JPH0486577A - Magnetoresistance effect type magnetic sensor - Google Patents

Magnetoresistance effect type magnetic sensor

Info

Publication number
JPH0486577A
JPH0486577A JP2199123A JP19912390A JPH0486577A JP H0486577 A JPH0486577 A JP H0486577A JP 2199123 A JP2199123 A JP 2199123A JP 19912390 A JP19912390 A JP 19912390A JP H0486577 A JPH0486577 A JP H0486577A
Authority
JP
Japan
Prior art keywords
temperature
magnetoresistive
output
elements
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2199123A
Other languages
Japanese (ja)
Other versions
JP2667283B2 (en
Inventor
Noritaka Ishiyama
石井 里丘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F M C KK
Original Assignee
F M C KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F M C KK filed Critical F M C KK
Priority to JP2199123A priority Critical patent/JP2667283B2/en
Priority to KR1019930700263A priority patent/KR930702686A/en
Priority to PCT/JP1991/001017 priority patent/WO1992002826A1/en
Priority to DE69125612T priority patent/DE69125612T2/en
Priority to EP91913127A priority patent/EP0541806B1/en
Publication of JPH0486577A publication Critical patent/JPH0486577A/en
Priority to US08/264,211 priority patent/US5589768A/en
Application granted granted Critical
Publication of JP2667283B2 publication Critical patent/JP2667283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To enable the holding of effective sensitivity even in a high temperature range free from temperature changes by arranging a pair of magnetoresistance effect elements with one end thereof earthed and the other end thereof connected to a constant current circuit to output a potential difference between the elements. CONSTITUTION:A pair of magnetoresistance effect elements 2a and 2b are arranged in parallel and each one end thereof is earthed while each other end thereof connected to a constant current circuit 3 to detect an output V from a potential difference between the elements 2a and 2b. Here, magnetoresistance effectiveness S of the elements 2a and 2b decreases with a rise in temperature and an intrinsic resistance p increases with a rise in temperature. Hence, a relation of Ks -Kp is established between a decrease rate Ks and an increase Kp. Therefore, a change p (t) in resistance due to the magnetoresistance effectiveness at a temperature (t) equals a product between the resistance p and the effectiveness S and so, is in no way affected by temperature. Thus, an output V as given by V = p i (i: constant current value) is compensated for a decrease in the effectiveness S as caused by a temperature rise thereby allowing the obtaining of an effective output even in an atmosphere of a high temperature free from temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気抵抗効果型磁気センサに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a magnetoresistive magnetic sensor.

〔従来の技術〕[Conventional technology]

従来の磁気抵抗効果型磁気センサとしては、例えば、特
公昭57−5067号、特公昭54−41335号等に
示されるようなものが知られている。
As conventional magnetoresistive magnetic sensors, those shown in Japanese Patent Publication No. 57-5067, Japanese Patent Publication No. 41335-1987, etc. are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

よく知れているように磁気抵抗効果率は温度の上昇に応
して減少する。そのため、従来の磁気抵抗効果型磁気セ
ンサは、例えば70℃を超える温度範囲においては有効
な出力が得られず、信頼性を保ち得なかった。
As is well known, the magnetoresistive effect rate decreases as the temperature increases. Therefore, conventional magnetoresistive magnetic sensors cannot provide effective output in a temperature range exceeding 70° C., and cannot maintain reliability.

そこで、この発明では温度上昇による磁気抵抗効果率の
減少分が補償され、高温度雰囲気でも有効な出力が得ら
れる磁気抵抗効果型磁気センサを提供しようとするもの
である。
Therefore, it is an object of the present invention to provide a magnetoresistive magnetic sensor that compensates for the decrease in magnetoresistive efficiency due to temperature rise and that can provide effective output even in a high-temperature atmosphere.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的は、一端を接地し他端に定電流回路を接
続した磁気抵抗効果素子を一対、並列に設け、この一対
の磁気抵抗効果素子間の電位差を出力するようにしてな
る磁気抵抗効果型磁気センサにより達成される。
For this purpose, a pair of magnetoresistive elements, one end of which is grounded and the other end connected to a constant current circuit, are installed in parallel, and the potential difference between the pair of magnetoresistive elements is output. This is achieved by a type magnetic sensor.

〔作  用〕[For production]

この磁気抵抗効果型磁気センサは、磁気抵抗効果素子の
磁気抵抗効果率が温度上昇により減少するが、同時に磁
気抵抗効果素子の固有抵抗が温度上昇により増大し、し
かもこの減少分と増加分とが数値的に略対応関係にある
という事実についての知見に基づくものである。
In this magnetoresistive magnetic sensor, the magnetoresistive effect rate of the magnetoresistive element decreases as the temperature rises, but at the same time, the specific resistance of the magnetoresistive element increases as the temperature rises, and this decrease and increase are This is based on the knowledge that there is a numerical correspondence relationship.

すなわち、定電流回路により一定の電流を磁気抵抗効果
素子に流し、この定電流に相関する電圧を出力とするよ
うにしているので、前記の対応関係にある減少分と増加
分との相殺を利用することができ、結果として温度変化
に左右されない出力を得られるようになる。
In other words, a constant current circuit causes a constant current to flow through the magnetoresistive element, and a voltage correlated to this constant current is output, so the offset between the decrease and increase in the correspondence relationship described above is used. As a result, it becomes possible to obtain output that is not affected by temperature changes.

〔実 施 例〕〔Example〕

以下、この発明による磁気抵抗効果型磁気センサの一実
施例を説明する。
An embodiment of the magnetoresistive magnetic sensor according to the present invention will be described below.

この磁気抵抗効果型磁気センサ1は、図に示すように一
対の磁気抵抗効果素子2a、2bを並列に設け、各々の
一端を接地すると共に、各々の他端に定電流回路3を接
続してなるもので、磁気抵抗効果素子2a、2bの間の
電位差により出力ΔVを得るようにしている。ここで、
一対の磁気抵抗効果素子2a、2bは、互いに同一の特
性を持っていることが好ましいが、必ずしも不可欠では
ない。
As shown in the figure, this magnetoresistive magnetic sensor 1 has a pair of magnetoresistive elements 2a and 2b arranged in parallel, one end of each is grounded, and a constant current circuit 3 is connected to the other end of each. The output ΔV is obtained by the potential difference between the magnetoresistive elements 2a and 2b. here,
It is preferable that the pair of magnetoresistive elements 2a and 2b have the same characteristics, but this is not necessarily essential.

このように定電流回路3を接続した磁気抵抗効果素子2
a、2bを用い、その間の電位差で出力ΔVを得るもの
とすることにより、磁気抵抗効果率の温度の上昇による
減少を補償し得て、従来のものが有効使用可能であった
温度雰囲気より高い高温度雰囲気でも有効な出力を得ら
れるようになる。
The magnetoresistive element 2 connected to the constant current circuit 3 in this way
By using a and 2b and obtaining the output ΔV by the potential difference between them, it is possible to compensate for the decrease in the magnetoresistive effect rate due to an increase in temperature, and it is possible to compensate for the decrease in the magnetoresistive effect rate due to an increase in temperature, and the temperature is higher than that in which the conventional one can be used effectively. Effective output can be obtained even in high temperature environments.

その理由は以下の通りである。The reason is as follows.

前述のように、磁気抵抗効果素子の磁気抵抗効果率Sは
温度上昇により減少し、他方、磁気抵抗効果素子の固有
抵抗ρは温度上昇により増加することが分かっている。
As mentioned above, it is known that the magnetoresistive effect ratio S of the magnetoresistive element decreases as the temperature rises, while the specific resistance ρ of the magnetoresistive element increases as the temperature rises.

この磁気抵抗効果率Sの減少率Ks及び固有抵抗ρの増
加率にρについてデータを取ってみたところ、Ks=−
0,223%/℃でありにρ=0.221%/℃である
ことが分かった。そして、この事実の発見こそが、前述
のような構成による磁気抵抗効果率についての温度補償
を導いたものである。
When I collected data on the rate of decrease Ks of the magnetoresistive effect S and the rate of increase of the specific resistance ρ, I found that Ks=-
It was found that ρ=0.223%/°C and ρ=0.221%/°C. The discovery of this fact led to the temperature compensation of the magnetoresistive effect rate using the above-mentioned configuration.

このことを具体的に説明すると以下の通りである。This will be explained specifically as follows.

出力ΔVは、それぞれ異なる強さの磁気の影響を受ける
磁気抵抗効果素子2a、2bにおいてそれぞれ生じる電
圧変化の差であり、 ΔV=(Va+ΔVa)−(Vb+ΔVb)となる。こ
こで、磁気抵抗効果素子2a、2bが同一の特性を持つ
とすると、 ΔV=ΔVa−Δvb となり、磁気抵抗効果素子2a、2bそれぞれの磁気抵
抗効果による抵抗変化をΔρa、Δρbとすると、ΔV
a=Δρa−1であり、Δvb=Δρb−1であるから
、 ΔV=(Δρa−Δρb)拳i となる。(iは定電流回路3により与えられる所定の電
流値。) この式において磁気抵抗効果による抵抗の変化分である
(Δρa−Δρb) =Δρ=ρ・Sが温度によりどの
ような影響を受けるかを以下にみる。
The output ΔV is the difference between the voltage changes occurring in the magnetoresistive elements 2a and 2b that are affected by magnetism of different strengths, and is expressed as ΔV=(Va+ΔVa)−(Vb+ΔVb). Here, if the magnetoresistive elements 2a and 2b have the same characteristics, ΔV = ΔVa - Δvb, and if the resistance changes due to the magnetoresistive effect of the magnetoresistive elements 2a and 2b are Δρa and Δρb, then ΔV
Since a=Δρa−1 and Δvb=Δρb−1, ΔV=(Δρa−Δρb)fist i. (i is the predetermined current value given by the constant current circuit 3.) In this equation, how is the change in resistance due to the magnetoresistive effect (Δρa - Δρb) = Δρ=ρ・S affected by temperature? See below.

ある温度tにおける磁気抵抗効果素子の固有抵抗ρ(1
)は、 ρ(t)=ρ(1+にρt) また、ある温度tにおける磁気抵抗変化率5(1)は、 S (t)=S (1+Ks t) となる。
The specific resistance ρ(1
) is ρ(t)=ρ(ρt to 1+) Furthermore, the rate of change in magnetoresistance 5(1) at a certain temperature t is S(t)=S(1+Ks t).

したがって、ある温度tにおける磁気抵抗効果による抵
抗の変化分Δρ(1)は、 Δρ(t)=ρ(1+にρt)・S (1+Kst) となる。この式を展開すると、 ΔD (t)=D −S (1+Ks t+にρt+に
ρKs t2) となり、KρKs t2は二乗項であり無視し得るから
結局、 Δo (D =o −S (1+KS t+にρt)と
なる。
Therefore, the change in resistance Δρ(1) due to the magnetoresistive effect at a certain temperature t is as follows: Δρ(t)=ρ(ρt to 1+)·S (1+Kst). Expanding this equation, ΔD (t) = D - S (1+Ks t+ to ρt+ to ρKs t2), and KρKs t2 is a square term and can be ignored, so in the end, Δo (D = o -S (1+KS t+ to ρt ).

ここで、前述のようにKs=−にρであるから結局、 Δρ (t) =ρ 拳 S となり、Δρは温度の影響を受けないことが分かる。こ
のようにΔρが温度の影響をうけなければΔV=Δρ・
iも当然に温度に左右されないことになる。
Here, since ρ is Ks=− as described above, Δρ (t) = ρ fist S after all, and it can be seen that Δρ is not affected by temperature. If Δρ is not affected by temperature in this way, ΔV=Δρ・
Naturally, i is not affected by temperature either.

このことの意味は、前述の特公昭57−5067号にお
ける出力と比較することでより明確になる。
The meaning of this becomes clearer by comparing it with the output in Japanese Patent Publication No. 57-5067 mentioned above.

すなわち、特公昭57−5067号では、として出力Δ
Vを得ている。
That is, in Japanese Patent Publication No. 57-5067, the output Δ is
I'm getting V.

ここで、この式中の“Δρ”が前述の本発明におけるΔ
ρと対応し、“Δρ”は前述したのと同様の理由により
温度の影響をうけないが、磁界を加えない場合の抵抗つ
まり固有抵抗ρ。が温度tにおいてρ。(t)=ρ。(
1+にρt)と増大し、この結果、出力△Vが小さくな
ってしまい、本発明におけるような温度補償効果が得ら
れないものである。
Here, “Δρ” in this formula is Δρ in the above-mentioned present invention.
Corresponding to ρ, “Δρ” is not affected by temperature for the same reason as mentioned above, but is the resistance when no magnetic field is applied, that is, the specific resistance ρ. is ρ at temperature t. (t)=ρ. (
As a result, the output ΔV becomes small, and the temperature compensation effect as in the present invention cannot be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明による磁気抵抗効果型磁気センサは、磁気抵抗
効果素子に定電流を流し、この定電流に相関する電圧を
出力とするようにしているので、温度上昇による磁気抵
抗効果の減少分が補償され、従来に比べより高い温度範
囲においても有効な感度を保ち得る。
In the magnetoresistive magnetic sensor according to the present invention, a constant current is passed through the magnetoresistive element and a voltage correlated to this constant current is outputted, so that the decrease in the magnetoresistive effect due to temperature rise is compensated for. , it is possible to maintain effective sensitivity even in a higher temperature range than before.

【図面の簡単な説明】[Brief explanation of the drawing]

図は磁気抵抗効果型磁気センサの回路図である。 1−ミー磁気抵抗効果型磁気センサ 2a、2b−・−磁気抵抗効果素子 3゛一定電流回路 The figure is a circuit diagram of a magnetoresistive magnetic sensor. 1-Me magnetoresistive magnetic sensor 2a, 2b--Magnetoresistive element 3゛Constant current circuit

Claims (1)

【特許請求の範囲】 磁気抵抗効果素子を用いた磁気抵抗効果型磁気センサに
於いて、 一端を接地し他端に定電流回路を接続した磁気抵抗効果
素子を一対、並列に設け、この一対の磁気抵抗効果素子
間の電位差を出力するようにしたことを特徴とする磁気
抵抗効果型磁気センサ。
[Claims] In a magnetoresistive magnetic sensor using magnetoresistive elements, a pair of magnetoresistive elements each having one end grounded and the other end connected to a constant current circuit are provided in parallel, and the pair of magnetoresistive elements are connected in parallel. A magnetoresistive magnetic sensor characterized by outputting a potential difference between magnetoresistive elements.
JP2199123A 1990-07-30 1990-07-30 Magnetoresistive magnetic sensor Expired - Fee Related JP2667283B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2199123A JP2667283B2 (en) 1990-07-30 1990-07-30 Magnetoresistive magnetic sensor
KR1019930700263A KR930702686A (en) 1990-07-30 1991-07-30 Magnetoresistive type magnetic sensor
PCT/JP1991/001017 WO1992002826A1 (en) 1990-07-30 1991-07-30 Magnetoresistance-effect magnetic sensor
DE69125612T DE69125612T2 (en) 1990-07-30 1991-07-30 MAGNETIC PROBE WITH MAGNETIC RESISTANCE EFFECT
EP91913127A EP0541806B1 (en) 1990-07-30 1991-07-30 Magnetoresistance-effect magnetic sensor
US08/264,211 US5589768A (en) 1990-07-30 1994-06-23 Magnetoresistance-effect magnetic sensor of the temperature compensating type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199123A JP2667283B2 (en) 1990-07-30 1990-07-30 Magnetoresistive magnetic sensor

Publications (2)

Publication Number Publication Date
JPH0486577A true JPH0486577A (en) 1992-03-19
JP2667283B2 JP2667283B2 (en) 1997-10-27

Family

ID=16402523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199123A Expired - Fee Related JP2667283B2 (en) 1990-07-30 1990-07-30 Magnetoresistive magnetic sensor

Country Status (1)

Country Link
JP (1) JP2667283B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297881A (en) * 1991-05-16 1994-03-29 Mitsubishi Steel Mfg. Co., Ltd. Printing machine carriage having a magnetic encoder
US5806890A (en) * 1995-12-26 1998-09-15 Aisin Seiki Kabushiki Kaisha Steering wheel position adjusting apparatus for a vehicular steering system
US6262858B1 (en) 1997-12-26 2001-07-17 Fujitsu Limited Magnetic disk device for controlling a sense current supplied to a magneto-resistive head based on an ambient temperature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337204A (en) * 1976-06-11 1978-04-06 Babcock & Wilcox Ltd Boiler for use in ship
JPS59111011A (en) * 1982-12-17 1984-06-27 Copal Co Ltd Magnetic detector with magneto-resistance element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337204A (en) * 1976-06-11 1978-04-06 Babcock & Wilcox Ltd Boiler for use in ship
JPS59111011A (en) * 1982-12-17 1984-06-27 Copal Co Ltd Magnetic detector with magneto-resistance element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297881A (en) * 1991-05-16 1994-03-29 Mitsubishi Steel Mfg. Co., Ltd. Printing machine carriage having a magnetic encoder
US5806890A (en) * 1995-12-26 1998-09-15 Aisin Seiki Kabushiki Kaisha Steering wheel position adjusting apparatus for a vehicular steering system
US6262858B1 (en) 1997-12-26 2001-07-17 Fujitsu Limited Magnetic disk device for controlling a sense current supplied to a magneto-resistive head based on an ambient temperature

Also Published As

Publication number Publication date
JP2667283B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US5231351A (en) Magnetoresistive speed sensor processing circuit utilizing a symmetrical hysteresis signal
US5442283A (en) Hall-voltage slope-activated sensor
EP0382217B1 (en) Power source circuit and bridge type measuring device with output compensating circuit utilizing the same
JPH0621799B2 (en) Magnetoresistive differential sensor device
US9000824B2 (en) Offset cancel circuit
CN106227285B (en) Temperature-compensation circuit and sensor device
US6316948B1 (en) Charge balance network with floating ground capacitive sensing
US2618674A (en) Difference measuring apparatus
US9018941B2 (en) Biasing circuit for a magnetic field sensor, and corresponding biasing method
JPH0486577A (en) Magnetoresistance effect type magnetic sensor
US5191237A (en) Field-effect transistor type semiconductor sensor
CN100432682C (en) Potential fixing device and potential fixing method
JPH0390880A (en) Magnetic detecting device
ITUB20151184A1 (en) CONDITIONER OF THE ELECTRIC SIGNAL COMING FROM AT LEAST ONE PIEZOCERAMIC SENSOR OF A BRAKING DEVICE FOR VEHICLES
JP2015177205A (en) offset cancellation circuit
SU577490A1 (en) Seismometer
JPH08233867A (en) Bridge detection circuit
JPH0547372Y2 (en)
JPH0642223Y2 (en) Magnetic detection circuit
JP2002176327A (en) Method and device for detecting excessive negative offset of sensor
JPS60131421A (en) Magnetic rotary sensor
SU393673A1 (en) DETECTING DEVICE ON THERMAL CONDUCTIVITY
JP2938657B2 (en) Current detection circuit
JPH02194316A (en) Displacement detecting device
JP2567118B2 (en) Cable accident point search method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees