JPH0486550A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH0486550A
JPH0486550A JP20198890A JP20198890A JPH0486550A JP H0486550 A JPH0486550 A JP H0486550A JP 20198890 A JP20198890 A JP 20198890A JP 20198890 A JP20198890 A JP 20198890A JP H0486550 A JPH0486550 A JP H0486550A
Authority
JP
Japan
Prior art keywords
gas
sensitive body
sensitive
carbon monoxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20198890A
Other languages
Japanese (ja)
Inventor
Shinichi Ochiwa
小知和 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20198890A priority Critical patent/JPH0486550A/en
Publication of JPH0486550A publication Critical patent/JPH0486550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable only carbon monoxide to be detected by heating a first gas-sensitive body for detecting carbon monoxide and hydrogen selectively, heating a second gas-sensitive body for detecting hydrogen selectively, and obtaining difference between both outputs. CONSTITUTION:Gas-sensitive bodies 65 and 66 are placed side by side on a same main surface of an alumina substrate 61, a heater is provided on the other main surface of the substrate 61, and voltage is applied through thick-film electrodes 63 and 64 and through-holes 68 and 69, thus enabling the gas-sensitive bodies 65 ad 66 to be heated to a same temperature of for example 300 - 400 deg.C. Also, the gas-sensitive body 65 is obtained by, for example, adding a precious metal such as palladium and platinum to zinc oxide and the gas-sensitive body 66 is obtained by adding a precious metal to tin oxide. Then, the gas-sensitive body 66 is heated and detects carbon monoxide and hydrogen selectively and the gas-sensitive body 66 is heated and detects hydrogen selectively, thus enabling only carbon monoxide to be selectively detected without being affected by interference gas and material cost and production man-hour to be reduced by obtaining output of the gas-sensitive bodies 65 and 66.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はn型金属酸化物半導体を感ガス体とするガス
センサに係り、41に大気中の一隊化炭素を干渉ガスの
影響なしに検知するガスセンサに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas sensor using an n-type metal oxide semiconductor as a gas sensing body, and detects platooned carbon in the atmosphere without the influence of interference gas. This invention relates to a gas sensor.

〔従来の技術J 酸化スズ、酸化亜鉛岬のn型金属酸化物半導体は大気中
で100〜500℃の温度に加熱されると酸化物の粒子
表面に大気中のWl累を活性化吸着し。
[Prior Art J] When n-type metal oxide semiconductors such as tin oxide and zinc oxide are heated to a temperature of 100 to 500°C in the atmosphere, they activate and adsorb Wl in the atmosphere on the surface of the oxide particles.

表面が高抵抗化する。ここに可燃性ガスが接触すると吸
着wl累が可燃性ガスと反応して吸N酸素が除去され、
電気抵抗値が減少する。
The surface becomes highly resistive. When combustible gas comes into contact with this, the adsorbed HL reacts with the combustible gas, absorbing nitrogen and removing oxygen.
Electrical resistance value decreases.

この様な性質を利用して1例えば酸化スズを感厄体とし
たガスセンサは、LPガス、@重ガスなどのガス漏れ警
報器に広く用いられている。
Utilizing such properties, gas sensors using, for example, tin oxide as a sensitive material are widely used in gas leak alarms for LP gas, @heavy gas, and the like.

