
る静電容量(μF)であり、ΔCapは静電容量変化率
(%)であり、tanδは120 Hzにおける損失角
の正接であり、I)IP、は100KHzにおけるイン
ピーダンス(Ω)である。
Test Results Table 2 does not show the measured values of capacitance, dielectric loss tangent, and impedance as initial characteristics and characteristics after 5000 hours of use at 105°C. In the table, Cap is the capacitance (μF) at 120 Hz, ΔCap is the capacitance change rate (%), tan δ is the tangent of the loss angle at 120 Hz, and I) IP is the capacitance at 100 KHz. Impedance (Ω).

第2表 初期特性 実に例2−2    −4.54  0.029   
0.037実施例2−3    −4.23  0.0
31   0.037比1例2      −4.0 
  0.081   0.074実流1113−1  
  −9.67  0.0G6   0.111実施1
113−2    −9.32  0.062   0
.108実施例3−3    −7.95  0.0?
5   0.123比較例3      −10   
  0.248   0.225これらの結果から、本
発明による電解コンデンサにあっては、コンデンサの長
寿命化が実現されると共に、低密度化およびコンデンサ
の低インピータンス化が実現されることか分る。
Table 2 Initial characteristics Example 2-2 -4.54 0.029
0.037 Example 2-3 -4.23 0.0
31 0.037 ratio 1 example 2 -4.0
0.081 0.074 Actual flow 1113-1
-9.67 0.0G6 0.111 Implementation 1
113-2 -9.32 0.062 0
.. 108 Example 3-3 -7.95 0.0?
5 0.123 Comparative Example 3 -10
0.248 0.225 From these results, it can be seen that the electrolytic capacitor according to the present invention has a longer life span, lower density, and lower impedance of the capacitor. .

実態1−1 実■1−2 実■1−3 比較例1 実施!A2−1 実施例2−2 実111112−3 比較llI2 実流913−1 実縫例3−2 実施Il!3−3 比較例3 す■扉 735.4 718.4 755.4 ?34.8 698.3 768.4 743.0 714.7 754.8 tan  δ 0.022 0.023 0.026 0.068 0.025 0.026 0.031 0.070 0.043 0.045 0.051 0.138 月Iユ 0.020 0.024 0、0213 0.049 0.025 0.031 0.033 0.062 0.057 0.064 0.071 0.132 実施例1−1 実態1−2 実態1−3 比1例1 実流1112−1 − 6.62 − 7.40 − 6.62 − 3.53 0.052 0.053 0.067 0.544 0.026 0.081 0.087 0.106 0.392 0.029Actual situation 1-1 Real ■1-2 Real ■1-3 Comparative example 1 implementation! A2-1 Example 2-2 Fruit 111112-3 Comparison llI2 Jitsuryu 913-1 Actual sewing example 3-2 Implementation Il! 3-3 Comparative example 3 S■door 735.4 718.4 755.4 ? 34.8 698.3 768.4 743.0 714.7 754.8 tan δ 0.022 0.023 0.026 0.068 0.025 0.026 0.031 0.070 0.043 0.045 0.051 0.138 Moon I Yu 0.020 0.024 0,0213 0.049 0.025 0.031 0.033 0.062 0.057 0.064 0.071 0.132 Example 1-1 Actual situation 1-2 Actual situation 1-3 Ratio 1 example 1 Actual flow 1112-1 -6.62 -7.40 -6.62 - 3.53 0.052 0.053 0.067 0.544 0.026 0.081 0.087 0.106 0.392 0.029

Claims (4)

【特許請求の範囲】[Claims] (1)陽極箔と陰極箔との間にセパレータが介在する電
解コンデンサにおいて、前記セパレータが、ガラス繊維
と、ガラス転移温度130℃以上を有し融点もしくはガ
ラス転移温度以上の温度にて融着性を有する耐熱性有機
高分子繊維との混抄不織布からなる電解コンデンサ用セ
パレータであることを特徴とする電解コンデンサ。
(1) In an electrolytic capacitor in which a separator is interposed between an anode foil and a cathode foil, the separator has a glass transition temperature of 130°C or higher and is fusion-bondable to the glass fiber at a temperature higher than the melting point or the glass transition temperature. An electrolytic capacitor characterized in that it is a separator for an electrolytic capacitor made of a nonwoven fabric mixed with a heat-resistant organic polymer fiber having the following properties.
(2)耐熱性有機高分子繊維が、芳香族ポリアミド(ア
ラミド)またはポリフェニレンサルファイド(PPS)
である請求項1記載の電解コンデンサ。
(2) The heat-resistant organic polymer fiber is aromatic polyamide (aramid) or polyphenylene sulfide (PPS)
The electrolytic capacitor according to claim 1.
(3)混抄不織布を構成する耐熱性有機高分子繊維が、
融点もしくはガラス転移温度以上の温度で処理され、ガ
ラス繊維と耐熱性有機高分子繊維との間および耐熱性有
機高分子繊維同士の間の繊維間交錯部にて融着もしくは
接着されている請求項1記載の電解コンデンサ。
(3) The heat-resistant organic polymer fibers that make up the mixed nonwoven fabric are
Claims in which the fibers are treated at a temperature higher than their melting point or glass transition temperature and are fused or adhered at interfiber intersections between glass fibers and heat-resistant organic polymer fibers and between heat-resistant organic polymer fibers. 1. The electrolytic capacitor according to 1.
(4)混抄不織布の密度が0.05〜50g/cm^3
であり、厚さが10〜200μmである請求項1記載の
電解コンデンサ。
(4) The density of the mixed nonwoven fabric is 0.05 to 50 g/cm^3
The electrolytic capacitor according to claim 1, which has a thickness of 10 to 200 μm.
JP2209161A 1990-08-09 1990-08-09 Electrolytic capacitor Expired - Fee Related JP2965335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209161A JP2965335B2 (en) 1990-08-09 1990-08-09 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209161A JP2965335B2 (en) 1990-08-09 1990-08-09 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0493009A true JPH0493009A (en) 1992-03-25
JP2965335B2 JP2965335B2 (en) 1999-10-18

Family

ID=16568335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209161A Expired - Fee Related JP2965335B2 (en) 1990-08-09 1990-08-09 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2965335B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656392A (en) * 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
JP2002367863A (en) * 2001-06-07 2002-12-20 Nippon Kodoshi Corp Electrolytic capacitor
KR101112023B1 (en) * 2002-11-08 2012-02-24 미쯔비시 가가꾸 가부시끼가이샤 Electrolytic capacitor
JP2017150095A (en) * 2016-02-22 2017-08-31 三菱製紙株式会社 Manufacturing method of unwoven fabric containing polyphenylene sulfide fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656392A (en) * 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
US5851693A (en) * 1995-03-20 1998-12-22 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
JP2002367863A (en) * 2001-06-07 2002-12-20 Nippon Kodoshi Corp Electrolytic capacitor
KR101112023B1 (en) * 2002-11-08 2012-02-24 미쯔비시 가가꾸 가부시끼가이샤 Electrolytic capacitor
JP2017150095A (en) * 2016-02-22 2017-08-31 三菱製紙株式会社 Manufacturing method of unwoven fabric containing polyphenylene sulfide fiber

Also Published As

Publication number Publication date
JP2965335B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
KR100530522B1 (en) Capacitor with dual electric layer
US6885547B2 (en) Electrolytic capacitor
EP0974987B1 (en) Electric double layer capacitor and separator therefor
US6352565B2 (en) Electric double layer capacitor
JPH0493009A (en) Electrolytic capacitor
US6310763B1 (en) Electric double layer capacitor
JP5215836B2 (en) Separator and solid electrolytic capacitor using the separator
JP2001135551A (en) Solid-state electrolytic capacitor and manufacturing method thereof
CN111357068B (en) Separator for electrochemical element and electrochemical element
JP2010232202A (en) Separator for electricity storage device
JPH0464213A (en) Electrolytic capacitor
JP3037725B2 (en) Electrolytic capacitor
JPH0461216A (en) Electrolytic capacitor
JPH01304719A (en) Electric double layer capacitor
JP3861186B2 (en) Electric double layer capacitor
JPH0461217A (en) Electrolytic capacitor
JP2008182215A (en) Electrical double layer capacitor
JPH02155217A (en) Electrolytic capacitor
JPH02186617A (en) Solid electrolytic capacitor and manufacture thereof
JPH0424850B2 (en)
RU2160940C1 (en) Double-layer capacitor
JP2706954B2 (en) Separator for electrolytic capacitor
JPH01181407A (en) Electrolytic capacitor
JP2002260962A (en) Electric double-layer capacitor
JPH02186616A (en) Solid electrolyte capacitor and manufacture thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees