JPH0485410A - Offshore structure and method for installing the same - Google Patents

Offshore structure and method for installing the same

Info

Publication number
JPH0485410A
JPH0485410A JP20023990A JP20023990A JPH0485410A JP H0485410 A JPH0485410 A JP H0485410A JP 20023990 A JP20023990 A JP 20023990A JP 20023990 A JP20023990 A JP 20023990A JP H0485410 A JPH0485410 A JP H0485410A
Authority
JP
Japan
Prior art keywords
water
weight
ballast
marine
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20023990A
Other languages
Japanese (ja)
Other versions
JPH0699898B2 (en
Inventor
Tadaatsu Hashimoto
橋本 忠篤
Noriaki Masaki
正木 範昭
Hiroshi Nishimura
浩 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Original Assignee
Nikken Sekkei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd filed Critical Nikken Sekkei Ltd
Priority to JP20023990A priority Critical patent/JPH0699898B2/en
Publication of JPH0485410A publication Critical patent/JPH0485410A/en
Publication of JPH0699898B2 publication Critical patent/JPH0699898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of troubles such as falling over, settling, sinking or being washed away by installing a structure on the sea under conditions such that it is placed on the excavated sea bottom under appropriate contact pressure. CONSTITUTION:An offshore structure (bo) is constructed by providing ballast tanks 1 on opposite sides in width direction and partitioning an intermediate space into a plurality of spaces S by walls 2 and slabs 3. The structure is towed to a specified installation location and then water is filled into the ballast tanks 1 so that the weight of the structure (bo) including the weight of water ballast becomes an appropriate magnitude. The sea bottom at the installation location of the structure is excavated in advance. As a result, the offshore structure (bo) can be independently stabilized, while being prevented from any external disturbance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は海底に着地した状態で海洋に設置される、生
活を前提とした海洋構造物2及びその設置方法に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a marine structure 2 intended for living, which is installed in the ocean while landing on the seabed, and a method for installing the same.

[従来技術及び発明が解決しようとする課題]洋上に構
造物を構築する従来の方法は、埋立て予定地の海底軟弱
層に地盤改良を施しながらその外周区域を護岸で区切り
、この護岸内に土砂等を埋め立てることによって造成さ
れた地盤上に構造物を建てる埋立て工法、浮体を海底か
ら係留させたまま、浮力により洋上に単に浮遊させる浮
体工法、及び遠浅の海岸線の沖合に堤防を築き、その内
側の水を排出して海底を露出させ、これをそのまま陸地
とし、その後は埋立て工法と同様の基礎工事を施す干拓
工法とに大別される。
[Prior Art and Problems to be Solved by the Invention] The conventional method of constructing structures on the ocean is to improve the soft seabed layer of the planned reclamation site, divide the outer area with a seawall, and construct a structure within the seawall. There is a reclamation method in which a structure is built on the ground created by reclaiming earth and sand, a floating structure method in which a floating structure is simply floated on the ocean using buoyancy while moored from the seabed, and a dike is built offshore on a shallow coastline. The water inside is drained to expose the seabed, which is then converted into land, and is then divided into land reclamation methods and reclamation methods, in which similar foundation work is carried out.

この中で、埋立て工法は造成された地盤を必要に応して
地盤改良した後、通常の陸上の構造物と同様の施工工程
を経て完了するもので、構造物が地上構造物として完成
することにより風や潮流等には強い反面、建築工事に至
る以前に多くの時間と経費を要す、という工期と工費上
の損失が大きいことに加え、経年的な地盤沈下や地震時
の液状化の危険性に常に直面している、という決定的な
弱点を抱えている。
Among these, the reclamation method is a method in which the created ground is improved as necessary and then completed through the same construction process as a normal land structure, and the structure is completed as an above ground structure. As a result, it is strong against wind and currents, but it requires a lot of time and money before construction begins, which is a big loss in terms of construction time and cost. It has a decisive weakness: it is constantly faced with the danger of

一方、浮体工法による構造物は海底から絶縁された状態
にあることにより地震力を直接受けることはなく、また
沈下の心配もないことから地震に対する安全性は高いが
、浮体であるために風や潮流により特有のロッキング振
動を生じ易い等、安定性に難があり、最悪の事態には流
される。あるいは沈没や転覆の恐れがあり、生活を目的
とした居住性を長期的に確保するのは困難である。
On the other hand, structures constructed using the floating construction method are highly safe against earthquakes because they are insulated from the seabed and are not directly affected by earthquake forces, and there is no risk of subsidence. It has stability problems, such as the tendency to cause rocking vibrations due to tidal currents, and in the worst case scenario, it can be washed away. Otherwise, there is a risk of sinking or capsizing, making it difficult to ensure long-term habitability for living purposes.

最後の干拓工法は地盤面が海面とほぼ同レベルにあるた
め災害時の安全性は堤防の信頼性に依存することになる
が、地震や高潮による堤防の決壊時には無防備であり、
また埋立て工法と同じく予備工事である築堤と排水に長
期間を割かなければならない。
In the last reclamation method, the ground level is almost at the same level as the sea level, so safety in the event of a disaster depends on the reliability of the embankment, but it is defenseless if the embankment collapses due to an earthquake or storm surge.
Also, like the landfill method, a long period of time must be spent on preliminary construction work such as embankment and drainage.

以上の通り、従来の工法は浮体工法を除いて工期の長期
化が避けられないと同時に、建築工事の完了後はその現
場を着工前の原状に復帰させることが不可能である等、
環境保全工種々の問題を残している。また浮体工法以外
は規模の拡大が可能であるが、基本的な問題を抱える以
上、巨大化や多様化へ進む都市の実情に応えることは難
しい。
As mentioned above, with the exception of the floating construction method, conventional construction methods inevitably lengthen the construction period, and at the same time, it is impossible to restore the site to its original state before construction began after the construction work is completed.
Environmental conservation works still have various problems. In addition, methods other than the floating construction method can be expanded in scale, but as long as they have fundamental problems, it is difficult to respond to the reality of cities that are becoming larger and more diverse.