tた。上記の様なnff1金属酸化物半導体を用いて毒
性ガスの1つである一酸化戻素を検知することも行なわ
れている。酸化スズを用いた例としては1986年電気
化学合同秋季大会tR5回化学センサ研死発表会講演予
稿集P58に記載されている様にパラジウムを添加して
素子温度を約(資)℃とし、−酸化炭素を検知している
。また醸化亜鉛を用いた例としてはProceedin
gs of the Internat+ona1Me
eting on Chemical 5ensors
’83  P 104に記載されている様に酸化亜鉛に
パラジウムを添加し約350℃でCOガスを検知した研
究例がある。
It was. Detection of back oxygen monoxide, which is one of the toxic gases, has also been carried out using the above-mentioned nff1 metal oxide semiconductor. An example of using tin oxide is as described in the 1986 Joint Autumn Electrochemistry Conference tR 5th Chemical Sensors Research Presentation Proceedings Proceedings P58, palladium is added and the element temperature is set to about (capital) ℃, - Detecting carbon oxide. An example of using fermented zinc is Proceedin.
gs of the International+ona1Me
eting on Chemical 5ensors
As described in '83 P 104, there is a research example in which palladium was added to zinc oxide and CO gas was detected at about 350°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述のような従来の酸化スズセンサにあっ
ては素子温度が低いために応答時間が長くなったり、水
分やNOxなどの雑ガスの干渉を受けやすいという問題
があった。さらに大気中に共存スるプロパンガス、オイ
ルミスト等の高分子量の炭化水素も吸着しやすく、気温
の上昇によってこれらが脱溜し、低濃度の一酸化炭素の
検知に対し誤報を招く危険がある。また従来の酸化亜鉛
センサにあってはその動作温度が300〜400°Cの
範囲にあり、水分、NOx等の干渉を受けずに一酸化炭
素を枳知できるのであるが、水素の干渉を受けやすく、
−酸化炭素の検知に誤報を招きやすいという問題かあっ
た。都市ガス中には水素が含まれており、未燃焼のまま
放出される場合があるからである。
However, the conventional tin oxide sensor as described above has problems such as a long response time due to the low element temperature and being susceptible to interference from miscellaneous gases such as moisture and NOx. Furthermore, high-molecular-weight hydrocarbons such as propane gas and oil mist that coexist in the atmosphere are easily adsorbed, and as the temperature rises, these dedistillate, leading to the risk of false alarms when detecting low concentrations of carbon monoxide. . Furthermore, conventional zinc oxide sensors have an operating temperature in the range of 300 to 400°C, and can detect carbon monoxide without interference from moisture, NOx, etc., but they are susceptible to interference from hydrogen. Easy,
- There was a problem in that carbon oxide detection was prone to false alarms. This is because city gas contains hydrogen and may be released unburned.

この発明は上述の点に鑑みてなされ、その目的は酸化亜
鉛センサに改良を加えることにより水素等の干渉ガスに
影響されず一酸化炭素のみを検知するガスセンサを提供
することにある。
The present invention has been made in view of the above points, and its object is to provide a gas sensor that detects only carbon monoxide without being affected by interfering gases such as hydrogen by improving a zinc oxide sensor.

〔読題を解決するための手段〕[Means for solving reading problems]

上述の目的はこの発明によれは第1の感ガス体と、第2
の感ガス体と、絶縁基板とヒータと、走体は°ヒータに
より所定@罠に加熱され、選択的に一酸化戻素、水素を
検知し、第2の感ガス体はヒータにより所定@度に加熱
され、選択的に水素を検知し、差動検知部は第1の感ガ
ス体の出力■1と第2の感ガス体の出力V!につきその
差△V”V+−■2を出力すること、菫たは第1と第2
の感ガス体が同一の絶縁基板の同一の工面に並置して形
成さね、ヒータが絶縁基板の他の主面に形成され。
The above-mentioned object is achieved according to the present invention by providing a first gas-sensitive body and a second gas-sensitive body.
The gas-sensitive body, the insulating substrate, the heater, and the running body are heated to a predetermined temperature by the heater, and selectively detect back oxygen monoxide and hydrogen, and the second gas-sensitive body is heated to a predetermined temperature by the heater. The differential detection section detects the output of the first gas-sensitive body (■1) and the output of the second gas-sensitive body (V!). To output the difference △V"V+-■2 for the first and second
The gas-sensitive bodies are formed side by side on the same surface of the same insulating substrate, and the heater is formed on the other main surface of the insulating substrate.

第1と第2の感ガス体は同一温度に保持されるようにす
ることにより達成される。
This is achieved by maintaining the first and second gas sensitive bodies at the same temperature.

第1の感ガス体としては例えは酸化亜鉛にパラジウム、
白金等の貴金属を担持したものが用いられる。第2の恩
ガス体としては例えば酸化スズに負金属を担持したもの
が用いられる一第1.および第2の感ガス体の温度とし
ては例えば300〜400℃の温度が用いられる。これ
は水分、 NOxの干渉のない温度である。
As the first gas-sensitive body, for example, zinc oxide, palladium, etc.
A material supporting a noble metal such as platinum is used. As the second gaseous material, for example, tin oxide carrying a negative metal is used. The temperature of the second gas-sensitive body is, for example, 300 to 400°C. This is the temperature at which there is no interference from moisture or NOx.

〔作用) 第1の感ガス体は動作温度に2いて一酸化炭素と水素に
対応した出力を住じ、第2の感ガス体は水素のみに対応
した出力を生ずる。祠出力の差をとれは一酸化炭素の出
力のみをとり出すことかできる。
[Function] The first gas-sensitive member produces outputs corresponding to carbon monoxide and hydrogen at the operating temperature, and the second gas-sensitive member produces outputs corresponding to only hydrogen. By subtracting the difference in the shrine output, it is possible to extract only the output of carbon monoxide.

〔実施例〕〔Example〕

次にCの発明の実施例を図面に是−いて駈明する。 Next, an embodiment of the invention of C will be explained in detail with reference to the drawings.

第1図はこの発明の実施例に係るカスセンサの電気的接
Mを示す回路図である。第1と第2のB、ガス体砧、6
6にはそれぞれ負荷抵抗13 、14が直列に接続され
、電源15より電圧が印刀口される。負荷抵抗13 、
14に発生した第1の悪カス体団の出力V1゜第2の感
ガス体(資)の出力■2は差動検知部16に入力され、
その差△v=v、−V2が出力される。出力△■が一酸
化炭素COのS夏に対応する。
FIG. 1 is a circuit diagram showing an electrical connection M of a scum sensor according to an embodiment of the present invention. 1st and 2nd B, gas body, 6
Load resistors 13 and 14 are connected in series to 6, respectively, and a voltage is applied from a power source 15. Load resistance 13,
The output V1 of the first bad scum group generated in 14 and the output ■2 of the second gas-sensitive body (source) are input to the differential detection unit 16,
The difference Δv=v, -V2 is output. Output △■ corresponds to S summer of carbon monoxide CO.

第5図はこの発明の実施例に係るガスセンサを示す平面
図である。アルミナ製基板61の同−工面に第1の感ガ
ス体師、第2の感ガス体邸が並置される。電圧は厚膜電
極62 、63を介して行われる。
FIG. 5 is a plan view showing a gas sensor according to an embodiment of the invention. A first gas-sensitive body and a second gas-sensitive body are juxtaposed on the same surface of the alumina substrate 61. The voltage is applied via thick film electrodes 62,63.

また基板61の他の工面にはヒータ(図示せず)が設け
られる。ヒータには厚膜電極命、64とスルーオール交
、69を介して電圧か印加される。第1の感ガス体口は
酸化亜鉛にパラジウムを0.2〜1.01[量%、特に
0.4!it%也持し、ペースト状にしたのち、基板6
1の上に30pmの厚さに印刷し焼付けて形成される。
Further, a heater (not shown) is provided on another surface of the substrate 61. A voltage is applied to the heater via a thick film electrode 64 and a through-all cross 69. The first gas-sensitive body has palladium added to zinc oxide in an amount of 0.2 to 1.01%, especially 0.4! After holding it% and making it into a paste, paste the substrate 6.
1 to a thickness of 30 pm and baked.

基板61には予め、導電性の厚膜電極62 、63 、
64が形成される。第2の感ガス体口は酸化スズにパラ
ジウムを02〜1.031j1%1%ニ051i1%担
持し、ペースト状としたのち基、f61の上に加μmの
厚さに印刷し焼付けて形成される。才たヒータは白金ペ
ーストの印刷、焼付けによって形成される。
On the substrate 61, conductive thick film electrodes 62, 63,
64 is formed. The second gas-sensitive body port is formed by supporting tin oxide with palladium 02~1.031j1%2051i1%, making it into a paste, and then printing and baking it on the base f61 to a thickness of more than 100 μm. Ru. The advanced heater is formed by printing and baking platinum paste.

第2図は一酸化炭素、水素のS度をそれぞれ句ppmと
したときの第1の感ガス体出力■1の温度依存性を示す
線図である。−酸化炭素に対する出力は200〜400
℃の範囲でピークを示す。水素は一酸化炭素よりも高い
感度を有することがわかる。
FIG. 2 is a diagram showing the temperature dependence of the output of the first gas-sensitive member (1) when the S degrees of carbon monoxide and hydrogen are expressed as ppm, respectively. - Output for carbon oxide is 200-400
Shows a peak in the °C range. It can be seen that hydrogen has higher sensitivity than carbon monoxide.

上記温度範囲においては水分、 NOxの干渉はない。In the above temperature range, there is no interference from moisture or NOx.

第3図は一酸化炭素、水素の1!に度をそれぞれ500
ppmとしたときの第2の感ガス体出力■2の温度依存
性を示す線図である。100℃以下で一酸化炭素に対す
る感度が高い。水素に対しては、第1の感カス体と類似
の出力を示す。上記温度範囲においては、水分、NOx
の干渉はない。
Figure 3 shows 1 of carbon monoxide and hydrogen! 500 degrees each
FIG. 7 is a diagram showing the temperature dependence of the second gas-sensitive member output (2) in ppm. High sensitivity to carbon monoxide at temperatures below 100°C. For hydrogen, it shows an output similar to that of the first susceptor. In the above temperature range, moisture, NOx
There is no interference.

第4区は差動検知部出力△■の一酸化炭素&度依存性、
水素濃艮依存性を示す線図である。水素は干渉成分とし
て951000 ppm含まれているが、この水素の干
渉は小さくなっているここかわかる。
The 4th section is the differential detection section output △■ carbon monoxide & degree dependence,
FIG. 2 is a diagram showing hydrogen concentration dependence. Hydrogen is included as an interfering component at 951,000 ppm, but it can be seen here that the interference of hydrogen is small.

感カス体の温度は350℃である。水分+ NOxの影
智もない。
The temperature of the scum-sensitive body is 350°C. There is no evidence of moisture + NOx.

第6図はこの発明の異なる実施例に係るカスセンサを示
し、第6図(atは第1の感カス体と基板を示す平面図
、第6図tb+は第2の感ガス体と基板を示す平面図で
ある。第1.第2の感ガス体はそれぞれ異なる基板社、
 52Aに設けられている。特性は同一の基板に設けら
れる場合と同様である。
FIG. 6 shows a gas sensor according to a different embodiment of the present invention. FIG.
52A. The characteristics are similar to those provided on the same substrate.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、第1の感ガス体と、第2の感カス体
と、絶縁基板とヒータと、差動検知部と夕により所定温
良に加熱され1選択的に一酸化炭素、水素を検知し、第
2の感ガス体はヒータにより所定温度lこ加熱され、選
択的に水素を検知し、差動検知部は第1の感ガス体の出
力■1と第2の感ガス体の出力v2につさその差△V=
V+  Vg  を出力するものであり、または第1と
第2の感ガス体が同一の絶縁基板の同一の土間に並置し
て形成され、ヒータが絶縁基板の他の主面に形成され、
與1とwc2の感ガス体は同一温度に保持されるので、 (1)水分# NOx等の干渉のない温fLfこ保持さ
れた第1、第2の感ガス体の出力につきその差を求める
ことで一酸化炭素のみを選択的に検知するガスセンサが
得られる。
According to this invention, the first gas-sensitive body, the second gas-sensitive body, the insulating substrate, the heater, the differential detection unit, and the heater are heated to a predetermined temperature and selectively emit carbon monoxide and hydrogen. The second gas-sensitive body is heated to a predetermined temperature by a heater, and hydrogen is selectively detected. Difference △V=
V+Vg, or the first and second gas-sensitive bodies are formed side by side on the same earthen floor of the same insulating substrate, and the heater is formed on the other main surface of the insulating substrate,
Since the gas sensing bodies 1 and 2 are held at the same temperature, (1) Calculate the difference between the outputs of the first and second gas sensing bodies held at a temperature fLf without interference from moisture such as NOx. This provides a gas sensor that selectively detects only carbon monoxide.

(2)第1と第2の感ガス体が同一基板に形成されるこ
とでガスセンサの材料費、製造工数が低減される。
(2) Since the first and second gas-sensitive bodies are formed on the same substrate, the material cost and manufacturing man-hours of the gas sensor are reduced.

という利点を有する。It has the advantage of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施%に依るガスセンサの電気的接
続を示す回路図、第2図は一歌化戻累。 水素の濃度をそれぞれ500 ppmとしたときの第1
の感ガス体出力■1の温度依存性を示す#図、第3図は
一散化炭素、水素のIIk夏をそれぞれカOppmとし
たときの第2の感ガス体出力V2の温度依存性を示す線
図、第4図は差動検知部出力△Vの一酸化炭素濃度依存
性、水素flk度依存注をボすミー、第5図はこの発明
の実施例に依るカスセンサを示す平面図、第6図はこの
発明の異なる実施例に係るガスセンサを示し、第6図i
alは第1の感ガス体と基板を示す平面囚、第6図(b
lは第2の感ガス体と基板を示す平面図である。 田、53:第1の感ガス体、66 、57 :第2の感
ガス体、 社、 61 :基板、16:差動検知部。 第 図 め力”111本51趨賓“C) )、19− 丙 閃 魯frk惇う&廓(′C) 第3闇 第4閃
FIG. 1 is a circuit diagram showing the electrical connection of a gas sensor according to an embodiment of the present invention, and FIG. The first when the concentration of hydrogen is 500 ppm.
Figure 3 shows the temperature dependence of the output of the second gas-sensitive body V2 when the IIk summer of monodispersed carbon and hydrogen are taken as Oppm, respectively. 4 shows the carbon monoxide concentration dependence of the output ΔV of the differential detection unit and hydrogen flk degree dependence. FIG. 5 is a plan view showing the scum sensor according to the embodiment of the present invention. FIG. 6 shows a gas sensor according to a different embodiment of the present invention, and FIG.
al is a plane diagram showing the first gas-sensitive body and the substrate, FIG.
FIG. 1 is a plan view showing the second gas-sensitive body and the substrate. 53: First gas-sensitive body, 66, 57: Second gas-sensitive body, 61: Substrate, 16: Differential detection section. 111 books 51 guests “C)), 19- Hei Senro frk Jun & Kaku ('C) 3rd Darkness 4th Sen

Claims (1)

【特許請求の範囲】 1)第1の感ガス体と、第2の感ガス体と、絶縁基板と
、ヒータと、差動検知部とを有し、絶縁基板は、第1の
感ガス体、第2の感ガス体の少なくとも1つとヒータを
支持し、第1の感ガス体はヒータにより所定温度に加熱
され、選択的に一酸化炭素、水素を検知し、第2の感ガ
ス体はヒータにより所定温度に加熱され、選択的に水素
を検知し、差動検知部は第1の感ガス体の出力V_1と
第2の感ガス体の出力V_2につきその差ΔV=V_1
−V_2を出力するものであることを特徴とするガスセ
ンサ。 2)請求項1に記載のガスセンサにおいて、第1と第2
の感ガス体が同一の絶縁基板の同一の主面に並置して形
成され、ヒータが絶縁基板の他の主面に形成され、第1
と第2の感ガス体は同一温度に保持されることを特徴と
するガスセンサ。
[Claims] 1) It has a first gas-sensitive body, a second gas-sensitive body, an insulating substrate, a heater, and a differential detection section, and the insulating substrate is connected to the first gas-sensitive body. , supports at least one second gas-sensitive body and a heater, the first gas-sensitive body is heated to a predetermined temperature by the heater and selectively detects carbon monoxide and hydrogen, and the second gas-sensitive body It is heated to a predetermined temperature by a heater, hydrogen is selectively detected, and the differential detection section detects the difference ΔV=V_1 between the output V_1 of the first gas-sensitive body and the output V_2 of the second gas-sensitive body.
A gas sensor characterized in that it outputs -V_2. 2) In the gas sensor according to claim 1, the first and second
gas-sensitive bodies are formed in parallel on the same main surface of the same insulating substrate, a heater is formed on the other main surface of the insulating substrate, and a first
and the second gas-sensitive body are maintained at the same temperature.
JP20198890A 1990-07-30 1990-07-30 Gas sensor Pending JPH0486550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20198890A JPH0486550A (en) 1990-07-30 1990-07-30 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20198890A JPH0486550A (en) 1990-07-30 1990-07-30 Gas sensor

Publications (1)

Publication Number Publication Date
JPH0486550A true JPH0486550A (en) 1992-03-19

Family

ID=16450082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20198890A Pending JPH0486550A (en) 1990-07-30 1990-07-30 Gas sensor

Country Status (1)

Country Link
JP (1) JPH0486550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400643A (en) * 1992-12-23 1995-03-28 Eniricerche S.P.A. Gas sensor based on semiconductor oxide, for gaseous hydrocarbon determination
JP2018194314A (en) * 2017-05-12 2018-12-06 富士通株式会社 Gas analyzer and gas analysis method
CN110174446A (en) * 2018-02-21 2019-08-27 意法半导体股份有限公司 For detecting the gas sensor device of the gas with macromolecular

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400643A (en) * 1992-12-23 1995-03-28 Eniricerche S.P.A. Gas sensor based on semiconductor oxide, for gaseous hydrocarbon determination
JP2018194314A (en) * 2017-05-12 2018-12-06 富士通株式会社 Gas analyzer and gas analysis method
CN110174446A (en) * 2018-02-21 2019-08-27 意法半导体股份有限公司 For detecting the gas sensor device of the gas with macromolecular
CN110174446B (en) * 2018-02-21 2022-06-03 意法半导体股份有限公司 Gas sensor device for detecting gases with macromolecules
US11821884B2 (en) 2018-02-21 2023-11-21 Stmicroelectronics S.R.L. Gas sensor device for detecting gases with large molecules

Similar Documents

Publication Publication Date Title
US5573728A (en) Device for selective detection of gas
EP0084935A1 (en) Gas detection device
Debeda et al. Development of a reliable methane detector
US4844788A (en) Wide-range air/fuel ratio sensor and detector using the same
JP3653293B2 (en) Method for determining the concentration of gas in a vapor
ATE3470T1 (en) SELECTIVE GAS SENSOR OF HIGH SENSITIVITY AND STABILITY FOR DETECTING AND MEASUREMENT OF POLLUTION LEVELS IN AIR BASED ON METAL OXIDE SEMICONDUCTORS.
JPH0486550A (en) Gas sensor
Llobet et al. Transient response of thick-film tin oxide gas-sensors to multicomponent gas mixtures
JPH11160266A (en) Gas sensor
JP3447341B2 (en) Gas sensor
Moseley et al. Semiconductor gas sensors
Sekhar et al. Independent testing and validation of prototype hydrogen sensors
Song et al. A micro hot-wire sensors for gas sensing applications
Williams et al. Detection of sensor poisoning using self-diagnostic gas sensors
JPH03249555A (en) Multicomponent gas sensor
Eastwood et al. The behaviour of tin dioxide sensors in exhaust environments at low and intermediate temperatures
JPH0360385B2 (en)
JP3523323B2 (en) Gas detection circuit using contact combustion type gas sensor
JP4091713B2 (en) Compound gas sensor
JPS6122256B2 (en)
JPS6146455Y2 (en)
JPH01321348A (en) Hydrogen gas sensor
JPS6132360Y2 (en)
JP3167549B2 (en) Gas detector
RU2096774C1 (en) Sensor determining concentration of gases