JPH0488183A - Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali - Google Patents

Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali

Info

Publication number
JPH0488183A
JPH0488183A JP2203537A JP20353790A JPH0488183A JP H0488183 A JPH0488183 A JP H0488183A JP 2203537 A JP2203537 A JP 2203537A JP 20353790 A JP20353790 A JP 20353790A JP H0488183 A JPH0488183 A JP H0488183A
Authority
JP
Japan
Prior art keywords
chlorate
exchange resin
salt water
anion exchange
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2203537A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakai
中井 浩幸
Akihiro Sakata
昭博 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2203537A priority Critical patent/JPH0488183A/en
Publication of JPH0488183A publication Critical patent/JPH0488183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To economically remove chlorate from salt water while obviating the necessity of complicated equipment and stages and to prevent the accumulation of chlorate by bringing a high-concentration aqueous solution of chlorinated alkali containing chlorate into contact with weakly basic anion exchange resin. CONSTITUTION:An aqueous solution of chlorinated alkali containing chlorate, having >=180g/l concentration, and used for the electrolysis of aqueous solution of chlorinated alkali by an ion exchange membrane process is brought into contact with weakly basic anion exchange resin. As the above ion exchange resin, a weakly basic anion exchange resin having primary-tertiary amine groups is most suitably used because it has high chloric acid ion adsorbing power. The contact of the return salt water with the weakly basic anion exchange resin is carried out, to be concrete, by allowing the return salt water to pass through a column filled with the anion exchange resin or to stagnate in the above column for the prescribed time. By this method, the chlorate in the highly concentrated return salt water is removed extremely ecomonically while obviating the necessity of complicated equipment and stages.

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野〕 本発明はイオン交換膜法塩化アルカリ水溶液の電解で使
用する塩化アルカリ水溶液(以下「塩水」と称する。)
の精製に関するもので、特に循環塩水中に蓄積してくる
塩素酸塩を効果的かつ経済的な方法で除去する方法に関
するものである。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention relates to an aqueous alkali chloride solution (hereinafter referred to as "salt water") used in the electrolysis of an aqueous alkali chloride solution using an ion exchange membrane method.
The present invention relates to the purification of salt water, and in particular to an effective and economical method for removing chlorate that accumulates in circulating brine.

〔従来の技術〕[Conventional technology]

イオン交換脱法塩水電解においては、陽極室から排出さ
れる戻り塩水を循環使用している。
In ion exchange demethod salt water electrolysis, the returned salt water discharged from the anode chamber is recycled and used.

塩素酸塩は電解槽陽極室で生成して、循環により塩水中
に次第に蓄積してくる。塩素酸塩の蓄積は、電流効率の
低下をもたらすと共に電解槽・配管等の腐食の原因とな
る。
Chlorate is produced in the anode chamber of the electrolyzer and gradually accumulates in the brine as it circulates. Accumulation of chlorate reduces current efficiency and causes corrosion of electrolytic cells, piping, etc.

そこで塩水中の塩素酸塩の除去方法が検討されており、
以下のものが知られている。
Therefore, methods for removing chlorate from salt water are being considered.
The following are known:

例えば、塩水に塩酸を過剰に添加して、以下の反応によ
り、塩水中の塩素酸塩を除去する方法が採用されている
For example, a method has been adopted in which an excessive amount of hydrochloric acid is added to salt water, and chlorate in the salt water is removed by the following reaction.

ClO3−+6HC1→3Cb+CI−+3HzOしか
しこの反応では大過剰の塩酸を加えなければ分解が速や
かに起こらず、塩酸を大過剰加えた後の塩水のpHは極
めて低く、次工程において中和用に多量の苛性アルカリ
が必要となるという欠点があった。
ClO3-+6HC1→3Cb+CI-+3HzO However, in this reaction, decomposition does not occur quickly unless a large excess of hydrochloric acid is added, and the pH of the brine after adding a large excess of hydrochloric acid is extremely low, so a large amount of water is needed for neutralization in the next step. The disadvantage was that caustic alkali was required.

この改良方法としてイオン交換脱法塩水電解において、
塩素酸塩を含む陽極液からの塩水の一部を抜き出して、
これに過剰の塩酸を加えて、塩水中の塩素酸塩を分解し
、その後主循環塩水系に回収することにより、中和用の
苛性アルカリの使用量を節減して塩素酸塩の蓄積を防止
する方法が提案されている(特開昭53−18498号
及び特開昭54−28294号)。
As an improved method for this, in ion exchange desorption brine electrolysis,
By extracting some of the brine from the anolyte containing chlorate,
By adding excess hydrochloric acid to this to decompose the chlorate in the brine and then recovering it to the main circulation brine system, the amount of caustic alkali used for neutralization is reduced and chlorate accumulation is prevented. A method to do this has been proposed (Japanese Patent Laid-Open Nos. 53-18498 and 54-28294).

また、別の方法として、イオン交換脱法塩化アルカリ電
解槽に供給される循環塩水を、循環経路中に設けられた
塩素酸塩分解触媒層に水素又は水素を含むガスの存在下
で流通せしめる方法(特開昭56−163286号)、
循環塩水の一部を抜き出して冷却し、塩素酸塩を晶出さ
せて分離後、母液を循環塩水に回収することにより、塩
素酸塩を除去する方法(特開昭51−144399号)
、塩水中に亜硫酸ソーダ、硫化水素等の還元剤を添加す
る方法(特開昭53123396号及び特開昭60−7
7982号)等がある。
In addition, as another method, a method ( JP-A-56-163286),
A method of removing chlorate by extracting a part of the circulating brine, cooling it, crystallizing and separating the chlorate, and recovering the mother liquor in the circulating brine (Japanese Unexamined Patent Publication No. 144399/1982).
, a method of adding reducing agents such as sodium sulfite and hydrogen sulfide to salt water (JP-A-53123396 and JP-A-60-7)
7982) etc.

しかしながら、上記の方法はいずれも欠点があり実用的
ではなかった。
However, all of the above methods had drawbacks and were not practical.

即ち、特開昭53−18498号の方法では、それでも
なお塩素酸塩を分解するために大過剰の塩酸を要し、従
って中和用の苛性アルカリも多量に必要である。
That is, the method of JP-A-53-18498 still requires a large excess of hydrochloric acid to decompose the chlorate, and therefore also requires a large amount of caustic alkali for neutralization.

特開昭54−28294号の方法では、塩素酸塩が20
g/1以上の高濃度の場合しか効果が発揮されない。
In the method of JP-A No. 54-28294, chlorate is
It is effective only at high concentrations of g/1 or more.

特開昭56−163286号の方法では、塩素酸塩の分
解に時間がかかり、結果として処理コストが膨大となる
In the method of JP-A-56-163286, it takes time to decompose the chlorate, resulting in an enormous processing cost.

特開昭51−144399号のように、晶出を利用する
方法は、工程が複雑となり、塩素酸塩の除去コストが膨
大となり、工業的に採用が困難である。
The method using crystallization, as disclosed in JP-A No. 51-144399, requires a complicated process and requires an enormous cost for removing chlorate, making it difficult to adopt it industrially.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来技術はいずれも欠点を有し、・複雑な
設備や工程を必要とせず、経済的に、塩水中の塩素酸塩
を除去する方法が強く求められてきた。
As mentioned above, all of the conventional techniques have drawbacks, and there has been a strong demand for an economical method for removing chlorate from salt water without requiring complicated equipment or processes.

(ロ)発明の構成 [課題を解決するための手段] 本発明者等は、塩水中の塩素酸塩を除去する方法につい
て鋭意検討した結果、塩水を陰イオン交換樹脂と接触さ
せることにより、塩水中の塩素酸塩を効率良く除去でき
る条件を見出した。
(B) Structure of the Invention [Means for Solving the Problem] As a result of intensive study on a method for removing chlorate from salt water, the inventors of the present invention have discovered that by bringing salt water into contact with an anion exchange resin, We have found conditions that allow for efficient removal of chlorate.

対象とする不純物イオンの種類は異なるが、電解槽から
の硫酸イオンを含有する戻り塩水から硫酸イオンを除去
する方法として、電解槽より排出される戻り塩水を、1
50 g/lより小さなアルカリ金属塩化物含量に希釈
した後、弱塩基性イオン交換媒体に通過させることによ
って硫酸イオンを除去する方法が提案されている(特開
昭60−228691号)。戻り塩水中には一般に塩素
酸塩も含まれており、この公知技術によって、塩素酸イ
オンも硫酸イオンと同様に効率良く除去できるように予
想された。ところが、驚くべきことに、この特開昭60
−228691号が教示する硫酸塩の場合と異なって、
塩素酸塩は相当高濃度の塩水濃度において初めて効率的
に除去可能であることを見出し、本発明を完成するに至
った。
Although the types of target impurity ions are different, as a method for removing sulfate ions from the return brine containing sulfate ions from the electrolytic cell, the return brine discharged from the electrolytic cell is
A method has been proposed in which sulfate ions are removed by dilution to an alkali metal chloride content of less than 50 g/l and then passing through a weakly basic ion exchange medium (JP 60-228691). Returned brine generally also contains chlorate, and it was expected that this known technique would be able to remove chlorate ions as efficiently as sulfate ions. However, surprisingly, this 1986 Japanese Patent Application
Unlike the case of sulfates taught by No. 228691,
It was discovered that chlorate can be efficiently removed only at a considerably high concentration of salt water, and the present invention was completed.

即ち本発明は、イオン交換脱法塩化アルカリ水溶液電解
に用いる塩素酸塩を含有する180g/1以上の濃度の
塩化アルカリ水溶液を、弱塩基性陰イオン交換樹脂と接
触させることを特徴とする、電解用塩化アルカリ水溶液
中の塩素酸塩の蓄積防止方法である。
That is, the present invention provides a method for electrolysis, characterized in that an aqueous alkali chloride solution containing chlorate and having a concentration of 180 g/1 or more is brought into contact with a weakly basic anion exchange resin. This is a method for preventing the accumulation of chlorate in an aqueous alkali chloride solution.

イオン交換樹脂は世の中に広(知られており、大きく陽
イオン交換樹脂と陰イオン交換樹脂に分類される。この
内、陰イオン交換樹脂は、0H−1CI−1so、”−
1NO,−1C103−等の陰イオンに対して捕捉吸着
能力があるもので、フェノール系やスチレン系の重合体
母体の末端に、1〜4級のアミン基が結合した構造とな
っている。
Ion exchange resins are widely known in the world and are broadly classified into cation exchange resins and anion exchange resins. Among these, anion exchange resins are 0H-1CI-1so, "-
It has the ability to capture and adsorb anions such as 1NO and -1C103-, and has a structure in which primary to quaternary amine groups are bonded to the terminals of a phenol-based or styrene-based polymer matrix.

この内、1〜3級のアミン基を有する弱塩基性陰イオン
交換樹脂が塩素酸イオンの吸着能が大きく本発明に最も
適している。
Among these, weakly basic anion exchange resins having primary to tertiary amine groups are most suitable for the present invention because of their large ability to adsorb chlorate ions.

イオン交換膜性塩水電解で用いる塩水中の不純物イオン
を除去する場合に最も問題となるのは、循環する塩水中
に塩素イオンが多量に存在し、該イオンによりイオン交
換樹脂中のアミン基のイオン捕捉吸着能力が阻害される
ことである。
The biggest problem when removing impurity ions from salt water used in ion-exchange membrane-based salt water electrolysis is that a large amount of chlorine ions exist in the circulating salt water, and these ions cause ions of amine groups in the ion exchange resin. The trapping and adsorption ability is inhibited.

即ちイオン交換脱法食塩水電解においては、供給塩水系
でNaC1濃度は約300g/f(約5モル/l)、戻
り塩水系では通常は約200g/2(約3.5モル/l
)である。一方硫酸イオン及び塩素酸塩イオンは、塩水
中で通常それぞれ3〜5g/f(約0.03〜0.05
モル/l)及び2〜15g/42(約0.02〜0.1
8モル/l)でコントロールされており、塩素イオンに
対して1/10以下しかなく、このため特開昭60−2
28691号のように、塩水中の硫酸イオンの除去の場
合は、塩水の希釈が必須と考えられていたのである。し
かし、本発明者等は陰イオン交換樹脂の吸着挙動につい
て研究した結果、塩素酸イオンの吸着は硫酸塩の場合と
異なり、塩化アルカリが180 g/f以上の高濃度の
領域において、効果的に行われることが判った。
That is, in ion exchange desaline electrolysis, the NaC1 concentration in the supply brine system is approximately 300 g/f (approximately 5 mol/l), and in the return brine system, it is usually approximately 200 g/2 (approximately 3.5 mol/l).
). On the other hand, sulfate ions and chlorate ions are usually 3 to 5 g/f (approximately 0.03 to 0.05 g/f) each in salt water.
mol/l) and 2 to 15 g/42 (approximately 0.02 to 0.1
8 mol/l), which is less than 1/10 of chlorine ions, which is why JP-A-60-2
In the case of removing sulfate ions from salt water, as in No. 28691, dilution of the salt water was considered essential. However, as a result of research on the adsorption behavior of anion exchange resins, the present inventors found that the adsorption of chlorate ions is different from that of sulfates, and is not effective in the area of high alkali chloride concentrations of 180 g/f or more. It turned out that it was done.

戻り塩水と弱塩基性陰イオン交換樹脂との接触は、具体
的には、陰イオン交換樹脂を充填した塔に、戻り塩水を
通過させるか、一定時間滞留させることにより行えばよ
く、これによって塩素酸塩を吸着除去することが可能で
ある。
Specifically, the return brine and the weakly basic anion exchange resin may be brought into contact by passing the return brine through a column filled with the anion exchange resin or by allowing it to remain there for a certain period of time. It is possible to adsorb and remove acid salts.

本発明において、塩水と陰イオン交換樹脂とを接触させ
る箇所は、電jfMから出た戻り塩水が、原塩溶解槽に
供給されて塩化アルカリで再飽和され、精製工程を経て
再び電解槽に供給されるラインのどこでもよいが、電解
槽から出た戻り塩水が脱塩素されてから再飽和されるま
での間が、塩素酸塩の濃度が高くて分解効率がよいこと
、並びに液中にフリー塩素が残存していないため、陰イ
オン交換樹脂に悪影響を及ぼさないことから好ましい。
In the present invention, the point where the salt water and the anion exchange resin are brought into contact is that the return salt water from the electrolytic jfm is supplied to the raw salt dissolution tank, resaturated with alkali chloride, and then supplied to the electrolytic tank again after a purification process. However, the concentration of chlorate is high and the decomposition efficiency is high during the period from when the return brine from the electrolytic cell is dechlorinated until it is resaturated, and there is no chlorine in the liquid. This is preferable because it does not have an adverse effect on the anion exchange resin since no residue remains.

塩水は、その全量を陰イオン交換樹脂と接触させても、
一部を分岐して接触させてもよいが、後者の方が処理す
る塩水量が少なくて済むので好ましい。
Even if the entire amount of salt water is brought into contact with an anion exchange resin,
Although a portion may be branched and brought into contact, the latter method is preferable because the amount of salt water to be treated can be reduced.

吸着は飽和吸着まで行ってもよいし、ある−定時間行う
だけでもよい。陰イオン交換樹脂を通過した塩水中の塩
素酸塩はゼロにする必要はなく、要するに循環系に蓄積
する分のみを吸着させればよい。
Adsorption may be carried out up to saturated adsorption, or may be carried out only for a certain period of time. It is not necessary to reduce the amount of chlorate in the salt water that has passed through the anion exchange resin to zero; in short, it is sufficient to adsorb only the amount that accumulates in the circulation system.

吸着温度は80゛C以下が好ましい。80°Cを超える
と陰イオン交換樹脂に悪影響を与える恐れがある。
The adsorption temperature is preferably 80°C or less. If the temperature exceeds 80°C, there is a possibility that the anion exchange resin will be adversely affected.

塩水のpHは、陰イオン交換樹脂が塩水に溶解すること
がないよう7以下とすることが好ましい。
The pH of the salt water is preferably 7 or less so that the anion exchange resin does not dissolve in the salt water.

接触時間、即ち陰イオン交換樹脂中の塩水の滞留時間は
、接触方法及び目的とする塩素酸塩の除去率により決定
すればよく、具体的には、接触方法を選定し、温度等の
反応条件を決めることにより、接触時間が決まる。
The contact time, that is, the residence time of salt water in the anion exchange resin, may be determined depending on the contact method and the desired chlorate removal rate. Specifically, the contact method should be selected, and the reaction conditions such as temperature should be determined. By determining , the contact time is determined.

なお、本発明によれば塩水中の硫酸塩も付随的に捕捉除
去することができる。
In addition, according to the present invention, sulfate in salt water can also be captured and removed.

塩素酸イオン吸着後の陰イオン交換樹脂は、苛性アルカ
リで洗浄することにより、再使用できる。
The anion exchange resin after adsorbing chlorate ions can be reused by washing with caustic alkali.

〔作用〕[Effect]

本発明により、塩水濃度の高い条件下で、塩素酸塩が効
率よく除去される理由は定がではないが、弱塩基性陰イ
オン交換樹脂は、塩素酸イオンに対して比較的選択性が
高いためと推測される。
Although it is unclear why chlorate is efficiently removed under conditions of high salt water concentration by the present invention, the weakly basic anion exchange resin has relatively high selectivity for chlorate ions. It is presumed that this is because of this.

〔実施例] 以下、実施例及び比較例を挙げて本発明を更に詳しく説
明する。
[Examples] Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples.

実施例1〜3、比較例1〜3 食塩濃度の異なる2種の塩水(■NaC1long/I
tSSO4”−4,89g/l、 ClO3−2,07
g#2 ;■NaCl200g/ l、S04”−4,
68g/ f、CIO:I−2,09g/ l )15
0mlに表1記載の弱塩基性陰イオン交換樹脂30m+
1を添加し、1時間攪拌後に塩水中のClO3−及び参
考までに一部例についてso、”−の濃度も分析した。
Examples 1 to 3, Comparative Examples 1 to 3 Two types of salt solutions with different salt concentrations (■NaCllong/I
tSSO4”-4,89g/l, ClO3-2,07
g#2; ■NaCl200g/l, S04"-4,
68g/f, CIO:I-2,09g/l)15
Add 30m+ of weakly basic anion exchange resin listed in Table 1 to 0ml.
1 was added, and after stirring for 1 hour, the concentration of ClO3- in the brine and, for reference, the concentration of so,''- in some cases was also analyzed.

吸着前後の各イオン濃度の減少分について表1に記す。Table 1 shows the decrease in each ion concentration before and after adsorption.

表1 (ハ)発明の効果 本発明の方法によれば、複雑な設備や工程を必要とせ・
ず、極めて経済的に、高濃度の戻り塩水中の塩素酸塩を
除去することができ、本発明は工業的に価値が高いもの
である。
Table 1 (c) Effects of the invention According to the method of the invention, complicated equipment and processes are not required.
First, it is possible to remove chlorate in highly concentrated returned brine in an extremely economical manner, making the present invention highly valuable industrially.

Claims (1)

【特許請求の範囲】[Claims] 1、イオン交換膜法塩化アルカリ水溶液電解に用いる塩
素酸塩を含有する180g/l以上の濃度の塩化アルカ
リ水溶液を、弱塩基性陰イオン交換樹脂と接触させるこ
とを特徴とする、電解用塩化アルカリ水溶液中の塩素酸
塩の蓄積防止方法。
1. An alkali chloride solution for electrolysis, which is characterized by contacting an aqueous alkali chloride solution containing chlorate and having a concentration of 180 g/l or more with a weakly basic anion exchange resin, which is used in the ion exchange membrane method aqueous alkali chloride electrolysis. A method for preventing the accumulation of chlorate in aqueous solutions.
JP2203537A 1990-07-31 1990-07-31 Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali Pending JPH0488183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2203537A JPH0488183A (en) 1990-07-31 1990-07-31 Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2203537A JPH0488183A (en) 1990-07-31 1990-07-31 Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali

Publications (1)

Publication Number Publication Date
JPH0488183A true JPH0488183A (en) 1992-03-23

Family

ID=16475795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2203537A Pending JPH0488183A (en) 1990-07-31 1990-07-31 Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali

Country Status (1)

Country Link
JP (1) JPH0488183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024262A (en) 2017-08-31 2020-03-06 닛폰세이테츠 가부시키가이샤 Titanium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024262A (en) 2017-08-31 2020-03-06 닛폰세이테츠 가부시키가이샤 Titanium

Similar Documents

Publication Publication Date Title
JPS589043B2 (en) Electrolytically generated alkali metal chlorate - Removal of dichromate from chloride solution by ion exchange
SE500107C2 (en) Process for the production of chlorine dioxide
CN110436482A (en) A kind of method of high potassium/sodium in removal ammonium chloride mother liquor
NO312456B1 (en) Process for the preparation of a particularly pure glycolic acid
US8882985B2 (en) Perchlorate removal from concentrated salt solutions using amphoteric ion-exchange resins
JPH033747B2 (en)
US11802060B2 (en) Brine purification process
JP3894398B2 (en) Pure water production method
CA1272982A (en) Method for the recovery of lithium from solutions by electrodialysis
US10584037B2 (en) Systems to make lithium hydroxide monohydrate from lithium salts
JPH0488183A (en) Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali
FI81612B (en) SAETT ATT FRAMSTAELLA ALKALI METAL CHLORATES.
JPH0488184A (en) Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali
JPH0489316A (en) Method for recovering copper sulfate from aqueous copper chloride solution containing hydrochloric acid
JP2757537B2 (en) How to remove chlorate in salt water
JPH04231487A (en) Regeneration method of pickling waste liquor containing metal salt and acid
US3681214A (en) Process for producing high-purity alkali hydroxides
JPH03294491A (en) Method for removing chlorate in salt water
JPH0710821B2 (en) Method for producing aminoethyl sulfonic acid
US3042491A (en) Purification of caustic alkali by ion exchange
JPH0365507A (en) Removal of chlorate in saline solution
EP0609839B1 (en) Method for electrolyzing an alkali metal chloride
JPS63129015A (en) Removing method for chlorate in brine
JPH06144805A (en) Recovery of hydrogen fluoride
JPH0366663A (en) Method for recovering methionine and alkali metal carbonate