この発明はこうした背景を踏まえてなされたもので、従
来工法の弱点を克服しながら、将来的な要請に適う構造
物とその施工方法を新規に提案しようとするものである
This invention was made based on this background, and aims to propose a new structure and its construction method that will meet future demands while overcoming the weaknesses of conventional construction methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では海底に適度な接地圧で着地した状態で構造物
を洋上に設置することにより、波浪や潮流、風、あるい
は大地震等の外力のいずれに対しても、海洋上に設置さ
れることに伴う転倒や沈下、沈没、あるいは流失等の障
害の発生を防止し、従来工法の居住上の問題点を全て解
決し、また単位ユニットの構造物を複数個連結し、規模
の拡縮が自在な人工島を構成することにより都市の膨張
に積極的に対応する。
In the present invention, by installing the structure on the seabed with a suitable ground pressure on the seabed, the structure can be installed on the ocean against external forces such as waves, currents, wind, and large earthquakes. It prevents the occurrence of problems such as overturning, subsidence, sinking, or washing away due to construction, solves all the housing problems of conventional construction methods, and connects multiple unit structures to allow for flexible expansion and contraction. Proactively respond to urban expansion by constructing artificial islands.

構造物と海底との適度の接地圧、すなわち摩擦力は着地
させる地盤に根切りを施すことにより得られる。
Appropriate ground pressure, or frictional force, between the structure and the seabed can be obtained by cutting roots into the ground on which the structure will land.

海洋構造物は海中に大部分が埋没して設置され、根切り
された根切り底に着地する下部構造のユニットが基本と
なり、この基本的な構造物は両側に水が充満可能で、そ
の量が調節自在な一対のバラストタンクを有する。
Marine structures are mostly installed underwater, and are based on a substructure unit that lands on the bottom of a root cut.This basic structure can be filled with water on both sides, and the amount It has a pair of adjustable ballast tanks.

水バラストを含めた構造物の全自重は、着底した状態に
おける浮力より大きく、且つ浮力と根切り土の全水中重
量との合計より小さい、すなわち構造物が浮力により浮
き上がりもせず、根切り底より下の地盤が構造物によっ
て圧密し、沈下することもない範囲で水バラストが調節
されて設置され、設置状態における高い安定性と安全性
が確保される。
The total weight of the structure, including the water ballast, is greater than the buoyant force when it is on the bottom, and smaller than the sum of the buoyant force and the total underwater weight of the cut soil.In other words, the structure does not rise due to buoyancy, and The water ballast is adjusted and installed to the extent that the ground below is consolidated by the structure and does not sink, ensuring high stability and safety in the installed state.

構造物の全自重の多くは海水の浮力により相殺され、浮
力を上回る重量が根切り土の重量、すなわち根切りされ
る前にその底のレベルに働いていた荷重より小さく設定
されることによって根切り底の地盤は沈下しない状態が
維持されることになる。
Much of the structure's total weight is offset by the buoyant force of the seawater, and by setting the weight that exceeds the buoyancy to be less than the weight of the cutting soil, i.e. the load acting on the bottom level before the root cutting, the roots are The ground at the bottom of the cut will remain in a state where it will not subside.

以上の適度の接地圧で海底に設置されることによって、
構造物は風や波浪、潮流による外力に対しては着地面に
おける摩擦力で抵抗し、滑動や揺れの発生を回避する一
方、地震等の外力に対しては相対的に小さい摩擦力で海
底面との間に適度な滑りを生ずることによりこれを絶縁
して入力を低減し、いずれの規模の外力に対しても安定
し、安全性を発揮する。
By being installed on the seabed with the above moderate ground pressure,
Structures resist external forces caused by wind, waves, and currents using the frictional force on the landing surface to avoid sliding or shaking, while structures resist external forces such as earthquakes by using relatively small frictional force to resist the seabed surface. By creating an appropriate amount of slippage between the two, it insulates it and reduces input, ensuring stability and safety against external forces of any size.

この基本となる構造物は海底に着地することによって下
部構造となり、その上に海上に露出する上部構造が載る
ことにより居住性を有する海洋構造物を完成させる。
This basic structure becomes the lower structure by landing on the seabed, and the upper structure exposed to the sea is placed on top of it to complete the habitable marine structure.

また基本の構造物、または上部構造が付属した構造物は
基本ユニットとして複数個互いに連結され、全体的に環
状に閉じた状態に配置されることによって各種施設の収
容能力が高く、独立して生活、生産機能を保有し得る巨
大な人工島に匹敵する海洋構造物を構成する。
In addition, multiple basic structures or structures with attached superstructures are connected to each other as a basic unit and are arranged in a closed ring as a whole, which increases the capacity to accommodate various facilities and allows independent living. , constitute an offshore structure comparable to a gigantic artificial island that can hold production functions.

上部構造が付属する海洋構造物の設置は、地上で構築さ
れた下部構造のみの構造物を、バラストタンク内の水を
抜き、浮上した状態で所定の洋上まで曳航し、バラスト
タンク内に水を充填し、−旦水中に沈降させて根切りの
施された海底に着地させた後、上記の通り、上部構造と
水バラストの重量を含めた全重量が適度な範囲内に納ま
るよう、バラストタンク内の水量を調節しながらこの上
方に上部構造を構築する、という要領で行われる。
To install an offshore structure with an attached superstructure, a structure with only a substructure built on the ground is drained of the water in the ballast tank, then towed floating to a specified offshore location, and then filled with water in the ballast tank. After filling the tank and lowering it into the water and landing on the cut-off seabed, the ballast tank is refilled so that the total weight, including the weight of the superstructure and water ballast, is within a reasonable range, as described above. This is done by building a superstructure above this while adjusting the amount of water inside.

〔実施例〕〔Example〕

以下本発明を一実施例を示す図面に基づいて説明する。 The present invention will be explained below based on the drawings showing one embodiment.

まず第1請求項記載の発明を第2請求項記載の発明を含
めて説明する。
First, the invention described in the first claim will be explained including the invention described in the second claim.

この発明の海洋構造物(以下後述の海洋構造物Be、B
との区別上、ユニットb。と呼称する)は第4図に示す
ように根切りされた海底に着地して設置されるもので、
両側に配置される一対のバラストタンク1.1内の水の
量の調節によって浮力により浮上もせず、地盤の圧密に
より沈下もしない状態を維持したまま海洋の固定構造物
となるものである。
Marine structures of the present invention (marine structures Be, B described below)
Unit b. ) is installed by landing on the seabed with its roots cut, as shown in Figure 4.
By adjusting the amount of water in a pair of ballast tanks 1.1 placed on both sides, it becomes a fixed structure in the ocean without floating due to buoyancy or sinking due to ground consolidation.

