JPH048774B2 - - Google Patents

Info

Publication number
JPH048774B2
JPH048774B2 JP15099586A JP15099586A JPH048774B2 JP H048774 B2 JPH048774 B2 JP H048774B2 JP 15099586 A JP15099586 A JP 15099586A JP 15099586 A JP15099586 A JP 15099586A JP H048774 B2 JPH048774 B2 JP H048774B2
Authority
JP
Japan
Prior art keywords
light
distance
photography
lens
close
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15099586A
Other languages
Japanese (ja)
Other versions
JPS636532A (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP61150995A priority Critical patent/JPS636532A/en
Priority to DE3751455T priority patent/DE3751455T2/en
Priority to KR1019920700193A priority patent/KR0131680B1/en
Priority to DE3751879T priority patent/DE3751879T2/en
Priority to CA000536919A priority patent/CA1312231C/en
Priority to DE8718027U priority patent/DE8718027U1/en
Priority to AT92105341T priority patent/ATE126358T1/en
Priority to KR1019920700194A priority patent/KR0156530B1/en
Priority to AT92105357T priority patent/ATE132276T1/en
Priority to EP92105343A priority patent/EP0498467B1/en
Priority to DE8718028U priority patent/DE8718028U1/en
Priority to PCT/JP1987/000293 priority patent/WO1987007038A1/en
Priority to AT92105343T priority patent/ATE126902T1/en
Priority to DE3751241T priority patent/DE3751241T2/en
Priority to AU73955/87A priority patent/AU606343B2/en
Priority to EP87902775A priority patent/EP0266435B1/en
Priority to DE8717978U priority patent/DE8717978U1/en
Priority to AT92105344T priority patent/ATE121200T1/en
Priority to KR1019880700027A priority patent/KR940010590B1/en
Priority to EP92105341A priority patent/EP0495532B1/en
Priority to AT92105342T priority patent/ATE126363T1/en
Priority to AT87902775T priority patent/ATE112071T1/en
Priority to EP92105357A priority patent/EP0510379B1/en
Priority to KR1019950703637A priority patent/KR0149575B1/en
Priority to DE3751456T priority patent/DE3751456T2/en
Priority to DE8718024U priority patent/DE8718024U1/en
Priority to DE3751657T priority patent/DE3751657T2/en
Priority to EP93110717A priority patent/EP0569051B1/en
Priority to DE8718025U priority patent/DE8718025U1/en
Priority to AT93110717T priority patent/ATE141693T1/en
Priority to DE3751481T priority patent/DE3751481T2/en
Priority to EP92105342A priority patent/EP0495533B1/en
Priority to DE3750569T priority patent/DE3750569T2/en
Priority to DE8718017U priority patent/DE8718017U1/en
Priority to EP92105344A priority patent/EP0497383B1/en
Priority to US90/002261A priority patent/US4944030B1/en
Priority to KR1019880700027A priority patent/KR0165530B1/en
Publication of JPS636532A publication Critical patent/JPS636532A/en
Priority to US07/480,217 priority patent/US5142315A/en
Priority to US07/480,214 priority patent/US5157429A/en
Priority to US07/486,914 priority patent/US5214462A/en
Priority to US07/480,069 priority patent/US5264885A/en
Priority to US07/480,213 priority patent/US5150145A/en
Priority to US07486915 priority patent/US5012273B1/en
Priority to US07/480,215 priority patent/US5016032A/en
Priority to AU57608/90A priority patent/AU630973B2/en
Priority to AU57612/90A priority patent/AU630976B2/en
Priority to AU57611/90A priority patent/AU630975B2/en
Priority to AU57606/90A priority patent/AU638257C/en
Priority to AU57610/90A priority patent/AU630974B2/en
Priority to KR1019920700192A priority patent/KR100232279B1/en
Publication of JPH048774B2 publication Critical patent/JPH048774B2/ja
Priority to CA000616420A priority patent/CA1330402C/en
Priority to US07/924,631 priority patent/US5321462A/en
Priority to US07/924,524 priority patent/US5276475A/en
Priority to US08/071,107 priority patent/US5424796A/en
Priority to US08/222,697 priority patent/US5465131A/en
Priority to US08/463,259 priority patent/US5583596A/en
Priority to US08/462,687 priority patent/US5673099A/en
Priority to KR1019950703638A priority patent/KR960702910A/en
Priority to US08/646,114 priority patent/US5713051A/en
Priority to US08/838,016 priority patent/US5966551A/en
Priority to HK98100940A priority patent/HK1001902A1/en
Priority to HK98100942A priority patent/HK1001904A1/en
Priority to HK98100941A priority patent/HK1001903A1/en
Priority to HK98100938A priority patent/HK1001900A1/en
Priority to HK98100936A priority patent/HK1001905A1/en
Priority to HK98100939A priority patent/HK1001901A1/en
Priority to HK98100937A priority patent/HK1001906A1/en
Granted legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「技術分野」 本発明は自動焦点式カメラに関し、特に近接撮
影が可能なカメラに関するものである。 「従来技術」 まず、2群ズームレンズの被写体距離と繰り出
し量の関係について述べる。第12図に2群ズー
ムレンズの簡単な構成を示す。 被写体距離と繰り出し量の関係を示す式は次式
のとおりである。 U=f1(2+X/f1+f1/X)+HH+△…… 但し、U;被写体距離 f1;第1群の焦点距離 X;繰り出し量 HH;主点間隔 △;第1群の焦点位置と全群の焦点位置との間隔 式をXについて解くと、 X={−2f1−HH−△+U −√(21++△−)2−41 2}/2 …… となる。 一方、第13図は、三角測距原理に基づく測距
光学系(装置)の被写体距離Uと、位置検出素子
2上のずれ量tの関係を示す。 三角測距装置は、光源3aと投光レンズ3aか
らなる投光部3と、受光レンズ4bと位置検出素
子4a(たとえばPSD)からなる受光部4から構
成されており、光源3aから出射された光の被写
体による反射光を位置検出素子4aで得ることに
より、被写体までの距離が検出される。すなわ
ち、フイルム面Fから被写体までの距離Uに対す
る位置検出素子4a上の光源像のずれ量t(基準
は被写体が無限大のときの光源像の位置)は次式
で表わされる。 t=L・f/(U−f−d) …… 但し、L;測距装置の基線長 f;受光レンズの焦点距離 d;フイルム面と受光レンズの焦点面との距離 ずれ量tは、周知のように位置検出素子4aの
光電流の大きさによつて検出することできるか
ら、この電気量によつて撮影光学系を上記、
式に基づいて焦点位置に移動させれば、自動的に
合焦がなされる。このような自動焦点式カメラ、
および撮影光学系の駆動機構は公知である。 この自動焦点カメラにおいて、近接撮影(マク
ロ撮影)機能を付加する場合には、測距装置の測
距可能範囲を近距離側にシフトする必要がある。
近接撮影機能は、周知のように、撮影光学系の全
部または一部を、通常撮影時よりさらに被写体側
に繰り出し、その状態で合焦動作を行なわせるも
のである。第12図の撮影光学系では、近接撮影
時に撮影レンズの第1群が、通常撮影時に自動焦
点装置によつて繰り出される繰り出し量とは別に
一定量が繰り出される。 第14図は測距装置の測距可能な距離範囲を近
距離側にシフトする従来例である。同図に示すよ
うに受光レンズ4bの前面に頂角がδのプリズム
Pを配置することにより、測距可能な距離範囲を
近距離側にシフトできる。 プリズムPの頂角をδ、屈折率をnとした場
合、被写体距離U1に対する位置検出素子4a上
の光源像のずれ量t1は次のような手順で求めるこ
とができる。 プリズムPの被写体側の面への光線の入射角α
は次式により求められる。 α−tan-1{L/(U1−f−α)}+δ 角度δのプリズムに入射角αで光線が入射した
ときのふれ角βは次式により求められる。 β=α−δ+sin-1[nsin {δ−sin(α/n)}] よつて、γ=α−δ−β ゆえに位置検出素子4a上の光源像のずれ量t1
t1=f・tanγとなる。Umf1は投光レンズ4の光
軸と一致する光線が投光レンズ3bの光軸と交わ
るときの被写体距離で、プリズムPの厚みを無視
すればUmf1=L/tan{sin-1(nsinδ)−δ}+f+
dで表わされる。 ここで実例として、撮影光学系が2群ズームレ
ンズで、第1群の焦点距離f1=24.68mm、主点間
隔HH=7.02mm、第1群の焦点位置と全群の焦点
位置の間隔△=30.04mm、フイルム面と受光レン
ズの焦点面の間隔d=6.292mm、近接撮影時の第
1群のシフト量0.5502mm、測距装置の基線長L=
30mm、受光レンズの焦点距離f=20mm、プリズム
Pの頂角δ=2.826°、プリズムの屈折率n=
1.483、撮影可能な距離範囲が0.983m〜∞で繰り
出し段数が18段、そのうち0.973m〜6mを17段
に分割した繰り出し機構をもつ場合に、0.973m
〜6mの撮影範囲を、プリズムPによつて0.580
m〜1.020mの撮影範囲にシフトさせる場合につ
いて計算を行なつた結果を表1に示す。 表中で17−18は17段目と18段目の切り換り点を
示す。0−1も同様である。
TECHNICAL FIELD The present invention relates to an autofocus camera, and particularly to a camera capable of close-up photography. "Prior Art" First, the relationship between the object distance and the amount of extension of the two-group zoom lens will be described. FIG. 12 shows a simple configuration of a two-group zoom lens. The equation showing the relationship between the subject distance and the amount of extension is as follows. U= f1 (2+X/ f1 + f1 /X)+HH+△... However, U: Subject distance f1 ; Focal length of the first group and the distance between the focus position of all the groups Solving the equation for X, it becomes: On the other hand, FIG. 13 shows the relationship between the object distance U of the distance measuring optical system (apparatus) based on the triangular distance measuring principle and the amount of deviation t on the position detection element 2. The triangular distance measuring device is composed of a light projecting section 3 consisting of a light source 3a and a projecting lens 3a, and a light receiving section 4 consisting of a light receiving lens 4b and a position detecting element 4a (for example, a PSD). The distance to the subject is detected by obtaining the reflected light from the subject using the position detection element 4a. That is, the shift amount t of the light source image on the position detection element 4a with respect to the distance U from the film surface F to the subject (the reference is the position of the light source image when the subject is infinite) is expressed by the following equation. t=L・f/(U−f−d)... However, L: Baseline length of the distance measuring device f; Focal length d of the light receiving lens; Distance between the film surface and the focal plane of the light receiving lens The amount of deviation t is: As is well known, detection can be performed based on the magnitude of the photocurrent of the position detection element 4a, and this amount of electricity is used to control the photographing optical system as described above.
If you move it to the focal position based on the formula, it will automatically focus. Autofocus cameras such as
The drive mechanism of the photographing optical system is also known. When adding a close-up (macro photography) function to this autofocus camera, it is necessary to shift the measurable range of the distance measuring device to the short distance side.
As is well known, the close-up photographing function extends all or part of the photographing optical system further toward the subject than during normal photographing, and performs a focusing operation in this state. In the photographing optical system shown in FIG. 12, the first lens group of the photographing lens is extended by a fixed amount during close-up photography, in addition to the amount extended by the autofocus device during normal photography. FIG. 14 shows a conventional example in which the measurable distance range of a distance measuring device is shifted to the short distance side. As shown in the figure, by arranging a prism P having an apex angle of δ in front of the light receiving lens 4b, the measurable distance range can be shifted to the short distance side. When the apex angle of the prism P is δ and the refractive index is n, the shift amount t 1 of the light source image on the position detection element 4a with respect to the object distance U 1 can be determined by the following procedure. Incident angle α of the light ray to the surface of the prism P on the subject side
is determined by the following formula. α−tan −1 {L/(U 1 −f−α)}+δ When a ray of light enters a prism at an angle δ at an incident angle α, the deflection angle β is determined by the following equation. β=α−δ+sin -1 [nsin {δ−sin(α/n)}] Therefore, γ=α−δ−β Therefore, the amount of shift t 1 of the light source image on the position detection element 4a is
t 1 = f·tanγ. Umf 1 is the object distance when a ray that coincides with the optical axis of the projection lens 4 intersects with the optical axis of the projection lens 3b, and if the thickness of the prism P is ignored, then Umf 1 = L/tan {sin -1 (nsin δ )−δ}+f+
It is represented by d. As an example, the photographing optical system is a two-group zoom lens, the focal length of the first group is f 1 = 24.68 mm, the distance between principal points HH = 7.02 mm, and the distance between the focal position of the first group and the focal position of all groups △ = 30.04 mm, distance d between the film surface and the focal plane of the light receiving lens = 6.292 mm, shift amount of the first group during close-up photography 0.5502 mm, base line length of the distance measuring device L =
30mm, focal length of light receiving lens f = 20mm, apex angle δ of prism P = 2.826°, refractive index of prism n =
1.483, when the shooting distance range is 0.983m to ∞ and the number of feeding steps is 18 steps, of which 0.973m to 6m is divided into 17 steps, 0.973m
Shooting range of ~6m with prism P of 0.580
Table 1 shows the calculation results for the case of shifting the photographing range to 1.020 m to 1.020 m. In the table, 17-18 indicates the switching point between the 17th stage and the 18th stage. The same applies to 0-1.

【表】 表1の結果より、プリズムPによる補正では近
接撮影時の測距可能な距離範囲の両端において、
位置検出素子4a上で0.027mm、のずれが生じる
ことが分る。これは繰り出し段数に換算するとほ
ぼ1段に相当するずれ量である。よつて位置検出
素子4aの出力によつてそのまま撮影光学系を繰
出制御すると、正しい合焦位置に撮影レンズを移
動さることができず、ピンボケの写真となつてし
まう。これは、別言すると、プリズムPによる補
正だけでは、被写体距離U1に対する位置検出素
子4a上での光源像のずれ量t1の変化率を変化さ
ることができないので、完全な補正が不可能であ
ることに由来する。 「発明の目的」 本発明は、三角測距による測距光学系を有する
自動焦点式カメラにおいて、近接撮影時の測距精
度を高め、より理想的なピント補正を実現するこ
とを目的とする。また本発明は、通常撮影から近
接撮影への移行動作に連動して、自動的に近接撮
影用の測距光学系を構成できる自動焦点式カメラ
を得ることを目的とする。 「発明の概要」 本発明は、基本的には、上記第1表についての
議論において、17−18から0−1までのtの変化
量が0.5334mmt1の変化量が0.4797mmであるから、
近接撮影時にt1の変化量を0.5334/0.4794倍つま
り1.1130倍にすれば完全な補正が可能であるとの
着眼に基づいてなされたもので、このため、測距
光学系の前面に、近接撮影時に進出して、該測距
光学系の投光部と受光部間の基線長を光学的に延
長させ、かつこの投光部と受光部の光軸を有限距
離で交差させる近距離補正光学素子を配置したこ
とを特徴としている。そして本発明はさらに、こ
の近距離補正光学素子を、カメラの通常撮影と近
接撮影の移行動作に連動させて受光部前面に進出
させるための機械的構成を備えている。すなわち
本発明は、回動操作により通常撮影と近接撮影間
の移行を行なう上記撮影光学系の駆動リングと;
上記近距離補正光学素子を自由端部に有し、揺動
に伴ないこの近距離補正光学素子を受光部の前面
に進退させる、基端部を枢着した補正フラグと;
この補正フラグを常時はその距離補正光学素子が
受光部前面から退避する方向に付勢するばね手段
と;駆動リングの近接撮影位置への回動動作に連
動して補正フラグを上記ばね手段に抗して回動さ
せその近距離補正光学素子を受光部の前面に位置
させる、該駆動リングと補正フラグとの間に設け
て連動手段とを有することを特徴とするものであ
る。 なお機械的構成を除く光学系については、本出
願日が特願昭61−108279号(61年5月12出願)で
別途特許出願している。 「発明の実施例」 第9図は、本発明による自動焦点式カメラの測
距装置の近接撮影時の光学的構成を示したもので
ある。本発明は、プリズム4cとマスク4dから
なる近距離補正光学素子4eを、近接撮影時に、
測距装置の受光レンズ4bの前面に配置し、通常
撮影時の場合は、受光レンズ4bの光軸から退避
させることを基本的な構成としている。 近距離補正光学素子4eを受光レンズ4bの前
面に進退させる機械的構成を説明する前に、この
近距離補正光学素子4eの構成、近接撮影におけ
る測距精度が向上する理由を説明する。 プリズム4cは測距装置の基線長を光学的に延
長する効果と、光線を屈折させる効果をもつてい
る。第10図にプリズム4c、マスク4d、受光
レンズ4bの上断面図の詳細図を示す。第11図
は第10図の正面図である。マスク4dは、必要
な光路以外の光を遮するためのもので、被写体側
の開口4fと、受光レンズ4b側の開口4gを有
している。開口4fは受光レン4bの光軸Oに対
し、投光レンズ3bの光軸から離れる側に距離l
だて隔たらせてスリツト状に開けられており、開
口4gは受光レンズ4bの光軸Oに対応させてス
リツト状に開けられている。 マスク4dをともなつたプリズム4cが受光レ
ンズ4bの前面に配置されているとき、つまり近
接撮影時に、撮影レンズの第1群は、通常撮影時
に自動焦点装置によつて繰り出される繰り出し量
とは別に一定量が繰り出される。第1図、第2図
に示すようにプリズム4cを受光レンズ4bの前
面に配置することにより、測距可能な距離範囲を
近距離側にシフトできる。プリズム4cは、これ
に入射する光線を基線長の方向にlだけ平行移動
させるこにより、基線長Lを光学的にL+lに延
長するものである。 このプリズム4cの角度をδ1、屈折率をn、光
線の平行移動量を上記のようにlとした場合、被
写体距離U2に対する位置検出素子4a上の光源
像のずれ量t2は、次のような手順で求めることが
できる。 プリズム4cの被写対側の面への光線の入射角
α1は次式より求められる。 α1=tan-1{(L+l)/(U2−f−d)}+δ1 この式は、三角測距装置の基線長が、プリズム
4cを挿入する前のLから、挿入後のL+lに延
長されていることを意味している。 角度δ1のプリズムに入射角α1が光線が入射した
ときのふれ角β1は次式より求められる。 β1=α1−δ1+sin-1[nsin {δ1−sin(α1/n)}] よつて、γ1=α1−δ1−β1 ゆえに位置検出素子4a上の光源像のずれ量t2
t2=f・tanγ1 となる。Umf2は投光レンズ4bの光軸と一致す
る光線が投光レンズ3bの光軸と交わるときの被
写体距離で、プリズム4cの厚みを無視すれば、 Umf2=(L+l)/tan{sin-1(nsinδ1)−δ1}+f
+dで表わされる。 ここで前述の実施例と同一の条件の撮影レンズ
に本発明を適当した場合を説明する。すなわち、
撮影レンズが2群ズームレンズで、第1群の焦点
距離f1=24.68mm、主点間隔HH=7.02mm、第1群
の焦点位置と全群の焦点位置の間隔△=30.04mm、
フイルム面と受光レンズの焦点面との間隔d=
6.292mm、近接撮影時の第1群のシフト量0.5502
mm、測距装置の基線長L=30mm、受光レンズの焦
点距離f=20mm、プリズム4cの角度δ1=3.39°、
屈折率n=1.483、光線の平行移動量l=3.39mm、
撮影可能な距離範囲が0.983m〜∞で繰り出し段
数が18段、そのうち0.973m〜6mを17段に分割
した繰り出し機構をもつ場合に、0.973m〜6m
の撮影範囲をプリズム4cによつて0.580m〜
1.020mの撮影範囲にシフトさせる場合について
計算を行なつた結果を表1に示す
[Table] From the results in Table 1, it can be seen that with correction using prism P, at both ends of the measurable distance range during close-up shooting,
It can be seen that a deviation of 0.027 mm occurs on the position detection element 4a. This is a shift amount equivalent to approximately one stage when converted to the number of stages of feeding. Therefore, if the photographing optical system is directly controlled by the output of the position detection element 4a, the photographic lens cannot be moved to the correct in-focus position, resulting in an out-of-focus photograph. In other words, the rate of change in the shift amount t 1 of the light source image on the position detection element 4a with respect to the object distance U 1 cannot be changed by only correction using the prism P, so complete correction is impossible. This comes from the fact that [Object of the Invention] An object of the present invention is to improve the distance measurement accuracy during close-up photography and realize more ideal focus correction in an autofocus camera having a distance measurement optical system using triangular distance measurement. Another object of the present invention is to provide an autofocus camera that can automatically configure a distance measuring optical system for close-up photography in conjunction with the transition from normal photography to close-up photography. "Summary of the Invention" Basically, in the discussion regarding Table 1 above, the amount of change in t from 17-18 to 0-1 is 0.5334mm, and the amount of change in t1 is 0.4797mm.
This was done based on the idea that complete correction could be achieved by increasing the amount of change in t 1 by 0.5334/0.4794 times, or 1.1130 times, during close-up shooting. A short-distance correction optical element that optically extends the base line length between the light emitting part and the light receiving part of the distance measuring optical system and intersects the optical axes of the light emitting part and the light receiving part at a finite distance. It is characterized by the placement of The present invention further includes a mechanical configuration for advancing the short-distance correction optical element to the front surface of the light receiving section in conjunction with the transition operation between normal photography and close-up photography of the camera. That is, the present invention provides a drive ring for the photographing optical system that transitions between normal photographing and close-up photographing by a rotational operation;
a correction flag having the short-distance correction optical element at its free end, the proximal end of which is pivoted to move the short-distance correction optical element forward and backward in front of the light-receiving section as it swings;
A spring means that normally biases this correction flag in a direction in which the distance correction optical element retreats from the front surface of the light receiving section; The present invention is characterized by having an interlocking means provided between the drive ring and the correction flag, which is rotated to position the short distance correction optical element in front of the light receiving section. Regarding the optical system other than the mechanical structure, a separate patent application has been filed with the present filing date as Japanese Patent Application No. 108279/1982 (filed on May 12, 1961). Embodiments of the Invention FIG. 9 shows the optical configuration of a distance measuring device for an autofocus camera according to the present invention during close-up photography. The present invention uses a short-distance correction optical element 4e consisting of a prism 4c and a mask 4d during close-up photography.
The basic configuration is that it is disposed in front of the light receiving lens 4b of the distance measuring device, and is retracted from the optical axis of the light receiving lens 4b during normal photographing. Before explaining the mechanical configuration for moving the short-distance correction optical element 4e back and forth in front of the light-receiving lens 4b, the structure of the short-distance correction optical element 4e and the reason why distance measurement accuracy in close-up photography is improved will be explained. The prism 4c has the effect of optically extending the base line length of the distance measuring device and the effect of refracting light rays. FIG. 10 shows a detailed top sectional view of the prism 4c, mask 4d, and light receiving lens 4b. FIG. 11 is a front view of FIG. 10. The mask 4d is for blocking light other than the necessary optical path, and has an opening 4f on the subject side and an opening 4g on the light receiving lens 4b side. The aperture 4f is located at a distance l from the optical axis O of the light receiving lens 4b to the side away from the optical axis of the light emitting lens 3b.
The openings 4g are opened in a slit shape so as to correspond to the optical axis O of the light receiving lens 4b. When the prism 4c with the mask 4d is placed in front of the light-receiving lens 4b, that is, during close-up photography, the first lens group of the photographic lens is extended by an amount different from the amount extended by the autofocus device during normal photography. A certain amount is dispensed. By arranging the prism 4c in front of the light-receiving lens 4b as shown in FIGS. 1 and 2, the measurable distance range can be shifted to the short distance side. The prism 4c optically extends the base length L to L+l by translating the light beam incident thereon by l in the direction of the base length. When the angle of this prism 4c is δ 1 , the refractive index is n, and the amount of parallel movement of the light beam is l as described above, the amount of deviation t 2 of the light source image on the position detection element 4a with respect to the object distance U 2 is as follows. It can be found using the following procedure. The angle of incidence α 1 of the light beam on the surface of the prism 4c on the opposite side to the subject is determined from the following equation. α 1 = tan -1 {(L+l)/(U 2 -f-d)} + δ 1 This formula shows that the base line length of the triangular distance measuring device changes from L before inserting the prism 4c to L+l after inserting the prism 4c. This means that it has been extended. When a ray of light with an incident angle α 1 enters a prism with an angle δ 1 , the deflection angle β 1 is obtained from the following equation. β 1 = α 1 − δ 1 + sin −1 [nsin {δ 1 − sin (α 1 /n)}] Therefore, γ 1 = α 1 − δ 1 − β 1 Therefore, the light source image on the position detection element 4a The amount of deviation t 2 is
t 2 = f·tanγ 1 . Umf 2 is the object distance when a ray that coincides with the optical axis of the projection lens 4b intersects with the optical axis of the projection lens 3b, and if the thickness of the prism 4c is ignored, then Umf 2 = (L + l) / tan {sin - 1 (nsinδ 1 )−δ 1 }+f
It is expressed as +d. Here, a case will be described in which the present invention is applied to a photographing lens under the same conditions as in the above embodiment. That is,
The photographing lens is a two-group zoom lens, the focal length of the first group is f 1 = 24.68 mm, the distance between principal points HH = 7.02 mm, the distance between the focal position of the first group and the focal position of all groups △ = 30.04 mm,
Distance d between the film surface and the focal plane of the light receiving lens =
6.292mm, shift amount of 1st group during close-up shooting 0.5502
mm, base line length L of distance measuring device = 30 mm, focal length f of light receiving lens = 20 mm, angle δ 1 of prism 4c = 3.39°,
Refractive index n = 1.483, amount of parallel movement of light ray = 3.39 mm,
If the shooting distance range is 0.983m to ∞ and the number of feeding steps is 18 steps, of which 0.973m to 6m is divided into 17 steps, 0.973m to 6m.
Shooting range of 0.580m ~ by prism 4c
Table 1 shows the calculation results for the case of shifting to a shooting range of 1.020 m.

【表】 表2の結果より、通常撮影時と近接撮影時の位
置検出素子4a上の光源像の各段における差は±
0.0001mm以下に抑えられていることが分る。よつ
てこの位置検出素子4aの出力に応じて撮影光学
系の繰出制御を行なえば、ほぼ完全なピントの写
真を得ることができる。表1の結果は、プリズム
4cによつて、近接撮影時の基線長を光学的に通
常撮影時のそれの1.113倍(30mm→33.39mm)に延
長し、位置検出素子4aの上の移動量を1.113倍
に増加できたことを示している。 次に第1図ないし第8図につき、近接撮影と通
常撮影との間の移行に連動して、上記距離補正光
学素子4eを受光レンズ4bの前面に進退させる
機械構成を説明する。 この実施例は、ズームレンズ系を有するレンズ
シヤツタ式カメラに本発明を適用したもので、ズ
ームレンズの鏡筒ブロツク1、フアインダおよび
ストロボブロツク2、上記三角測距原理に基づく
投光部3と受光部4、ズーミング用のズームモー
タ5を備えている。これらの要素は、カメラボデ
イの固定部となる台板6上に固定されている。投
光部3と受光部4を、ズームモータ5の両側に配
置すると、スペース効率を高めた状態で、基線長
Lを大きくすることができる。 そしてこれらの要素は、カメラボデイの固定部
となる台板6(第2図ないし第5図参照)上に固
定されている。すなわち、台板6は、光軸と直角
をなす鏡筒支持板部6aと、この鏡筒支持板部6
aの上端を直角に曲折した水平支持板部6bと、
この水平支持板部6bに対して直角をなすモータ
支持板部6cとを有していて、鏡筒支持板部6a
に鏡筒ブロツク1が支持されている。またモータ
支持板部6cには、鏡筒ブロツク1の上部中央に
位置するズームモータ5が固定され、このズーム
モータ5の両側に、水平支持板部6bに固定され
た投光部3と受光部4が位置している。フアイン
ダブロツク2は、この水平支持板部6bの正面右
方に固定される。6eは、スペーサ6fを介して
モータ支持板部6cに固定したギヤ列支持プレー
トである。 ズームモータ5によつて駆動される鏡筒ブロツ
ク1の構造を第6図ないし第8図について説明す
る。台板6の鏡筒支持板部6aには、固定ねじ1
0を介して後固定板11が固定されている。この
後固定板11には光軸と平行でこれの周囲に位置
する4本のガイドロツド12が固定されていて、
このガイドロツド12の先端に前固定板13が固
定されている。以上が鏡筒ブロツク1の主たる固
定要素である。 後固定板11と前固定板13の間には、カムリ
ング(駆動リング)14が回転自在に支持されて
おり、このカムリング14の外周に、ズームモー
タ5の駆動軸5aに固定したピニオン7と直接ま
たはギヤ列を介して噛み合うギヤ15が固定ねじ
15a(第6図)で固定されている。このギヤ1
5は、カムリング14の回動範囲をカバーするセ
クタギヤである。カムリング14には、前群用、
後群用のズーミングガム溝20,21が切られて
いる。 第7図はズーミングガム溝20,21の展開図
で、後群用のズーミングカム溝21は広角端固定
区間21a、変倍区間21b、望遠端固定区間2
1cを有している。これに対し前群用のズーミン
グカム溝20は、バリヤブロツク30の開閉区間
20a、レンズ収納区間20b、広角端固定区間
20c、変倍区間20d、望遠端固定区間20
e、マクロ繰出区間20f、およびマクロ端固定
区間20gを有している。これら各区間の回動角
度は、ズーミングガム溝20の開閉区間20a、
レンズ収納区間20b、および広角端固定区間2
0cの合計角度δ1が、ズーミングカム溝21の広
角端固定区間21aの角度δ1と同一であり、変倍
区間20dと変倍区間21bの角度δ2が同一であ
り、望遠端固定区間20e、マクロ繰出区間20
f、およびマクロ固定区間20gの合計角度δ3
望遠端固定区間21cの角度δ3と同一である。な
おこの実施例の具体的なズーミング範囲は35mm〜
70mmで、望遠端(70mm)からさらにマクロ繰出が
可能となつている。 このズーミングカム溝20およびズーミングカ
ム溝21には、ガイドロツド12に移動自在に嵌
ため前群枠16のローラ17および後群枠18の
ローラ19が嵌まる。前群枠16には、固定ねじ
22aを介して飾枠22が固定され、さらにシヤ
ツタブロツク23が固定されている。前群レンズ
L1を保持した前群レンズ枠24は、このシヤツ
タブロツク23とヘリコイド25によつて螺合し
ており、またシヤツタブロツク23のレンズ繰出
レバー23aと係合する腕24aを有している。
したがつてレンズ繰出レバー23aが円周方向に
回動し、これに伴ない前群レンズ枠24が回動す
ると、前群レンズ枠24はヘリコイド25に従つ
て光軸方向に移動する。後群レンズL2は、後群
枠18に直接固定されている。 以上の構成から明らかなように、上記鏡筒ブロ
ツク1は、ズームモータ5によつてカムリング1
4を回動させ、前群枠16のローラ17をズーミ
ングカム溝20のマクロ繰出区間20fからマク
ロ端固定区間20gに係合させると、通常撮影時
より前群レンズL1がさらに繰出される近接撮影
状態となる。 本発明の特徴とする上記近距離補正光学素子4
eは、第1図、第2図、第4図に示すように、受
光部4の下方に位置する軸41によつて、その基
端部を台板6に枢着した補正フラグ42の自由端
に固定されている。この補正フラグ42は外力が
加わらない状態では直線性を保持するが、外力が
加わると、弾性的に変形する可撓性を有してい
る。そしてこの補正フラグ42の他端には、連動
突起43が一体に設けられている。また近距離補
正光学素子4eは、引張ばね46によつて、常時
はその距離補正光学素子4eが受光部4の前方か
ら退避する方向に回動付勢されている。そしてカ
ムリング14には、これが近接撮影位置に回動し
たとき上記連動突起43と係合して近距離補正光
学素子4eを受光部4の前面に進出させる進出突
起44が設けられている。進出突起44は、近距
離補正光学素子4eを受光部4の前面より大きく
回動させるように位置および形状が定められてい
るが、近距離補正光学素子4eの進出突起44に
よる回動端は、台板6と一体のギヤ支持板6eの
側面が規制し、進出突起44によるオーバチヤー
ジ分は、補正フラグ42の可撓性で吸収される。 以上の構造によれば、カムリング14が近接撮
影位置に回動したときに、自動的に近距離補正光
学素子4eを受光部4の前面に位置させることが
できる。 なお投光部3と受光部4を有する測距装置から
のシヤツタブロツク23への駆動信号は、図示し
ないフレキシブルプリント基板(FPC基板)を
介して行なわれる。このフレキシブルプリント基
板は、前群レンズL1および後群レンズL2の全
移動域において、余裕を持つて伸展し、かつ折畳
まれるように、カムリング14の内側に曲折配置
される。 また第1図に示したフアインダブロツク2を簡
単に説明すると、このフアインダ装置8とストロ
ボ装置9は、鏡筒ブロツク1の焦点距離の変化に
連動させて、フアインダ視野を変化させ、かつス
トロボの照射角(光強度)を変化させるものであ
る。そのための動力源は、上記ズームモータ5が
用いられる。カムリング14のギヤ15には、上
記ピニオン7とは別のピニオン50が噛み合つて
いて、このピニオン50の軸51は、台板6の後
方に延長され、その後端に減速ギヤ列52が設け
られている。減速ギヤ列52の最終ギヤ52a
は、カム板53のラツク53aに噛み合つてい
る。カム板53は左右方向に摺動可能で、その後
端の下方曲折部53bの先端(下端)にラツク5
3aが一体に設けられている。減速ギヤ列52
は、ギヤ15の回転を減速し、カムリング14の
動きを縮小してカム板53に与えるものである。
カム板53には、フアインダ装置8用の変倍カム
溝55と、パララツクス補正カム溝56、および
ストロボ装置9用のストロボカム溝57が設けら
れている。 フアインダ装置8のレンズ系は、基本的には、
固定された被写体側レンズ群L3と接眼レンズ群
L4、および可動の変倍レンズ群L5からなり、
さらに、近接撮影時用の偏角プリズムP1を備え
ている。変倍レンズ群L5は鏡筒ブロツク1の変
倍操作による撮影画面と、フアインダ装置8によ
る視野を一致させるものであり、偏角プリズムP
1は近接撮影時のみ光軸上に進出して特にパラツ
クスを補正する。すなわちレンズシヤツタ式カメ
ラでは、パララツクスが避けられず、その量は近
距離撮影程大きくなるが、本発明のカメラは近接
撮影が可能であり、このときパラツクスの量が大
きくなることから、近接撮影時に限つて、下方が
厚く上方が薄い楔形の偏角プリズムP1を光路に
入れ、光路を下方に屈曲させ、撮影部分により近
い部分を観察できるようにしている。 またストロボ装置9は、撮影レンズの焦点距離
が長焦点のとき程、つまりレンズを繰出す程照射
角を絞る一方、近接撮影時には、照射角を逆に広
げて被写体に対する光量を落すものである。この
ためこの実施例ではフレネルレンズL6を固定
し、キセノンランプ58を保持した反射笠59を
光軸方向に動かすようにしている。 「発明の効果」 本発明による自動焦点式カメラによれば、近接
撮影時における測距精度を高めることができるの
で、測距データに基いて撮影光学系を移動制御す
ることにより、近接撮影でありながら、シヤープ
なピントの写真を売ることができる。近接撮影機
能は、一眼レフカメラにおいては広く用いられて
いるが、本発明によれば安価なレンズシヤツター
式の自動合焦カメラに簡単に組み込み、実質的に
一眼レフカメラと同等のピント精度を得ることが
可能である。特に被写界深度が浅くピンボケの目
立ちやすい長焦点レンズを内蔵したカメラにおい
て顕著な効果が得られる。 そして本発明においては、近距離補正光学素子
が揺動可能な補正フラグの先端にに設けられてお
り、撮影光学系を通常撮影から近接撮影に移行さ
せる駆動リングの回動に連動して、この補正フラ
グに設けた近距離補正光学素子が受光部の前面に
進出するので、近接撮影における測距を特別な操
作を要することなく自動的に行なうことができ
る。
[Table] From the results in Table 2, the difference between each stage of the light source image on the position detection element 4a during normal shooting and close-up shooting is ±
It can be seen that it is suppressed to less than 0.0001mm. Therefore, by controlling the advancement of the photographing optical system in accordance with the output of the position detection element 4a, a photograph with almost perfect focus can be obtained. The results in Table 1 show that the prism 4c optically extends the baseline length during close-up photography to 1.113 times (30 mm → 33.39 mm) that during normal photography, and the amount of movement above the position detection element 4a is increased. This shows that it has increased by 1.113 times. Next, referring to FIGS. 1 to 8, a mechanical configuration for moving the distance correction optical element 4e back and forth in front of the light receiving lens 4b in conjunction with the transition between close-up photography and normal photography will be described. In this embodiment, the present invention is applied to a lens shutter type camera having a zoom lens system, and includes a lens barrel block 1, a viewfinder and a strobe block 2 of the zoom lens, and a light emitter 3 and a light receiver based on the triangulation principle described above. 4. It is equipped with a zoom motor 5 for zooming. These elements are fixed on a base plate 6 that serves as a fixed part of the camera body. By arranging the light projecting section 3 and the light receiving section 4 on both sides of the zoom motor 5, the base line length L can be increased while improving space efficiency. These elements are fixed on a base plate 6 (see FIGS. 2 to 5), which serves as a fixed part of the camera body. That is, the base plate 6 includes a lens barrel support plate portion 6a that is perpendicular to the optical axis, and a lens barrel support plate portion 6a that is perpendicular to the optical axis.
a horizontal support plate portion 6b whose upper end is bent at a right angle;
It has a motor support plate part 6c that is perpendicular to the horizontal support plate part 6b, and a lens barrel support plate part 6a.
A lens barrel block 1 is supported by the lens barrel block 1. Further, a zoom motor 5 located at the upper center of the lens barrel block 1 is fixed to the motor support plate 6c, and a light emitter 3 and a light receiver fixed to the horizontal support plate 6b are arranged on both sides of the zoom motor 5. 4 is located. The finder block 2 is fixed to the front right side of this horizontal support plate portion 6b. 6e is a gear train support plate fixed to the motor support plate portion 6c via a spacer 6f. The structure of the lens barrel block 1 driven by the zoom motor 5 will be explained with reference to FIGS. 6 to 8. A fixing screw 1 is attached to the lens barrel support plate portion 6a of the base plate 6.
The rear fixing plate 11 is fixed via the pin 0. After this, four guide rods 12 are fixed to the fixed plate 11, parallel to the optical axis and located around it.
A front fixing plate 13 is fixed to the tip of this guide rod 12. The above are the main fixing elements of the lens barrel block 1. A cam ring (drive ring) 14 is rotatably supported between the rear fixed plate 11 and the front fixed plate 13, and a pinion 7 fixed to the drive shaft 5a of the zoom motor 5 is directly connected to the outer periphery of the cam ring 14. Alternatively, gears 15 that mesh through a gear train are fixed with fixing screws 15a (FIG. 6). This gear 1
5 is a sector gear that covers the rotation range of the cam ring 14. The cam ring 14 includes one for the front group,
Zooming gum grooves 20 and 21 for the rear group are cut. FIG. 7 is a developed view of the zooming cam grooves 20 and 21. The zooming cam groove 21 for the rear group includes a wide-angle end fixed section 21a, a variable power section 21b, and a telephoto end fixed section 2.
1c. On the other hand, the zooming cam groove 20 for the front group includes an opening/closing section 20a of the barrier block 30, a lens storage section 20b, a wide-angle end fixed section 20c, a variable power section 20d, and a telephoto end fixed section 20.
e, a macro feeding section 20f, and a macro end fixed section 20g. The rotation angle of each of these sections is the opening/closing section 20a of the zooming gum groove 20,
Lens storage section 20b and wide-angle end fixed section 2
The total angle δ 1 of 0c is the same as the angle δ 1 of the wide-angle end fixed section 21a of the zooming cam groove 21, the angle δ 2 of the zooming section 20d and the zooming section 21b is the same, and the angle δ 2 of the zooming section 20d and the zooming section 21b is the same, and the angle δ 1 of the wide-angle end fixed section 21a of the zooming cam groove 21 is the same, and the angle δ 2 of the zooming section 20d and the zooming section 21b is the same, and the angle δ 1 of the wide-angle end fixed section 21a of the zooming cam groove 21 is the same. , macro feeding section 20
f and the total angle δ 3 of the macro fixed section 20g is the same as the angle δ 3 of the telephoto end fixed section 21c. The specific zooming range of this example is 35mm ~
At 70mm, further macro shots are possible from the telephoto end (70mm). A roller 17 of the front group frame 16 and a roller 19 of the rear group frame 18 are fitted into the zooming cam groove 20 and the zooming cam groove 21 so as to be movably fitted to the guide rod 12. A decorative frame 22 is fixed to the front group frame 16 via fixing screws 22a, and a shutter block 23 is further fixed to the front group frame 16. The front group lens frame 24 holding the front group lens L1 is threadedly engaged with the shutter block 23 by a helicoid 25, and has an arm 24a that engages with a lens extension lever 23a of the shutter block 23.
Therefore, when the lens advancing lever 23a rotates in the circumferential direction and the front group lens frame 24 rotates accordingly, the front group lens frame 24 moves in the optical axis direction following the helicoid 25. The rear group lens L2 is directly fixed to the rear group frame 18. As is clear from the above configuration, the lens barrel block 1 is moved to the cam ring 1 by the zoom motor 5.
4 and engages the roller 17 of the front group frame 16 from the macro extension section 20f to the macro end fixing section 20g of the zooming cam groove 20, the front group lens L1 is extended further than during normal shooting for close-up shooting. state. The above-mentioned short distance correction optical element 4 which is a feature of the present invention
e is the freedom of the correction flag 42 whose base end is pivoted to the base plate 6 by a shaft 41 located below the light receiving section 4, as shown in FIGS. 1, 2, and 4. fixed at the end. The correction flag 42 maintains its linearity when no external force is applied to it, but has the flexibility to elastically deform when an external force is applied to it. An interlocking protrusion 43 is integrally provided at the other end of the correction flag 42. Further, the short distance correction optical element 4e is normally urged to rotate in a direction in which the distance correction optical element 4e retreats from the front of the light receiving section 4 by a tension spring 46. The cam ring 14 is provided with an advancing protrusion 44 that engages with the interlocking protrusion 43 to advance the short distance correction optical element 4e to the front of the light receiving section 4 when the cam ring 14 is rotated to the close-up photographing position. The position and shape of the protrusion protrusion 44 are determined so as to rotate the short distance correction optical element 4e more than the front surface of the light receiving section 4, but the rotation end of the protrusion protrusion 44 of the short distance correction optical element 4e is The side surface of the gear support plate 6e, which is integral with the base plate 6, regulates it, and the overcharge caused by the advancing protrusion 44 is absorbed by the flexibility of the correction flag 42. According to the above structure, when the cam ring 14 rotates to the close-up shooting position, the short-distance correction optical element 4e can be automatically positioned in front of the light receiving section 4. Note that a drive signal from the distance measuring device having the light projecting section 3 and the light receiving section 4 to the shutter block 23 is sent via a flexible printed circuit board (FPC board) not shown. This flexible printed circuit board is bent and arranged inside the cam ring 14 so that it can be extended and folded with a margin in the entire movement range of the front group lens L1 and the rear group lens L2. To briefly explain the finder block 2 shown in FIG. 1, the finder device 8 and strobe device 9 change the finder field of view in conjunction with changes in the focal length of the lens barrel block 1, and the strobe. It changes the irradiation angle (light intensity). The zoom motor 5 described above is used as a power source for this purpose. A pinion 50, which is different from the pinion 7, is engaged with the gear 15 of the cam ring 14, and the shaft 51 of this pinion 50 is extended to the rear of the base plate 6, and a reduction gear train 52 is provided at its rear end. It is being Final gear 52a of reduction gear train 52
is engaged with the rack 53a of the cam plate 53. The cam plate 53 is slidable in the left-right direction, and a rack 5 is attached to the tip (lower end) of the downwardly bent portion 53b at the rear end.
3a are integrally provided. Reduction gear train 52
is to reduce the rotation of the gear 15, reduce the movement of the cam ring 14, and apply it to the cam plate 53.
The cam plate 53 is provided with a variable power cam groove 55 for the finder device 8, a parallax correction cam groove 56, and a strobe cam groove 57 for the strobe device 9. The lens system of the finder device 8 is basically as follows:
It consists of a fixed subject side lens group L3, an eyepiece lens group L4, and a movable variable magnification lens group L5,
Furthermore, a deflection prism P1 for close-up photography is provided. The variable magnification lens group L5 matches the photographic screen obtained by the variable magnification operation of the lens barrel block 1 with the field of view obtained by the finder device 8, and includes a deflection prism P.
1 moves onto the optical axis only during close-up photography and particularly corrects parallax. In other words, in a lens shutter type camera, parallax is unavoidable, and the amount of parallax increases as the distance is taken, but the camera of the present invention is capable of close-up shooting, and since the amount of parallax increases at this time, it is limited to close-up shooting. Then, a wedge-shaped deflection prism P1 that is thicker at the bottom and thinner at the top is inserted into the optical path to bend the optical path downward so that a portion closer to the photographed area can be observed. Further, the strobe device 9 narrows down the irradiation angle as the focal length of the photographing lens becomes longer, that is, as the lens is extended, and conversely widens the irradiation angle to reduce the amount of light to the subject during close-up photography. Therefore, in this embodiment, the Fresnel lens L6 is fixed, and the reflective shade 59 holding the xenon lamp 58 is moved in the optical axis direction. "Effects of the Invention" According to the autofocus camera according to the present invention, distance measurement accuracy during close-up photography can be improved. However, you can still sell sharply focused photos. The close-up shooting function is widely used in single-lens reflex cameras, but according to the present invention, it can be easily incorporated into inexpensive lens-shutter type autofocus cameras, and it can achieve focusing accuracy that is essentially equivalent to that of single-lens reflex cameras. It is possible to obtain. This is particularly effective for cameras with built-in long focal length lenses that have a shallow depth of field and tend to be out of focus. In the present invention, the short-distance correction optical element is provided at the tip of the swingable correction flag, and this element is connected to the rotation of the drive ring that shifts the photographing optical system from normal photography to close-up photography. Since the short-distance correction optical element provided in the correction flag extends to the front of the light receiving section, distance measurement in close-up photography can be performed automatically without requiring any special operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案のレンズシヤツタ式カメラの実
施例を示す主要要素の概念的斜視図、第2図は主
に鏡筒ブロツク、測距装置の投光部と受光部と近
距補正光学素子、およびズームモータの配置を示
す平面図、第3図は第2図の平面図、第4図およ
び第5図は、それぞれ第2図の−線および
−線に沿う断面図、第6図は鏡筒ブロツクの縦
断面図、第7図はカムリングの前群用カム溝およ
び後群用カム溝の展開図、第8図は鏡筒ブロツク
の分解斜視図、第9図は本発明による近接撮影時
のピント補正方式の構成を示した断面図、第10
図は第9図における近距離補正光学素子の詳細を
表した断面図、第11図は第10図の正面図、第
12図は2群ズームレンズの基本構成を示した断
面図、第13図は測距装置の構成を示した断面
図、第14図は従来の近接撮影時のピント補正方
式の構成を示す断面図である。 1……鏡筒ブロツク、3……投光部、4……受
光部、4e……近距離補正光学素子、5……ズー
ムモータ、20……前群用ズーミングカム溝、2
0f……マクロ繰出区間、20g……マクロ端固
定区間、42……補正フラグ、43……連動突
起、44……進出突起、46……引張ばね。
Fig. 1 is a conceptual perspective view of the main elements showing an embodiment of the lens shutter type camera of the present invention, and Fig. 2 mainly shows the lens barrel block, the light emitting part and the light receiving part of the distance measuring device, the short distance correction optical element, FIG. 3 is a plan view of FIG. 2, FIGS. 4 and 5 are sectional views taken along lines - and -, respectively, of FIG. 2, and FIG. 6 is a mirror FIG. 7 is a developed view of the front group cam groove and rear group cam groove of the cam ring, FIG. 8 is an exploded perspective view of the lens barrel block, and FIG. 9 is a close-up photograph according to the present invention. Cross-sectional view showing the configuration of the focus correction method, No. 10
The figure is a sectional view showing details of the short distance correction optical element in Fig. 9, Fig. 11 is a front view of Fig. 10, Fig. 12 is a sectional view showing the basic structure of the two-group zoom lens, and Fig. 13. 14 is a sectional view showing the configuration of a distance measuring device, and FIG. 14 is a sectional view showing the configuration of a conventional focus correction method during close-up photography. DESCRIPTION OF SYMBOLS 1... Lens barrel block, 3... Light emitter, 4... Light receiver, 4e... Short distance correction optical element, 5... Zoom motor, 20... Zooming cam groove for front group, 2
0f...Macro feeding section, 20g...Macro end fixing section, 42...Correction flag, 43...Interlocking protrusion, 44...Advancing protrusion, 46...Tension spring.

Claims (1)

【特許請求の範囲】 1 被写体に向けて測距光を発する投光部と、被
写体からの反射光を受ける受光部とを有する三角
測距原理に基づく測距光学系と;この測距光学系
からの測距データに基づき焦点位置に駆動される
撮影光学系とを備え、この撮影光学系は、近接撮
影時に、その光学系の全部または一部がさらに一
定量繰り出される近接撮影可能な自動焦点式カメ
ラにおいて、 回動操作により通常撮影と近接撮影間の移行を
行なう上記撮影光学系の駆動リングと;上記測距
光学系の受光部の前面に配置されたとき、該測距
光学系の投光部と受光部の間の基線長を光学的に
延長させ、かつこの投光部と受光部の光軸を有限
距離で交差させる近距離補正光学素子と;この近
距離補正光学素子を自由端部に有し、揺動に伴な
いこの距離補正光学素子を受光部の前面に進退さ
せる、基端部を枢着した補正フラグと;この補正
フラグを常時はその近距離補正光学素子が受光部
前面から退避する方向に付勢するばね手段と;上
記駆動リングが近接撮影位置に回動したとき補正
フラグを上記ばね手段に抗して回動させてその近
距離補正光学素子を受光部の前面に位置させる、
該駆動リングと補正フラグとの間に設けた連動手
段とを備えたことを特徴とする近接撮影可能な自
動焦点式カメラ。 2 特許請求の範囲第1項において、前記近距離
補正光学素子は、全反斜面を2つ有し、入射光を
基線長の方向に平行移動させて該基線長を光学的
に延長する全反射プリズムである自動焦点式カメ
ラ。
[Scope of Claims] 1. A distance measuring optical system based on the triangular distance measuring principle, which has a light emitting section that emits distance measuring light toward a subject, and a light receiving section that receives reflected light from the subject; The photographing optical system is equipped with an automatic focusing system that enables close-up photography, in which all or part of the optical system is further extended by a certain amount during close-up photography. In a type camera, the driving ring of the photographing optical system transitions between normal photography and close-up photography by rotation; A short-distance correction optical element that optically extends the baseline length between the light part and the light-receiving part, and intersects the optical axes of the light-emitting part and the light-receiving part at a finite distance; a correction flag whose proximal end is pivoted to move the distance correction optical element forward and backward in front of the light receiving part as it swings; a spring means for biasing the drive ring in a direction to retreat from the front surface; when the drive ring rotates to the close-up shooting position, the correction flag is rotated against the spring means to move the short-range correction optical element to the front surface of the light-receiving section; to be located in
An autofocus camera capable of close-up photography, characterized by comprising interlocking means provided between the drive ring and the correction flag. 2. In claim 1, the short-distance correction optical element has two total anti-slanted surfaces, and is a total reflection optical element that moves incident light in parallel in the direction of the base line length to optically extend the base line length. An autofocus camera that is a prism.
JP61150995A 1986-05-12 1986-06-26 Automatic focusing camera capable of proximity photographing Granted JPS636532A (en)

Priority Applications (67)

Application Number Priority Date Filing Date Title
JP61150995A JPS636532A (en) 1986-06-26 1986-06-26 Automatic focusing camera capable of proximity photographing
DE3751455T DE3751455T2 (en) 1986-05-12 1987-05-12 Photographic-optical system and camera with such a system.
KR1019920700193A KR0131680B1 (en) 1986-05-12 1987-05-12 Finder system for a camera
DE3751879T DE3751879T2 (en) 1986-05-12 1987-05-12 Intermediate lens shutter camera with zoom lens
CA000536919A CA1312231C (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
DE8718027U DE8718027U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO OPTICS
AT92105341T ATE126358T1 (en) 1986-05-12 1987-05-12 PHOTOGRAPHIC-OPTICAL SYSTEM AND CAMERA COMPRISING SUCH A SYSTEM.
KR1019920700194A KR0156530B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
AT92105357T ATE132276T1 (en) 1986-05-12 1987-05-12 OPENING AND CLOSING MECHANISM FOR A LENS
EP92105343A EP0498467B1 (en) 1986-05-12 1987-05-12 Flexible printed circuit with anti-reflection device for a lens shutter camera
DE8718028U DE8718028U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
PCT/JP1987/000293 WO1987007038A1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
AT92105343T ATE126902T1 (en) 1986-05-12 1987-05-12 FLEXIBLE PRINTED CIRCUIT WITH ANTI-REFLECTION DEVICE FOR A CENTRAL SHUTTER CAMERA.
DE3751241T DE3751241T2 (en) 1986-05-12 1987-05-12 Photographic optical system and camera with such a system.
AU73955/87A AU606343B2 (en) 1986-05-12 1987-05-12 Lens shutter camera
EP87902775A EP0266435B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
DE8717978U DE8717978U1 (en) 1986-05-12 1987-05-12 Camera with zoom lens and zoom finder
AT92105344T ATE121200T1 (en) 1986-05-12 1987-05-12 PHOTOGRAPHIC OPTICAL SYSTEM AND CAMERA COMPRISING SUCH SYSTEM.
KR1019880700027A KR940010590B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom-lens
EP92105341A EP0495532B1 (en) 1986-05-12 1987-05-12 Photographic optical system and camera including such a system
AT92105342T ATE126363T1 (en) 1986-05-12 1987-05-12 GUIDING MECHANISM FOR A FLEXIBLE PRINTED CIRCUIT BOARD IN AN INTERMEDIATE LENS SHUTTER CAMERA.
AT87902775T ATE112071T1 (en) 1986-05-12 1987-05-12 INTER-LENS SHUTTER CAMERA WITH ZOOM LENS.
EP92105357A EP0510379B1 (en) 1986-05-12 1987-05-12 Lens cap opening and closing mechanism
KR1019950703637A KR0149575B1 (en) 1986-05-12 1987-05-12 Zoom camera
DE3751456T DE3751456T2 (en) 1986-05-12 1987-05-12 Guide mechanism for a flexible printed circuit board in an inter-lens shutter camera.
DE8718024U DE8718024U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
DE3751657T DE3751657T2 (en) 1986-05-12 1987-05-12 Opening and closing mechanism for a lens
EP93110717A EP0569051B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including a zoom lens system
DE8718025U DE8718025U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO VIEWFINDER
AT93110717T ATE141693T1 (en) 1986-05-12 1987-05-12 INTERMEDIATE LENS CAMERA WITH ZOOMO LENS
DE3751481T DE3751481T2 (en) 1986-05-12 1987-05-12 Flexible printed circuit with anti-reflection device for a central locking camera.
EP92105342A EP0495533B1 (en) 1986-05-12 1987-05-12 Guide mechanism of a flexible printed circuit board for a lens shutter camera
DE3750569T DE3750569T2 (en) 1986-05-12 1987-05-12 INTERMEDIATE LENS CAMERA WITH ZOOM LENS.
DE8718017U DE8718017U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
EP92105344A EP0497383B1 (en) 1986-05-12 1987-05-12 Photographic optical system and camera including such a system
US90/002261A US4944030B1 (en) 1986-05-12 1988-01-07 Lens shutter camera including zoom lens
KR1019880700027A KR0165530B1 (en) 1986-05-12 1988-01-12 Lens shutter camera including zoom-lens
US07/480,217 US5142315A (en) 1986-05-12 1990-02-14 Lens shutter type of camera including zoom lens
US07/480,214 US5157429A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07/486,914 US5214462A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens and barrier mechanisms
US07/480,069 US5264885A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07/480,213 US5150145A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07486915 US5012273B1 (en) 1986-05-12 1990-02-14 Lens shutter type of camera including zoom lens
US07/480,215 US5016032A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
AU57608/90A AU630973B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57612/90A AU630976B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57611/90A AU630975B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57606/90A AU638257C (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57610/90A AU630974B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
KR1019920700192A KR100232279B1 (en) 1986-05-12 1992-01-28 Zoom lens with the ability of operating in the mode tele, wide macro
CA000616420A CA1330402C (en) 1986-05-12 1992-06-25 Lens shutter camera including zoom lens
US07/924,631 US5321462A (en) 1986-05-12 1992-08-04 Lens shutter camera including zoom lens
US07/924,524 US5276475A (en) 1986-05-12 1992-08-04 Lens shutter camera including zoom lens
US08/071,107 US5424796A (en) 1986-05-12 1993-06-04 Lens shutter camera including zoom lens
US08/222,697 US5465131A (en) 1986-05-12 1994-03-10 Lens shutter camera including zoom lens
US08/463,259 US5583596A (en) 1986-05-12 1995-06-03 Lens shutter camera including zoom lens
US08/462,687 US5673099A (en) 1986-05-12 1995-06-05 Lens shutter camera including zoom lens
KR1019950703638A KR960702910A (en) 1986-05-12 1995-08-28 Lens shutter type zoom lens camera
US08/646,114 US5713051A (en) 1986-05-12 1996-05-07 Lens shutter camera including zoom lens
US08/838,016 US5966551A (en) 1986-05-12 1997-04-22 Lens shutter camera including zoom lens
HK98100940A HK1001902A1 (en) 1986-05-12 1998-02-06 Lens cap opening and closing mechanism
HK98100942A HK1001904A1 (en) 1986-05-12 1998-02-06 Photographic optical system and camera including such a system
HK98100941A HK1001903A1 (en) 1986-05-12 1998-02-06 Photographic optical system and camera including such a system
HK98100938A HK1001900A1 (en) 1986-05-12 1998-02-06 Lens shutter camera including a zoom lens system
HK98100936A HK1001905A1 (en) 1986-05-12 1998-02-06 Lens shutter camera including zoom lens
HK98100939A HK1001901A1 (en) 1986-05-12 1998-02-06 Flexible printed circuit with anti-reflection device for a lens shutter camera
HK98100937A HK1001906A1 (en) 1986-05-12 1998-02-06 Guide mechanism of a flexible printed circuit board for a lens shutter camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150995A JPS636532A (en) 1986-06-26 1986-06-26 Automatic focusing camera capable of proximity photographing

Publications (2)

Publication Number Publication Date
JPS636532A JPS636532A (en) 1988-01-12
JPH048774B2 true JPH048774B2 (en) 1992-02-18

Family

ID=15508980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150995A Granted JPS636532A (en) 1986-05-12 1986-06-26 Automatic focusing camera capable of proximity photographing

Country Status (1)

Country Link
JP (1) JPS636532A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690350B2 (en) * 1986-12-15 1994-11-14 富士写真光機株式会社 camera
US4945372A (en) * 1988-02-16 1990-07-31 Olympus Optical Co., Ltd. Camera

Also Published As

Publication number Publication date
JPS636532A (en) 1988-01-12

Similar Documents

Publication Publication Date Title
KR940010590B1 (en) Lens shutter camera including zoom-lens
US4944030A (en) Lens shutter camera including zoom lens
US5012273A (en) Lens shutter type of camera including zoom lens
JPH0764216A (en) Stereoscopic photographing device
JPH0618321Y2 (en) Light-shielding device for lens shutter type camera
US5016032A (en) Lens shutter camera including zoom lens
US5157429A (en) Lens shutter camera including zoom lens
US5150145A (en) Lens shutter camera including zoom lens
US4942414A (en) Front conversion adapter for lens shutter type of zoom lens camera
JPH0422332Y2 (en)
JPH048774B2 (en)
JPH0478974B2 (en)
JPH023028A (en) Automatic focusing camera
JP2855550B2 (en) Camera interlocking device
KR0131680B1 (en) Finder system for a camera
JPH0531634Y2 (en)
KR0156530B1 (en) Lens shutter camera including zoom lens
JPH0722660Y2 (en) Lens shutter type zoom lens camera
KR0156267B1 (en) Apparatus of light shutter for a camera
KR100232479B1 (en) Acceptor structure of lens barrel
JPH0531632Y2 (en)
CA1332527C (en) Lens shutter camera including zoom lens
JP3126027B2 (en) Camera structure
JPH055544Y2 (en)
CA1330402C (en) Lens shutter camera including zoom lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees