JPH0489328A - Production of glass ceramic sintered body - Google Patents

Production of glass ceramic sintered body

Info

Publication number
JPH0489328A
JPH0489328A JP20357790A JP20357790A JPH0489328A JP H0489328 A JPH0489328 A JP H0489328A JP 20357790 A JP20357790 A JP 20357790A JP 20357790 A JP20357790 A JP 20357790A JP H0489328 A JPH0489328 A JP H0489328A
Authority
JP
Japan
Prior art keywords
whisker
sintered body
mgo
weight
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20357790A
Other languages
Japanese (ja)
Inventor
Masahiro Nawa
正弘 名和
Masayuki Ishihara
政行 石原
Keizou Makio
槙尾 圭造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20357790A priority Critical patent/JPH0489328A/en
Publication of JPH0489328A publication Critical patent/JPH0489328A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a sintered body having low relative dielectric constant and coefft. of thermal expansion and high strength by compounding a whisker into a glass compsn. powder essentially comprising SiO2-Al2O3-MgO substituted by an alkaline earth metal oxide for part of MgO, and sintering this material. CONSTITUTION:The whisker-compounded glass compsn. powder is prepared by compounding a whisker with a glass compsn. powder. containing 48-63wt.% SiO2, 10-25wt.% Al2O3, 10-25wt.% MgO, 4-10wt.% B2O3, and one or more components selected from CaO, BaO, and SrO substituted for 0-20wt.% of the whole MgO component. This whisker-compounded glass compsn. is then sintered. The compounding ratio of the whisker is preferably <=50vol.% calculated as the density to the whole whisker-compounded glass compsn. As for the whisker, whiskers of silicon nitride, aluminum boride, and silicon carbide are preferable.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば、各種半導体部品を搭載したり、電気
信号の入出力端子などを取りつける多層配線基板の製造
に用いられるガラスセラミック焼結体の製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a glass ceramic sintered body used, for example, in the manufacture of multilayer wiring boards on which various semiconductor components are mounted and electrical signal input/output terminals are attached. Concerning the manufacturing method.

[従来の技術] LSIなどの各種電子部品を多数搭載する多層配線基板
においては小型化や高信幀性の要求に対応するために、
基板材料としてセラミックを利用することが広まってき
ている。セラミック材料としては比較的に高い強度を有
するアルミナが割れや欠けの生じにくい、好ましい材料
として多く使用されている。しかしアルミナ基板は比誘
電率が高く、多層配線板における電気信号の伝播速度が
遅く、高速化を要求される機器ではアルミナ基板より比
誘電率の低い基板が求められている。またアルミナの熱
膨張係数は搭載されるLSIなどの材料であるシリコン
の熱膨張係数の約2倍と高いため、熱膨張係数の差に起
因する故障の発生の問題がある。
[Prior Art] In order to meet the demands for miniaturization and high reliability in multilayer wiring boards that are equipped with a large number of various electronic components such as LSIs,
The use of ceramics as substrate materials is becoming widespread. As a ceramic material, alumina, which has relatively high strength, is often used as a preferable material that does not easily crack or chip. However, alumina substrates have a high relative permittivity, and the propagation speed of electrical signals in multilayer wiring boards is slow, so devices that require high speeds require substrates with a lower relative permittivity than alumina substrates. Furthermore, since the coefficient of thermal expansion of alumina is about twice as high as that of silicon, which is a material for LSIs and the like on which it is mounted, there is a problem of occurrence of failures due to the difference in coefficients of thermal expansion.

これらの問題を解決するために、発明者らは比誘電率お
よび、熱膨張係数の低い基板材料として焼結後の結晶構
造が主としてα−コージェライトとなるガラス組成物の
開発を行ったが、このガラス組成物を用いて得られる基
板の性能は比誘電率および熱膨張係数については低く、
優れているが抗折強度は120〜170MPaと低く、
そのために配線板とした場合、配線板に電気信号の入出
力用ピンをろう付は等で取りつける際に、ろう材と基板
との熱膨張差で生じる熱応力で割れが生じる問題や、ろ
う付は後に負荷応力が加わった時ろう付は部で基板の剥
離などが生じ、そのため導通不良などの故障が発生する
問題があった。
In order to solve these problems, the inventors developed a glass composition whose crystal structure after sintering is mainly α-cordierite as a substrate material with a low dielectric constant and a low coefficient of thermal expansion. The performance of the substrate obtained using this glass composition is low in terms of dielectric constant and coefficient of thermal expansion;
Although excellent, the bending strength is low at 120 to 170 MPa.
When using a wiring board for this purpose, when attaching electrical signal input/output pins to the wiring board by brazing, etc., there are problems such as cracking due to thermal stress caused by the difference in thermal expansion between the brazing material and the board, and problems with brazing. However, when load stress is applied later on, the board may peel off at the brazed area, resulting in failures such as poor continuity.

[発明が解決しようとする課題] 本発明の課題は比誘電率および熱膨張係数が低く、かつ
強度の強い焼結体が得られるガラスセラミンク焼結体の
製法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing a glass-ceramink sintered body that has a low dielectric constant and a low coefficient of thermal expansion, and provides a strong sintered body.

[課題を解決するための手段] 本発明は、組成が、 5iox   :4B〜63重量% A110x:10〜25重量% MgO:10〜25重量% B、O!   :  4〜10重量% の成分を有し、かつMgO成分全体に対して0〜20重
量%のMgOが、Ca02BaO1SrOの中から選ば
れた一種類以上の成分で置換さているガラス組成物粉末
に、ウィスカーを配合して得られるウィスカー配合ガラ
ス組成物を焼結することを特徴とするガラスセラミック
焼結体の製法である。
[Means for Solving the Problems] The present invention has the following composition: 5iox: 4B to 63% by weight A110x: 10 to 25% by weight MgO: 10 to 25% by weight B, O! : A glass composition powder having a component of 4 to 10% by weight, and in which 0 to 20% by weight of MgO based on the entire MgO component is replaced with one or more components selected from Ca02BaO1SrO, This is a method for producing a glass ceramic sintered body, which is characterized by sintering a whisker-containing glass composition obtained by blending whiskers.

本発明のガラス組成物粉末は焼結後の結晶構造が主とし
てα−コージェライトとなるSingAlgOs  M
gOを主成分とするガラス組成物の一種である。S i
oz  Alg Os  MgOを主成分とするガラス
組成物粉末を用いて得られる焼結体は比誘電率が低(、
熱膨張係数がシリコンに近い値となるが、成分の配合割
合によっては1o o o ’c以下の焼結温度では緻
密な焼結体が得られない場合がある。
The glass composition powder of the present invention is SingAlgOs M whose crystal structure after sintering is mainly α-cordierite.
It is a type of glass composition whose main component is gO. Si
oz Alg Os The sintered body obtained using the glass composition powder whose main component is MgO has a low dielectric constant (,
Although the coefficient of thermal expansion is close to that of silicon, a dense sintered body may not be obtained at a sintering temperature of 1 o o'c or less depending on the blending ratio of the components.

ガラス組成物の焼結法により製造される多層配線基板は
、通常導体をガラス組成物および有機バインダーなどよ
りなるグリーンシート上に形成したものを焼結して製造
される。このグリーンシート上に形成する導体としては
Au、Ag、Ag−Pd、Cuなどの低抵抗の金属が好
ましい、これらの金属の融点は1000℃付近にあるた
め、導体を溶融させずに多層配線基板を得るためには、
グリーンシートの焼結温度は1000℃以下であること
が望ましい0本発明ではこの点に鑑み、焼結を1000
℃以下で行った場合でも、緻密な焼結体となるS lo
z −Al1 Os −MgOを主成分とするガラス組
成物粉末を原料に用いるものである。このようなガラス
組成物粉末の組成はStow   :48〜63重量% A1tO,:i0〜25重量% MgO:10〜25重量% BxOs   :4〜10重量% の成分を有し、かつMgO成分全体の0〜20重量%の
MgOがCaO,BaO1SrOの中から選ばれたアル
カリ土類金属酸化物の少なくとも一種類以上ので置換さ
れてなる組成である。ガラス組成物粉末の組成が上記の
組成内であることが重要である理由を以下に各成分毎に
説明する。
A multilayer wiring board manufactured by a glass composition sintering method is usually manufactured by forming a conductor on a green sheet made of a glass composition, an organic binder, etc., and then sintering it. The conductor to be formed on this green sheet is preferably a low-resistance metal such as Au, Ag, Ag-Pd, or Cu.The melting point of these metals is around 1000°C, so multilayer wiring boards can be formed without melting the conductor. In order to get
It is desirable that the sintering temperature of the green sheet is 1000°C or less. In view of this, in the present invention, the sintering temperature is
Even when carried out at temperatures below ℃, a dense sintered body is obtained.
A glass composition powder containing z-Al1Os-MgO as a main component is used as a raw material. The composition of such glass composition powder is Stow: 48 to 63% by weight, AltO: i0 to 25% by weight, MgO: 10 to 25% by weight, BxOs: 4 to 10% by weight, and the total MgO component is It is a composition in which 0 to 20% by weight of MgO is replaced with at least one kind of alkaline earth metal oxide selected from CaO, BaO1SrO. The reason why it is important that the composition of the glass composition powder is within the above composition will be explained below for each component.

Sin、の組成割合が63重量%を越えるとガラス溶融
温度が上昇するとともに、焼結時にガラス粒子表面が急
激に結晶化するため焼結を助けるガラス相が不足し、緻
密な焼結体が得難(なる。
If the composition ratio of Sin exceeds 63% by weight, the glass melting temperature increases and the surface of the glass particles rapidly crystallizes during sintering, resulting in a lack of glass phase that helps sintering, resulting in a dense sintered body. Naru (difficult)

48重量%未満であるとガラス粉末の結晶化温度が上昇
し、緻密な焼結体が得られる焼結温度が高くなり、10
00°C以下で焼結した場合、未焼結の状態の焼結体し
か得られない問題が生じる。
If it is less than 48% by weight, the crystallization temperature of the glass powder increases, and the sintering temperature at which a dense sintered body is obtained becomes high.
If sintering is performed at a temperature below 00°C, a problem arises in that only a sintered body in an unsintered state is obtained.

A1.O,の組成割合については、25重量%を越える
と緻密な焼結体が得られる焼結温度が高くなり、100
0℃以下で焼結した場合、未焼結の状態の焼結体しか得
られない問題が生じる。10重量%未満であるとα−コ
ージェライト結晶が少なくなり、Sing  MgO系
の結晶が多く析出し、比誘電率が高くなる問題を生じる
A1. Regarding the composition ratio of O, if it exceeds 25% by weight, the sintering temperature at which a dense sintered body is obtained becomes high;
When sintering is performed at a temperature below 0° C., a problem arises in that only a sintered body in an unsintered state is obtained. If it is less than 10% by weight, the number of α-cordierite crystals will decrease, and many Sing MgO-based crystals will precipitate, causing a problem that the dielectric constant will increase.

MgOの組成割合については25重量%を越えると、ケ
イ酸マグネシウムが析出するためと推定されるが、焼結
時の変形が大きくなり、実用性に乏しくなる。10重量
%未満であると緻密な焼結体を得られないという問題を
生じる。
It is presumed that if the composition ratio of MgO exceeds 25% by weight, magnesium silicate will precipitate, but deformation during sintering will increase, making it impractical. If it is less than 10% by weight, a problem arises in that a dense sintered body cannot be obtained.

B、O,の組成割合については、10重量%を越えると
、焼結時に発泡しやすくなり、焼結可能な温度範囲が狭
くなると共に、焼結体の強度が低下する問題が生じる。
As for the composition ratio of B and O, if it exceeds 10% by weight, foaming tends to occur during sintering, the temperature range in which sintering is possible becomes narrow, and the strength of the sintered body decreases.

4重量%未満であると、ガラス粒子表面層の結晶化が2
.激に進み、1000℃以下の焼結では緻密な焼結体が
得られない問題が生じる。
If it is less than 4% by weight, the crystallization of the glass particle surface layer will be reduced by 2%.
.. Sintering progresses rapidly, and sintering at temperatures below 1000°C poses the problem that a dense sintered body cannot be obtained.

MgOを置換するアルカリ土類金属酸化物に関しては、
緻密な焼結体が得られるように、必要に応じ適宜用いう
るが、アルカリ土類金属酸化物がMgOの20重量%を
越えると、MgO成分が少なくなり、α−コージェライ
ト結晶の析出が悪くなり比誘電率が高くなる問題が生じ
る。
Regarding alkaline earth metal oxides to replace MgO,
It can be used as needed to obtain a dense sintered body, but if the alkaline earth metal oxide exceeds 20% by weight of MgO, the MgO component will decrease and the precipitation of α-cordierite crystals will be poor. Therefore, a problem arises in that the dielectric constant becomes high.

本発明は、前記のガラス組成物粉末とウィスカーとから
なるウィスカー配合ガラス組成物を焼結してガラスセラ
ミック焼結体とするものであり、このようにして得られ
る焼結体は、ウィスカーを配合していないガラス組成物
の焼結体に比べ、強度が大幅に改善される特徴を有する
。これはウィスカーが焼結体において破壊エネルギーの
散逸源として作用し、破壊に必要なエネルギーを増大さ
せるため焼結体の強度が向上するものと考えられる。
The present invention provides a glass ceramic sintered body by sintering a whisker-containing glass composition composed of the above glass composition powder and whiskers, and the sintered body thus obtained is a glass-ceramic sintered body containing whiskers. Compared to sintered bodies made of glass compositions that do not contain sintered materials, the strength of the sintered bodies is significantly improved. This is considered to be because the whiskers act as a dissipation source of fracture energy in the sintered body and increase the energy required for fracture, thereby improving the strength of the sintered body.

本発明における、ウィスカーの配合割合は密度換算でウ
ィスカーを配合したガラス組成物全体の50体積%以下
であることが重要である。(以下の体積%はすべで密度
換算により求めた値である)ウィスカーの配合割合が5
0体積%を越えると、焼結性が阻害され、緻密な焼結体
が得られず、焼結体の強度が低くなる問題が生じるため
である。
In the present invention, it is important that the blending ratio of whiskers is 50% by volume or less of the entire glass composition containing whiskers in terms of density. (The following volume percentages are all values calculated by density conversion) The blending ratio of whiskers is 5
This is because if the content exceeds 0% by volume, sinterability is inhibited, a dense sintered body cannot be obtained, and the strength of the sintered body becomes low.

ただし、ウィスカーが炭化珪素である場合は炭化珪素の
比誘電率が比較的大きいため、ウィスカー配合ガラス組
成物全体の10体積%以下の割合にとどめることが低い
比誘電率の焼結体を得るためには望ましい。
However, when the whisker is silicon carbide, the dielectric constant of silicon carbide is relatively large, so in order to obtain a sintered body with a low dielectric constant, it is necessary to keep the ratio of whiskers to 10% by volume or less of the entire whisker-containing glass composition. desirable.

また、ウィスカーの配合割合が少なすぎると、焼結体の
強度を向上させる効果が乏しくなるため、ウィスカーを
配合ガラス組成物全体の2体積%以上のウィスカーが配
合されていることが望ましい。
Furthermore, if the blending ratio of whiskers is too small, the effect of improving the strength of the sintered body will be poor, so it is desirable that the whiskers be blended in an amount of 2% or more by volume of the entire whisker-blended glass composition.

ウィスカーが焼結体において、破壊エネルギーの散逸源
として作用するには、ウィスカーは焼結後の焼結体中に
ウィスカーとして分散していることが望ましく、ガラス
組成物粉末の焼結温度では溶融し難い窒化珪素、ホウ酸
アルミ、炭化珪素のウィスカーが好適である。
In order for the whiskers to act as a dissipation source of fracture energy in the sintered body, it is desirable that the whiskers be dispersed as whiskers in the sintered body after sintering, and they should not melt at the sintering temperature of the glass composition powder. Whiskers of silicon nitride, aluminum borate, and silicon carbide, which are difficult to use, are suitable.

本発明の製法によるガラスセラミック焼結体の用途は前
記した多層配線基板が好適であるが、これに限定される
ものではなく、高強度、低い比誘電率、低い熱膨張係数
を必要とする各種分野に適用可能である。
The glass ceramic sintered body produced by the manufacturing method of the present invention is suitable for use in the above-mentioned multilayer wiring board, but is not limited to this. Applicable to the field.

[作用] 本発明ガラス組成物粉末は焼結後の焼結体が低い比誘電
率、低い熱膨張係数となる作用をする。
[Function] The glass composition powder of the present invention has the function that the sintered body after sintering has a low dielectric constant and a low coefficient of thermal expansion.

また、このガラス組成物粉末と複合するウィスカーは焼
結体中に分散させられていることにより、破壊エネルギ
ーの散逸源として作用し、焼結体の破壊に必要なエネル
ギーを増大させる作用をする。
Further, since the whiskers combined with the glass composition powder are dispersed in the sintered body, they act as a dissipation source of fracture energy and increase the energy required to fracture the sintered body.

[実施例] 本発明の実施例および比較例について、その製法および
得られた焼結体の性能試験の結果について説明する。
[Example] Regarding Examples and Comparative Examples of the present invention, the manufacturing method thereof and the results of performance tests of the obtained sintered bodies will be explained.

各実施例および比較例についてのウィスカー配合ガラス
組成物の製法および焼結体の製法は次のようにして行っ
た。
The whisker-containing glass composition and the sintered body of each Example and Comparative Example were manufactured as follows.

各配合成分(S 10 t 、A I ! Os 、M
 g O5B20.など)を第1表に示す割合で配合し
、それぞれをアルミナ質ルツボに入れ、約1500〜1
550℃で加熱し溶解した。得られた溶融液を水中に投
下し、ガラス組成物とした後、アルミナ質ボールミル中
で湿式粉砕または乾式粉砕をし、平均粒径2〜4μmの
ガラス組成物粉末を得た。
Each compounding component (S 10 t , A I ! Os , M
g O5B20. etc.) in the proportions shown in Table 1, put each in an alumina crucible, and add approximately 1,500 to 1
It was heated at 550°C to dissolve it. The resulting melt was poured into water to form a glass composition, which was then wet-pulverized or dry-pulverized in an alumina ball mill to obtain a glass composition powder with an average particle size of 2 to 4 μm.

第1表のc−1〜G−10のガラス組成物粉末は本発明
の組成範囲内の組成のガラス組成物粉末であり、G−1
1〜G−14のガラス組成物粉末は本発明の組成範囲を
外れた組成のガラス組成物粉末である。
Glass composition powders c-1 to G-10 in Table 1 are glass composition powders having compositions within the composition range of the present invention, and G-1
Glass composition powders No. 1 to G-14 have compositions outside the composition range of the present invention.

こうして得られたガラス組成物粉末に対して、各種のウ
ィスカーを第2表および第3表に示す体積分率(配合物
全体に対する体積%)で配合し、ナイロン賞ボールミル
中でエチルアルコールを添加して24時時間式混合し、
乾燥し、ウィスカー配合ガラス組成物を得た。なお、各
種のウィスカーはいずれも市販の、平均直径0.5〜1
.0μm、平均長さlO〜1100tI前後のものであ
り、ガラス組成物粉末と配合する前に、純水中で超音波
を照射した後、開口径50μm(#325メツシュ)の
フィルターを通過させたものを用いた。
Various whiskers were blended into the glass composition powder thus obtained at the volume fractions (volume % relative to the entire blend) shown in Tables 2 and 3, and ethyl alcohol was added in a nylon ball mill. 24-hour mixing,
It was dried to obtain a whisker-containing glass composition. In addition, all types of whiskers are commercially available and have an average diameter of 0.5 to 1.
.. 0 μm, average length of about 10 to 1100 tI, and before blending with the glass composition powder, it was irradiated with ultrasonic waves in pure water and passed through a filter with an opening diameter of 50 μm (#325 mesh). was used.

こうして得られたウィスカー配合ガラス組成物を黒鉛製
モールドを用いて、アルゴン雰囲気中、昇温スピード1
0℃/分、焼結温度1000℃、保持時間1時間、プレ
ス圧力35MPaの条件下でホットプレス焼結し、50
mm−の円盤状のウィスカー複合ガラスセラミック焼結
体を得た。得られた50mmφの円盤状のウィスカー複
合ガラスセラミック焼結体について、周波数IMHzに
おける比誘電率を測定した。またこの焼結体から切断お
よび研削加工により、4X3X35mmの寸法の試験片
を作成し、熱膨張係数およびJIS−R1601の3点
曲げによる抗折強度の測定を行った。その結果を第2表
、第3表に示す。
Using a graphite mold, the whisker-containing glass composition thus obtained was heated at a heating rate of 1 in an argon atmosphere.
Hot press sintering was carried out under the conditions of 0 °C/min, sintering temperature of 1000 °C, holding time of 1 hour, and press pressure of 35 MPa.
A whisker composite glass-ceramic sintered body in the shape of a disk of mm- was obtained. The relative permittivity at a frequency of IMHz was measured for the obtained 50 mmφ disk-shaped whisker composite glass ceramic sintered body. A test piece with dimensions of 4 x 3 x 35 mm was prepared from this sintered body by cutting and grinding, and the coefficient of thermal expansion and bending strength by three-point bending according to JIS-R1601 were measured. The results are shown in Tables 2 and 3.

第2表に示す実施例1〜11は本発明の組成範囲内の組
成のガラス組成物粉末を用いて実施したものであり、何
れの場合も得られた抗折強度は209〜391MPaと
高い値を示しており、また比誘電率および熱膨張係数も
実用上、十分な値が得られた。この結果から本発明の実
施例の焼結体は、比誘電率が低く、熱膨張係数が低(、
かつ強度が強いことが実証された。
Examples 1 to 11 shown in Table 2 were carried out using glass composition powders having compositions within the composition range of the present invention, and the flexural strength obtained in each case was as high as 209 to 391 MPa. , and the relative dielectric constant and thermal expansion coefficient had values sufficient for practical use. From these results, the sintered bodies of the examples of the present invention have a low dielectric constant and a low coefficient of thermal expansion (
It was also proven that the strength is strong.

これに対し、第3表の比較例1〜4ではウィスカーの配
合割合が60〜70体積%と50体積%より多いため、
緻密な焼結体が得られず、抗折強度は47〜118MP
aと低い値であった。また、第3表の比較例5〜8では
ガラス組成物粉末の各成分の配合割合が本発明の組成範
囲を外れたものであり、この場合ウィスカーを配合する
ことにより、さらに焼結性が悪くなり、ウィスカーの配
合割合が10体積%であるにもかかわらす1000°C
の焼結では緻密な焼結体が得られず、抗折強度は78〜
148MPaと低い値であった。
On the other hand, in Comparative Examples 1 to 4 in Table 3, the blending ratio of whiskers is 60 to 70% by volume, which is higher than 50% by volume.
A dense sintered body cannot be obtained, and the bending strength is 47 to 118 MP.
It was a low value of a. In addition, in Comparative Examples 5 to 8 in Table 3, the blending ratio of each component of the glass composition powder was outside the composition range of the present invention, and in this case, by blending whiskers, the sinterability was even worse. 1000°C even though the proportion of whiskers is 10% by volume.
A dense sintered body cannot be obtained by sintering, and the bending strength is 78~
The value was as low as 148 MPa.

[発明の効果コ 本発明の製法によるガラスセラミック焼結体は、比誘電
率が低く、熱膨張係数が低く、かつ強度が強い焼結体と
なるため、多層配線基板とするに好適なガラスセラミッ
ク焼結体の提供が可能となった。
[Effects of the Invention] The glass ceramic sintered body produced by the manufacturing method of the present invention has a low dielectric constant, a low coefficient of thermal expansion, and a strong sintered body, so it is a glass ceramic suitable for making a multilayer wiring board. It is now possible to provide sintered bodies.

Claims (3)

【特許請求の範囲】[Claims] (1)組成が、 SiO_2:48〜63重量% Al_2O_3:10〜25重量% MgO:10〜25重量% B_2O_3:4〜10重量% の成分を有し、かつMgO成分全体に対して0〜20重
量%のMgOが、CaO、BaO、SrOの中から選ば
れた一種類以上の成分で置換さているガラス組成物粉末
に、ウィスカーを配合して得られるウィスカー配合ガラ
ス組成物を焼結することを特徴とするガラスセラミック
焼結体の製法。
(1) The composition has the following components: SiO_2: 48 to 63% by weight, Al_2O_3: 10 to 25% by weight, MgO: 10 to 25% by weight, B_2O_3: 4 to 10% by weight, and 0 to 20% by weight based on the entire MgO component. Sintering a whisker-containing glass composition obtained by blending whiskers into a glass composition powder in which % by weight of MgO is replaced with one or more components selected from CaO, BaO, and SrO. Characteristic manufacturing method for glass ceramic sintered bodies.
(2)ウィスカーの配合割合が密度換算でウィスカー配
合ガラス組成物全体の50体積%以下であることを特徴
とする特許請求の範囲第1項記載のガラスセラミック焼
結体の製法。
(2) The method for producing a glass ceramic sintered body according to claim 1, wherein the blending ratio of whiskers is 50% by volume or less of the entire whisker-containing glass composition in terms of density.
(3)ウィスカーが、窒化珪素、ホウ酸アルミ、炭化珪
素の中から選ばれた少なくとも一種以上であることを特
徴とする特許請求の範囲第1項または第2項の記載のガ
ラスセラミック焼結体の製法。
(3) The glass ceramic sintered body according to claim 1 or 2, wherein the whisker is at least one selected from silicon nitride, aluminum borate, and silicon carbide. manufacturing method.
JP20357790A 1990-07-31 1990-07-31 Production of glass ceramic sintered body Pending JPH0489328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20357790A JPH0489328A (en) 1990-07-31 1990-07-31 Production of glass ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20357790A JPH0489328A (en) 1990-07-31 1990-07-31 Production of glass ceramic sintered body

Publications (1)

Publication Number Publication Date
JPH0489328A true JPH0489328A (en) 1992-03-23

Family

ID=16476417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20357790A Pending JPH0489328A (en) 1990-07-31 1990-07-31 Production of glass ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH0489328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747396A (en) * 1996-02-29 1998-05-05 Tdk Corporation Glass and ceramic substrate using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747396A (en) * 1996-02-29 1998-05-05 Tdk Corporation Glass and ceramic substrate using the same

Similar Documents

Publication Publication Date Title
KR100320630B1 (en) Low dielectric loss glasses
JPS62113758A (en) Low temperature burnt ceramics
US5206190A (en) Dielectric composition containing cordierite and glass
JP2642253B2 (en) Glass-ceramic composite
CA2071778A1 (en) Low dielectric inorganic composition for multilayer ceramic package
JP3121990B2 (en) Glass-ceramic substrate
JPS63303856A (en) Mullite ceramic composition
JPH03125463A (en) Light weight substrate for semiconductor device
JPH04114931A (en) Production of sintered glass ceramic compact
JPH0489328A (en) Production of glass ceramic sintered body
JPH02225339A (en) Calcined body of glass ceramics
JPS6350345A (en) Glass ceramic sintered body
JPH0489329A (en) Whisker compounded glass composition
JP3164700B2 (en) Glass ceramic substrate and method for manufacturing the same
JP2760541B2 (en) Ceramic composition
JPH03141153A (en) Inorganic composition having low-temperature sintering property and low dielectric constant
JP2500691B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JPH10194846A (en) Production of substrate fired at low temperature
JP2003073162A (en) Glass ceramic and wiring board
JP2710311B2 (en) Ceramic insulation material
JP3149613B2 (en) Ceramic substrate and method of manufacturing the same
JP2892163B2 (en) Low temperature firing glass ceramic body
JPH02225338A (en) Calcined body of glass ceramics
JP3097426B2 (en) Ceramic substrate and method of manufacturing the same
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board