ユニットb。は第2図に示すように幅方向の両側にバラ
ストタンク1.1を置き、その中間の空間を壁2やスラ
ブ3で仕切り、幅方向に直交する方向に連続する複数の
空間Sを形成して構築される。
unit b. As shown in Fig. 2, ballast tanks 1.1 are placed on both sides in the width direction, and the space in between is partitioned by walls 2 and slabs 3 to form a plurality of spaces S that are continuous in the direction perpendicular to the width direction. will be constructed.

この内部の複数の空間Sには第1図に示すように、互い
に連結されて第11図に示すような環状の海洋構造物B
を構成した状態での、内部の連絡網としての道路、駐車
場、新交通システム等の交通施設や、通信、電気、ガス
等の各種のケーブル等を納める共同溝等の設備施設、更
には下水処理場9発電所等生活の基盤となる公共施設等
が配備される。
As shown in FIG. 1, a plurality of internal spaces S are connected to each other to form annular marine structures B as shown in FIG.
transportation facilities such as roads, parking lots, new transportation systems, etc. as internal communication networks, public drains and other facilities for storing various cables such as communication, electricity, gas, etc., and even sewage. Public facilities that serve as the basis of daily life, including nine treatment plants and power plants, will be installed.

ユニットb0は陸上のドライドツクにおいて、鉄筋コン
クリート造、または鋼構造で構築される。規模はドック
のエリア内で建造可能な太きさで、後述する円環状の海
洋構造′+yJBの規模を直径21anとした場合で、
概ね約100 X 100 rff程度である。
Unit b0 is constructed of reinforced concrete or steel construction in a dry dock on land. The scale is the thickness that can be constructed within the dock area, assuming that the scale of the circular marine structure '+yJB, which will be described later, is 21an in diameter.
It is approximately approximately 100×100 rff.

このユニットb。は後述する第2.第3請求項記載発明
の海洋構造物B。、Bの下部構造となり、最も基本的な
単位となる。
This unit b. The second section will be described later. Marine structure B according to the invention described in claim 3. , becomes the substructure of B, and becomes the most basic unit.

ユニットb0は第3図−■〜■に示すように所定の設置
位置まで曳航された後、ノ\ラストタンクl l内に水
が充填されることによって沈降させられ、水量の調節に
より水バラストを含めたユニットb。の全重量を適当な
大きさにして設置される。
After the unit b0 is towed to a predetermined installation position as shown in Figure 3-■ to ■, it is allowed to settle by filling the no last tank with water, and the water ballast is adjusted by adjusting the amount of water. Included unit b. It is installed by adjusting the total weight to an appropriate size.

ユニットb0の設置位置の海底には第3図−Hに示すよ
うにある深度りだけ根切りが行われ、この根切り底にユ
ニットb。が着地する。
A root cut is made to a certain depth on the seabed where unit b0 is installed, as shown in Figure 3-H, and unit b is installed at the bottom of this root cut. lands.

この根切り工事はユニットb0を後述するように適度の
接地圧、すなわち浮力で浮上せず、且つ海底がユニッ)
bo等の重量により圧密して沈下しない程度の接地圧に
より着底させる目的で行われる。
This root cutting work is carried out so that the unit b0 does not float up due to moderate ground pressure, that is, buoyancy, and the seabed remains flat (as will be described later).
This is done with the purpose of landing on the bottom with enough ground pressure to prevent it from sinking due to compaction due to the weight of bo etc.

着底時のユニットb。の、海底との接地圧は以下の条件
を満足する範囲内で設定される(第3図■参照)。
Unit B when landing on the bottom. The ground pressure with the seabed is set within a range that satisfies the following conditions (see Figure 3 ■).

接地圧はユニントbo自身の重! w +と水バラスト
の重量W2.及び後からユニットb。上に構築される上
部構造uBの重量W3の合計(W 1 + W z +
 W z )と、ユニットboの着底時における、海中
部分に働く浮力γω(H+h)との差、(w1+w2+
’L)−γω(トh)で表されるが、この値がユニット
b。上への上部構造U、の完成時に正で、且つ根切り土
の全水中重量γ′hより小さい範囲にあることが条件と
なる。
The ground pressure is the weight of unito itself! w + and the weight of water ballast W2. and later unit b. The sum of the weights W3 of the superstructure uB built on it (W 1 + W z +
W z ) and the buoyant force γω (H+h) acting on the underwater part when the unit bo hits the bottom, (w1+w2+
'L)-γω(th), and this value is unit b. The condition is that it is positive and smaller than the total underwater weight γ'h of the cut soil at the time of completion of the upper structure U.

ここに、WI、W2.W3は単位面積当たりの重量。Here, WI, W2. W3 is weight per unit area.

γい:水の単位体積重量。γ: Unit volume weight of water.

γ′:土の水中単位体積重量。γ′: Unit volume weight of soil in water.

H:根切り前の海底の水深。H: Water depth of the seabed before root cutting.

h:根切り深さ。h: Root cutting depth.

前者は水バラストを含むユニットb、と上部構造Usか
らなる海洋構造物B。の重量が浮力を上回り、海底から
浮上しない条件であり、後者は浮力で打ち消された海洋
構造物B0の重量が根切り底の面に、根切り前にもとも
と作用していた荷重(土砂の重量)を越えない、すなわ
ち土砂に代わって新たに構造物が存在することによって
地盤が沈下しない条件である。
The former is a marine structure B consisting of a unit b containing water ballast and a superstructure Us. This is a condition in which the weight of the marine structure B0 exceeds the buoyancy and does not rise from the seabed, and the latter is a condition in which the weight of the marine structure B0, which is canceled by the buoyancy, is applied to the bottom surface of the root cut, and the load that was originally acting before the root cut (the weight of the earth and sand) ), that is, a condition in which the ground does not sink due to the existence of new structures in place of the earth and sand.

以上の条件を式で表せば、 γ。(H+h) < (W + + W 2+W、3)
 <丁ω(H+h)+γ′hとなる。
Expressing the above conditions in a formula, γ. (H+h) < (W + + W 2+W, 3)
<Dingω(H+h)+γ′h.

ユニットbo、または上部構造U!+が付属したユニ7
)Beはこの条件を満足することによって、風や波浪、
潮流程度の荷重作用時には底面における適度の摩擦力に
より滑動に抵抗し、この摩擦力を越える地震等の大規模
の荷重作用時は適当に滑ることにより外力を回避し、常
に海底と接触状態を維持しながら安定状態を獲得するこ
とになる。
Unit bo, or superstructure U! Uni 7 with + included
)Be satisfies this condition, so that wind, waves,
When a load similar to that of a tidal current is applied, a moderate frictional force on the bottom surface resists sliding, and when a large-scale load such as an earthquake that exceeds this frictional force is applied, it slides appropriately to avoid the external force and maintain contact with the seabed at all times. A stable state will be achieved.

なお、ユニットbo上への上部構造UIlの構築の進行
に伴って鉛直荷重が幅方向に偏心する可能性がある場合
には、第4図に示すように一対のバラストタンク1,1
内の水量をそれぞれに調節することによって全体重量を
一定、且つ均一に保持し、不同沈下や傾斜、転倒等の問
題を解決する。
In addition, if there is a possibility that the vertical load will be eccentric in the width direction as the construction of the superstructure UIl on the unit bo progresses, the pair of ballast tanks 1, 1 will be removed as shown in Fig. 4.
By adjusting the amount of water inside each, the overall weight is kept constant and uniform, solving problems such as uneven settling, tilting, and overturning.

ここで、上記の接地圧で定着したユニットb0の、地震
等の外力に対する安定性を検証する実験結果と解析結果
を付記してお(。
Here, we have attached the experimental results and analysis results to verify the stability of unit b0, which is fixed with the above ground pressure, against external forces such as earthquakes (.

実験は第5図に示す遠心力載荷装置により実物大の1/
1000のモデルに、50Gの遠心力場を与えたときの
動的挙動を測定することにより行い、測定は地盤に地震
動を加えたときの構造物の応答加速度を、地盤と構造物
の模型それぞれに設置した加速度計で計測することによ
り行った。
The experiment was carried out using the centrifugal force loading device shown in Figure 5.
This was done by measuring the dynamic behavior of 1,000 models when a 50G centrifugal force field was applied, and the response acceleration of the structure when earthquake motion was applied to the ground was measured for each of the ground and structure models. This was done by measuring with an installed accelerometer.

その結果を第6図、第7図のグラフに示す。前者は構造
物を通常の工法で海底に定着させた場合の、後者は上記
の条件下で定着させた場合の結果であり、図中細線が地
盤加速度、太線が構造物の応答加速度である。
The results are shown in the graphs of FIGS. 6 and 7. The former is the result when the structure is anchored to the seabed using normal construction methods, and the latter is the result when it is anchored under the above conditions. In the figure, the thin line is the ground acceleration, and the thick line is the response acceleration of the structure.

両図の対比で分かるように、従来工法の定着状態では構
造物の応答加速度と地盤加速度との差が見られない、す
なわち地盤の加速度がそのまま構造物に伝わるのに対し
、本発明の定着状態によれば応答加速度が大幅に低減さ
れ、地盤の加速度がほとんど伝わっていないことが確認
される。
As can be seen from the comparison between the two figures, in the established state of the conventional construction method, there is no difference between the response acceleration of the structure and the ground acceleration, that is, the acceleration of the ground is directly transmitted to the structure, whereas in the established state of the present invention, there is no difference between the response acceleration of the structure and the ground acceleration. According to the results, it was confirmed that the response acceleration was significantly reduced, and that almost no ground acceleration was transmitted.

また解析は有限要素法による一次元モデルの非線型動的
応答解析により行い、構造物の海底への定着条件は第9
図に示すように構造物と地盤との間に存在する、ある一
定値以上の力が加わるとその結合状態が切れる、という
設定が与えられたジヨイント要素によって評価されてい
る。
In addition, the analysis was performed using a nonlinear dynamic response analysis of a one-dimensional model using the finite element method, and the conditions for anchoring the structure to the seabed were determined by
As shown in the figure, the evaluation is based on a joint element that exists between the structure and the ground, and is set so that the bond will break when a force exceeding a certain value is applied.

この解析結果を第8図に示すが、実験結果と全く同様の
結果が得られていることが分かる。
The results of this analysis are shown in FIG. 8, and it can be seen that the results are exactly the same as the experimental results.

以上の結果より、大規模地震程度の外力に対しては構造
物の接地面が地盤に対して相対的に滑ることによって、
浮体と同じように外力に抵抗することなくこれを絶縁し
て入力を回避し、免震効果を発揮することが立証される
From the above results, it is clear that when the contact surface of a structure slides relative to the ground in response to an external force similar to a large-scale earthquake,
It has been proven that, like a floating body, it insulates external forces without resisting them, avoids input, and exhibits a seismic isolation effect.

また海洋構造物B0は海水中に設置されることにより地
震力に加え、波力、潮流力が作用するが、東京湾内で過
去に観測された波浪、潮位のデータを基に算定した値は
大型台風時における波力が16,0OOt、最大潮流力
が500を程度の大きさであり、これらの値は直径21
an、水深15rr1程度の規模を持つ円環構造物とし
て完成する海洋構造物Bに対しては影響のない大きさで
あることが分かり、これらの外力は本構造物にとって問
題はない、と判断される。
In addition, since offshore structure B0 is installed in seawater, it is subject to wave force and tidal current force in addition to seismic force, but the values calculated based on wave and tidal level data observed in the past in Tokyo Bay are large. During a typhoon, the wave force is about 16,0000 t, and the maximum tidal current force is about 500 t, and these values are equivalent to a diameter of 21
It was found that these external forces had no effect on Marine Structure B, which will be completed as a circular structure with a water depth of approximately 15rr1, and it was determined that these external forces would not pose a problem for this structure. Ru.

第2請求項記載の発明の海洋構造物C以下第3請求項記
載発明との区別上ユニッ)Boと呼称する)は上記発明
のユニットb。上に上部構造U、を構築して完成するも
のである。
The marine structure C of the invention described in the second claim (hereinafter referred to as unit) Bo to distinguish it from the invention described in the third claim is the unit b of the invention. This is completed by constructing a superstructure U on top.

上部構造U、は下部構造であるユニッ)boが交通施設
や設備施設等の基礎的な施設を格納した地下構造物であ
るのに対し、事務所、住居、商業、娯楽施設等主に生活
を目的とした施設を配置した地上構造物となっている。
The upper structure (U) is an underground structure that houses basic facilities such as transportation facilities and equipment, whereas the upper structure (U) is an underground structure that houses basic facilities such as transportation facilities, equipment, etc. It is an above-ground structure that houses the intended facilities.

この上部構造Unは下部構造のユニッ)boO着底が完
了した後に上記した通り、第3図−■。
This upper structure Un is assembled into the lower structure unit) boO after the bottoming is completed, as described above in FIG. 3-■.

第4図に示すように、バラストタンク1,1内の双方の
水量の調節を行いながら、−旦充満された水を徐々に抜
き、幅方向の均衡を保ちながら構築され、第1図のよう
に後述の人工島に相当する海洋構造物の1単位を構成す
るユニットB0が完成する。
As shown in Figure 4, while adjusting the amount of water in both ballast tanks 1 and 1, the water that was once filled is gradually drained out, and the structure is constructed while maintaining balance in the width direction, as shown in Figure 1. Unit B0, which constitutes one unit of a marine structure corresponding to an artificial island to be described later, is completed.

上部構造It、は下部構造のユニンhboと同様に、例
えば個々の施設毎に予め陸上でユニット化し、現場まで
搬送して組立、構築を行うことも可能であり、上部構造
unには基礎工事が不要であることからこのユニット化
の方法を採用することが工期の削減上有効である。
Similar to the lower structure unit hbo, the upper structure It, for example, can be pre-unitized on land for each individual facility and transported to the site for assembly and construction. Since this is unnecessary, adopting this unitization method is effective in reducing the construction period.

続いて第3請求項記載の発明を説明する。Next, the invention recited in claim 3 will be explained.

この発明の海洋構造物Bは第1請求項記載のユニッl−
b、、または上記発明のユニットB0が複数個集合し、
第11図、第12図に示すように平面的に環状に連結し
て構成されるもので、第1図に示すように交通2通信設
備や商業施設と、住居や商業、娯楽施設等を装備し、陸
上から独立し、長期的に生活が可能な巨大な人工島を形
成するものである。
The marine structure B of the present invention is a unit l-
b, or a plurality of units B0 of the above invention are assembled,
As shown in Figures 11 and 12, it is constructed by connecting in a ring shape on a plane, and as shown in Figure 1, it is equipped with transportation 2 communication equipment and commercial facilities, as well as residential, commercial, and entertainment facilities. This creates a huge artificial island that is independent from land and can be used for long-term living.

ユニットb0.Boは第1図に示すように空間Sの連通
ずる方向に互いに連結され、隣接するユニッ) b、、
またはユニット80間の接続は従来の沈埋工法による沈
埋トンネルの連結の要領で行われる。
Unit b0. As shown in FIG. 1, Bo are connected to each other in the direction of communication of the space S, and adjacent units) b, ,
Alternatively, the connections between the units 80 can be made in the same manner as the connection of immersed tunnels using the conventional immersed method.

この海洋構造物Bの形態は例えば第12図に示すように
平面的に円形を形成することが安定上鏝も有利である。
For example, it is advantageous for the shape of the marine structure B to be circular in plan as shown in FIG. 12 for stability.

海洋構造物Bが円環状に形成される場合、各ユニットt
)0+BOは図示するように中心側がやや狭い樹形に製
作される。
When the marine structure B is formed in an annular shape, each unit t
)0+BO is manufactured in a tree shape that is slightly narrower at the center as shown in the figure.

海洋構造物Bは単に円環状に形成されることによって各
ユニットBo、Boが互いに拘束し合い、安定性を確保
するが、これに加え、第I3図に示すようにユニットB
0を挟んで区分される海洋の水位に差を付けることによ
って更に高い安定性を得ることができる。
The marine structure B is simply formed into an annular shape, so that each unit Bo restrains each other to ensure stability. In addition, as shown in Fig. I3, the units B
Even higher stability can be obtained by creating differences in the ocean water levels that are separated by 0.

すなわち内海の水位を外海の水位より低くすることによ
り外海の水圧を内海の水圧より大きくし、その圧力差の
分だけ常にユニットBoに外海より内海側に向かって圧
力が作用する状態を保持することによって、環状の海洋
構造物Bには第12図に示すように隣接するユニット8
0B、が互いに圧接し合うフープコンプレッション(だ
が張り応力)が働き、この力は各隣接するユニットb。
That is, by lowering the water level of the inland sea than the water level of the open sea, the water pressure of the open sea is made greater than the water pressure of the inland sea, and a state is maintained in which pressure always acts on the unit Bo from the open sea toward the inland sea by the pressure difference. Therefore, the annular marine structure B has an adjacent unit 8 as shown in FIG.
A hoop compression (but tensile stress) occurs in which the units 0B and 0B come into pressure contact with each other, and this force is applied to each adjacent unit b.

+ B 0間の接触圧力を大きくし、円形の海洋構造物
Bの安定性を更に高める効果がある。
This has the effect of increasing the contact pressure between + B 0 and further increasing the stability of the circular marine structure B.

構造物を挟んで水位に差を付けた場合、海底における圧
力差によって高水位側からの水の浸透が問題になるが、
この、外海から内海への揚水量の影響の検討結果を次の
表−1に示す。
If there is a difference in water level between structures, water infiltration from the higher water level side becomes a problem due to the pressure difference on the seabed.
The results of this study on the impact of the amount of water pumped from the open sea to the inland sea are shown in Table 1 below.

この検討は第10図に示すような、不透水層の支持地盤
上に沖積粘土層等の透水層が載り、この透水層上に海洋
構造物Bが設置されたモデルを想定し、内外溝の海底の
水圧差により透水層から内海側へ浸透する水量を算出し
たものである。透水係数には東京溝の粘土地盤のそれに
近いオーダーの値として3通り選択し、流量Q。
This study assumes a model in which a permeable layer such as an alluvial clay layer rests on the supporting ground of an impermeable layer, and marine structure B is installed on this permeable layer, as shown in Figure 10. This is a calculation of the amount of water that seeps into the inland sea from the permeable layer due to the water pressure difference on the seabed. For the permeability coefficient, three values were selected as being close in order to that of the clay ground of Tokyo Ditch, and the flow rate Q was selected.

は透水層を伝って外海から内海側へ浸透する水量を表す
represents the amount of water that permeates from the open sea to the inland sea through the permeable layer.

表−■ この結果よりいずれの場合も、1分間に内海側へ流入す
る水量はハケツ数10杯にも満たなく、水位差の維持に
影響のない量であることが判明した。
Table -■ The results revealed that in all cases, the amount of water flowing into the inland sea side per minute was less than 10 brushstrokes, an amount that did not affect the maintenance of the water level difference.

以上の通り環状に組み立てられ、内海と外海とに水位差
の付けられた海洋構造物Bは、既に十分に安全性と安定
性の高い構造物であるが、大地震時における万一の事態
に備え、島としての海洋構造物B全体の安全度向上のた
め必要により第14図に示すようにユニットb、、B、
の底面下にせん断キー4やアンカー5を埋設する、ユニ
ットbo、Boの外側にストッパ6を置く、あるいは外
海にドルフィン7を設置する等の処理が付加される。
As described above, offshore structure B, which is assembled in a ring shape and has a water level difference between the inland sea and the open sea, is already a sufficiently safe and stable structure, but in the unlikely event of a major earthquake. In order to improve the overall safety of offshore structure B as an island, units b, , B,
Processes such as burying a shear key 4 and an anchor 5 under the bottom of the unit BO, placing a stopper 6 on the outside of the unit BO, or installing a dolphin 7 in the open sea are added.

最後に第4請求項記載の発明を節単に説明する。Finally, the invention recited in claim 4 will be briefly explained.

この発明は第1請求項記載発明のところで既述したよう
に、第3図−I〜■に示すように陸上のトライドックで
構築された下部構造のユニットb。を、バラストタンク
1.1内の水を抜いて浮上させた状態で所定の海洋まで
曳航する一方、所定の設置地盤に根切りを行い、この根
切りされた海底に一旦ハラストタンク1.1内に水を充
填して着底させた後、このユニットb0上に上部構造U
Ilを構築してユニットB0を形成し、更にこれを連結
して海洋構造物Bを構成する方法である。
As already mentioned in the first claim, the present invention is directed to a lower structure unit b constructed of a land tri-dock as shown in FIGS. The water in the ballast tank 1.1 is drained and the ballast tank 1.1 is floated and towed to the specified ocean, while a root cut is made on the specified installation ground, and the ballast tank 1.1 is temporarily placed on the cut seabed. After filling the inside with water and letting it reach the bottom, the upper structure U is placed on top of this unit b0.
This is a method of constructing Il to form unit B0, and further connecting these to construct marine structure B.

根切り深さhは完成するユニットBoの全重量と根切り
土の重量との関係が前記の弐を満足するよう決定され、
根切り工事終了後、バラストタンク1.l内に水を充満
してユニットb0を着地させる。
The root cutting depth h is determined so that the relationship between the total weight of the completed unit Bo and the weight of the root cutting soil satisfies the above 2,
After the root cutting work is completed, ballast tank 1. 1 is filled with water and the unit b0 lands on the ground.

ユニットb。の着地後、上部構造UBの構築をその進行
に伴ってバラストタンク1.1内の水量を調節しながら
水を抜き、幅方向の均衡を保ちながら、鉛直荷重に偏心
が生しないように行い、ユニットB。を完成させる。
unit b. After landing, the construction of the superstructure UB was carried out by adjusting the amount of water in the ballast tank 1.1 as it progressed, draining the water, maintaining balance in the width direction, and making sure that there was no eccentricity in the vertical load. Unit B. complete.

更に複数個のユニットB。を連結し、第1図。Furthermore, several units B. Figure 1.

第11図に示すような海洋構造物Bを構成した後、下部
構造のユニットboの各空間Sを連通させ、ここに前記
した各種の設備を配置し、生活機能を持った人工島が完
成する。
After configuring the marine structure B as shown in Fig. 11, the spaces S of the unit bo of the lower structure are communicated, and the various facilities described above are placed here, and an artificial island with living functions is completed. .

この人工島となる海洋構造物Bと陸上とは、海底トンネ
ルにより連結され、道路、鉄道2通信ケーブルや、電気
、ガス、水道等を供給するライフライン等が敷設される
ことによって陸上との連絡が緊密化され、またあるユニ
ットB。
Marine structure B, which is an artificial island, is connected to the land by an undersea tunnel, and communication with the land is achieved by installing roads, railway 2 communication cables, and lifelines that supply electricity, gas, water, etc. Unit B has become closer.

に水門を設けることによって船による連絡も可能となる
By installing a water gate in the area, communication by boat will also be possible.

他に、海上にある、という環境上の利点を生かし、海洋
構造物Bにはエネルギーを自給するための風力、潮流、
ソーラー発電の施設の設置も有効であり、また穏やかな
内海を利用したサーフィン、ヨツト等の各種娯楽施設の
設置にも好適である。
In addition, taking advantage of the environmental advantage of being located on the sea, offshore structure B has the ability to generate energy from wind, tides, etc. to be self-sufficient in energy.
The installation of solar power generation facilities is also effective, and it is also suitable for the installation of various recreational facilities such as surfing and sailing that take advantage of the calm inland sea.

〔発明の効果] この発明は以上の通りであり、基本的なユニットは根切
りの施された海底に浮上もせず、沈下もしない状態を維
持し、海底との間には適度の摩擦を保っで設置されるも
のであるため波力。
[Effects of the Invention] The present invention is as described above, and the basic unit maintains a state in which it neither floats nor sinks on the seabed where the roots have been cut, and maintains an appropriate amount of friction between it and the seabed. Because it is installed in wave power.

潮流力等の外力に対しては抵抗する一方、地震等の大き
な外力に対しては滑ることでこれを絶縁する固定構造物
となり、ユニットは単独であらゆる外乱に対して安定す
ると同時に、高い安全性を確保し、転倒や沈下、沈没、
あるいは流失等の障害発生の蓋然性を最小に抑えること
ができる。
While resisting external forces such as tidal currents, it becomes a fixed structure that insulates against large external forces such as earthquakes by sliding, and the unit is independently stable against all external disturbances and has a high level of safety. To prevent falls, subsidence, or sinking,
Alternatively, the probability of occurrence of problems such as water leakage can be minimized.

またこのユニットを環状、特に円環状に組み立てること
により、そして環状の海洋構造物で区切られた内海と外
海とに水位差を付けることによりユニット間の接続状態
、すなわち全体の一体性が強まり、更に高い安定性と安
全性を得ることができる。
In addition, by assembling these units in a ring shape, especially in a circular ring shape, and by creating a water level difference between the inland sea and the open sea, which are separated by a ring-shaped marine structure, the connection between the units, that is, the overall unity, is strengthened, and High stability and safety can be obtained.

加えて、本発明の施工方法は従来の埋立て工法等とは異
なり、自然の海底地盤を部分的に根切りするのみでこれ
をほとんどそのままの状態で利用する一方、海中に埋没
する下部構造を陸上でユニット化して構築しておくもの
であるため、その設置後は海上での施工に依存でき、全
体的に施工工程と現場施工が簡素化され、海洋構造物と
しての規模に対して工費の節減と工期の短縮化を図るこ
とが可能である。
In addition, unlike conventional land reclamation methods, the construction method of the present invention only partially cuts the roots of the natural seabed and utilizes it almost as it is. Since it is constructed as a unit on land, it can be relied on for construction at sea after installation, simplifying the overall construction process and on-site construction, and reducing construction costs relative to the scale of the offshore structure. It is possible to save money and shorten the construction period.

更に環状に完成する海洋構造物はユニットの連結により
規模と施設の拡大が自在であり、海底トンネルの敷設に
より陸上との連絡も円滑に行えるため将来的に巨大化し
、発展する都市の機能を受は入れる能力が高く、その多
様化に対応することが可能である。
Furthermore, the size and facilities of the completed ring-shaped offshore structure can be expanded by connecting units, and smooth communication with land can be achieved by laying undersea tunnels, so it will be able to accommodate the functions of cities that will grow and develop in the future. It has a high ability to incorporate, and can respond to its diversification.

また本海洋構造物は設置場所が海上であること、海底に
着地して設置されるものであること、及びユニットの構
築場所が陸上のドックであることから、構造物としての
耐用期間が経過、または不要化の理由が生じた場合には
、これを施工と逆の工程で撤収することにより現場を設
置以前の原状に復帰させることができ、工事中を含め、
完成後も設置場所付近の環境を阻害することなく、これ
を保全することができる。
In addition, since this offshore structure is installed at sea, is installed on the seabed, and the unit is constructed at a dock on land, its useful life as a structure has elapsed. Or, if there is a reason why it is no longer needed, it is possible to restore the site to its original state before installation by removing it in the reverse process of construction.
Even after completion, the environment around the installation site can be preserved without disturbing it.

【図面の簡単な説明】[Brief explanation of drawings]

第111Dは本発明、特に第2.第3請求項記載発明の
実施例を示した断面透視図、第2図は第1請求項記載発
明の製作例を示した斜視図、第3図−1〜■はユニット
の曳航から着底、上部構造の構築までの手順を示した概
要図、第4図は上部構造の鉛直荷重が偏心する場合のユ
ニットの構築例を示した概要図、第5図は地震時の動的
挙動測定用の実験モデルを示した立面図、第6図、第7
図はそれぞれ従来モデルと本発明のモデルの測定結果を
示したグラフ、第9図は解析モデルを示した立面図、第
8図はその結果を示したグラフ、第10図は内外温間の
揚水量検討用のモデルを示した立面図、第11図は第3
請求項記載発明の全体を示した鳥唆図、第12図は海洋
構造物を円環状に配置し、内海と外海に水位差を付けた
場合の力学的な効果を示した平面図、第13図はそのと
きの断面図、第14図は海洋構造物に補助的に安全確保
用の部材を付加した状態を示した断面図である。 b。・・・・・・ユニット、1・・・・・・ハ゛ラスト
タンク、2・・・・・・壁、3・・・・・・スラブ、S
・・・・・・空間、Bo・・・・・・ユニット、B・・
・・・・海洋構造物、4・・・・・・せん断キ、5・・
・・・・アンカー 6・・・・・・ストッパ、7・・・
・・・ドルフィン。 第3図 ■ 第4図 第 図 第 図 第 図 第 ]O 図
No. 111D is the present invention, especially No. 2. FIG. 2 is a perspective view showing a production example of the invention as claimed in the first claim; FIGS. Figure 4 is a schematic diagram showing the steps to construct the superstructure. Figure 4 is a diagram showing an example of building a unit when the vertical load on the superstructure is eccentric. Figure 5 is a diagram showing the construction of a unit for measuring the dynamic behavior during an earthquake. Elevation drawings showing the experimental model, Figures 6 and 7
The figures are graphs showing the measurement results of the conventional model and the model of the present invention, Fig. 9 is an elevational view showing the analytical model, Fig. 8 is a graph showing the results, and Fig. 10 is the graph showing the internal and external temperature. Figure 11 is an elevation view showing the model for examining the amount of water pumped.
Fig. 12 is a bird's-eye diagram showing the entire claimed invention; Fig. 12 is a plan view showing the mechanical effect when marine structures are arranged in a ring and a water level difference is created between the inland sea and the open sea; Fig. 13; The figure is a sectional view at that time, and FIG. 14 is a sectional view showing a state in which an auxiliary member for ensuring safety is added to the marine structure. b. ...Unit, 1 ... High last tank, 2 ... Wall, 3 ... Slab, S
...Space, Bo...Unit, B...
...Marine structure, 4...Shearing, 5...
...Anchor 6...Stopper, 7...
...Dolphin. Figure 3 ■ Figure 4 Figure Figure Figure Figure] O Figure

Claims (4)

【特許請求の範囲】[Claims] (1)根切りが施された海底の根切り底に着地して設置
される構造物であり、水が充満可能で、その量の調節が
自在な一対のバラストタンクを両側に有し、水バラスト
の重量を含めた自重は着底した状態における浮力より大
きく、且つ浮力と根切り土の全水中重量との合計より小
さい範囲内で、バラストタンク内の水量が調節されて設
置されるものであることを特徴とする海洋構造物。
(1) It is a structure that is installed by landing on the bottom of the seabed where roots have been cut.It has a pair of ballast tanks on both sides that can be filled with water and can freely adjust the amount. The water volume in the ballast tank is adjusted so that its own weight, including the weight of the ballast, is greater than the buoyant force when it is on the bottom, and less than the sum of the buoyant force and the total underwater weight of the cut soil. A marine structure characterized by:
(2)第1請求項記載の海洋構造物を海中に埋設される
下部構造とし、この下部構造の海洋構造物上に海上に露
出する上部構造を構築して完成するものであり、この上
部構造と水バラストの重量を含めた自重は着底した状態
における浮力より大きく、且つ浮力と根切り土の全水中
重量との合計より小さい範囲内で、バラストタンク内の
水量が調節されていることを特徴とする海洋構造物。
(2) The marine structure according to claim 1 is a lower structure buried in the sea, and is completed by constructing an upper structure exposed to the sea on the marine structure of the lower structure, and this upper structure The amount of water in the ballast tank is adjusted so that its own weight, including the weight of the water ballast and water ballast, is greater than the buoyant force when it is on the bottom, and less than the sum of the buoyant force and the total underwater weight of the cutting soil. Characteristic marine structures.
(3)第1請求項、または第2請求項記載の海洋構造物
を基本ユニットとし、この基本ユニットの海洋構造物を
複数個互いに連結し、全体的に環状に閉じた状態に配置
して構成されるものであることを特徴とする海洋構造物
(3) The marine structure according to the first claim or the second claim is used as a basic unit, and a plurality of marine structures of this basic unit are connected to each other and are arranged in a closed annular state as a whole. A marine structure characterized by being
(4)陸上で構築された第1請求項記載の海洋構造物を
、バラストタンク内の水を抜き、水中から浮上させた状
態で所定の洋上まで曳航し、バラストタンク内に水を充
填して一旦着底させた後、これを下部構造としてその上
方に上部構造を、上部構造と水バラストの重量を含めた
全重量を浮力より大きく、且つ浮力と根切り土の全水中
重量との合計より小さくバラストタンク内の水量を調節
しながら構築し、第2請求項、または第3請求項記載の
海洋構造物を海底に設置する海洋構造物の設置方法。
(4) The marine structure according to claim 1 constructed on land is towed to a predetermined offshore location after draining the water in the ballast tank, floating it out of the water, and filling the ballast tank with water. Once it has landed on the bottom, use this as the lower structure and place the upper structure above it so that the total weight, including the weight of the upper structure and water ballast, is greater than the buoyant force, and is greater than the sum of the buoyant force and the total underwater weight of the cutting soil. A method for installing a marine structure, which comprises constructing a small marine structure while adjusting the amount of water in a ballast tank, and installing the marine structure according to claim 2 or 3 on the seabed.
JP20023990A 1990-07-27 1990-07-27 Offshore structure and its installation method Expired - Fee Related JPH0699898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20023990A JPH0699898B2 (en) 1990-07-27 1990-07-27 Offshore structure and its installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20023990A JPH0699898B2 (en) 1990-07-27 1990-07-27 Offshore structure and its installation method

Publications (2)

Publication Number Publication Date
JPH0485410A true JPH0485410A (en) 1992-03-18
JPH0699898B2 JPH0699898B2 (en) 1994-12-07

Family

ID=16421119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20023990A Expired - Fee Related JPH0699898B2 (en) 1990-07-27 1990-07-27 Offshore structure and its installation method

Country Status (1)

Country Link
JP (1) JPH0699898B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025561A1 (en) * 1995-02-17 1996-08-22 Nikkensekkei Ltd. A soft settling structure and method for setting the same
JP2020045760A (en) * 2018-09-20 2020-03-26 杜 地Di DU Sea tunnel
JP2024062581A (en) * 2022-10-25 2024-05-10 日本電機株式会社 Offshore cities and buildings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025561A1 (en) * 1995-02-17 1996-08-22 Nikkensekkei Ltd. A soft settling structure and method for setting the same
US5938374A (en) * 1995-02-17 1999-08-17 Nikkensekkei Ltd. Soft landing structure and method setting the same
JP2020045760A (en) * 2018-09-20 2020-03-26 杜 地Di DU Sea tunnel
JP2024062581A (en) * 2022-10-25 2024-05-10 日本電機株式会社 Offshore cities and buildings

Also Published As

Publication number Publication date
JPH0699898B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US10081960B2 (en) Methods and apparatus of building construction resisting earthquake and flood damage
US10711478B2 (en) Self adjusting floating environment (SAFE) system for earthquake and flood protection
KR100254703B1 (en) A soft settling structure and method for setting the same
WO1994028253A1 (en) Universal, environmentally secure, wave defense systems using modular caissons
JP2015519489A (en) Partially floating offshore platform for offshore wind power, bridges and offshore structures, and construction method
JPH0485410A (en) Offshore structure and method for installing the same
JPS62215727A (en) Foundation work for structure
CN111485579A (en) Bridge-tunnel transition conversion structure between suspension tunnel and deepwater suspension bridge
CN212128811U (en) Main tower artificial island structure of deep open sea suspension bridge
JP2003020611A (en) Float foundation structure
Hunteman et al. Concrete gravity platform in shallow offshore Louisiana water
JP3866848B2 (en) Suspended semi-submersible structure
JPH01219207A (en) Spud type maritime structure
JP2023550088A (en) floating foundation
JP2737393B2 (en) Gravity-bottomed offshore structure
JP3870371B2 (en) Floating structure
Bargi Special structures, damage report of the Manjil earthquake on June 21, 1990
SU1763554A1 (en) Bridge
JPH04146318A (en) Sliding response control type off-shore structure
JPS6019375B2 (en) Submersible bottom-mounted floating deck installed on soft underwater ground
JPH11286908A (en) Floating type bridge and method of supporting pipe of same
JPH0715170B2 (en) Construction method of sliding seismic isolation type offshore structure
JPS58511A (en) Bottomless caisson landing type water deck structure to be set on soft ground under water
JPS5949371B2 (en) Coastal construction method
Reddy et al. Response of Coastal Structures Against Seismic And Tsunami Forces

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees