JPH0484456A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0484456A
JPH0484456A JP2199555A JP19955590A JPH0484456A JP H0484456 A JPH0484456 A JP H0484456A JP 2199555 A JP2199555 A JP 2199555A JP 19955590 A JP19955590 A JP 19955590A JP H0484456 A JPH0484456 A JP H0484456A
Authority
JP
Japan
Prior art keywords
region
conductivity type
forming
type
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2199555A
Other languages
Japanese (ja)
Inventor
Masaru Oki
勝 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2199555A priority Critical patent/JPH0484456A/en
Publication of JPH0484456A publication Critical patent/JPH0484456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce base resistance and lower a current amplification factor by implanting high energy of boron ions into a P type well region which is a base region for a parasitic NPN transistor and adding a process to produce a high concentration P type region's island in a region which does not affect the characteristics of a MOS transistor. CONSTITUTION:An ion implantation mask 5 is formed, which opens a P type MOSFET formation region where phosphorous is implanted, thereby forming a high concentration N type island 6 in an N type well region. Then, is formed an ion implantation mask 7 which opens the N type MOSFET formation region where boron is ion-implanted, thereby forming a high concentration P type island 8 in the MOSFET region, then, is formed gate polycrystal silicon 9 where arsenic is ion-implanted in the N type MOSFET formation region, thereby forming an N type high concentration source/drain region 10. Boron is ion- implanted in a P type MOSFET formation region where a P type high concentration source/drain region 11 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の製造方法に関し、特に相補型
MO8電界効果トランジスタを含む集積回路装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor integrated circuit, and more particularly to a method of manufacturing an integrated circuit device including complementary MO8 field effect transistors.

〔従来の技術〕[Conventional technology]

相補型MoS電界効果トランジスタを含む集積回路装置
(以下CMO8ICと略す)は低消費電力であり、高集
積化が可能なことから多くの集積回路に使用されている
An integrated circuit device including a complementary MoS field effect transistor (hereinafter abbreviated as CMO8IC) has low power consumption and can be highly integrated, so it is used in many integrated circuits.

第3図に一般的な0MO8ICの断面構造図を示す。FIG. 3 shows a cross-sectional structural diagram of a general 0MO8IC.

以下製造工程順に説明する。先ず、P型半導体基板1に
N型ウェル領域2とP型ウェル領域3を順次形成し、素
子分離酸化膜4を形成する。次にゲート酸化膜を熱酸化
により形成し、vTコントロールのためのチャンネルド
ープをN型ウェル領域2.P型ウェル領域3にそれぞれ
行う。
The manufacturing steps will be explained below in order. First, an N-type well region 2 and a P-type well region 3 are sequentially formed on a P-type semiconductor substrate 1, and an element isolation oxide film 4 is formed. Next, a gate oxide film is formed by thermal oxidation, and channel doping for vT control is applied to the N-type well region 2. This is done in each of the P-type well regions 3.

次にゲート電極となる多結晶シリコンを全面に形成し、
N型不純物であるリンの拡散を行ない多結晶シリコン層
を低抵抗化させ所望の形状に加工する。
Next, polycrystalline silicon that will become the gate electrode is formed on the entire surface.
Phosphorus, which is an N-type impurity, is diffused to lower the resistance of the polycrystalline silicon layer and process it into a desired shape.

次に、ゲート電極である多結晶シリコン9をマスクとし
て、P型ウェル領域にはN型高濃度ソース・ドレイン領
域10をイオン注入法により形成し、N型ウェル領域に
はP型窩濃度ソース・ドレイン領域11を形成し、0M
O3ICは出来上る。
Next, using the polycrystalline silicon 9 serving as the gate electrode as a mask, an N-type high-concentration source/drain region 10 is formed in the P-type well region by ion implantation, and a P-type well-concentrated source/drain region 10 is formed in the N-type well region. Form the drain region 11 and
O3IC is completed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の0MO8ICでは(特にN型MO8FET)
高速、高集積化のため、横方向の微細化が進んでいるが
、それに伴い縦方向も浅くなって来ている。
In this conventional 0MO8IC (especially N-type MO8FET)
In order to achieve high speed and high integration, horizontal miniaturization is progressing, but along with this, vertical dimensions are also becoming shallower.

特にN型MO8FETではソース・ドレイン拡散層とP
型ウェルとの接合深さは、01〜0.2μm程度にまで
浅く形成されている。このため、ドレイン拡散層とP型
ウェルとの接合は急峻であり、ドレイン近傍は高電界が
発生し、この高電界によりソースから流れて来た電子が
加速され、アバランシェ効果により電子と正孔対を発生
させる。発生した電子はドレイン側へ、正孔はウェル側
へ流れ込むことになり、ウェル側に流れ込んだ正孔は最
終的にソースへ到達するが、発生した正孔が多いとウェ
ルの抵抗が高いため、ウェルの電位を上昇させ第4図に
示す寄生NPN)ランジスタが動作し、ドレインからソ
ースへ急激に電流が流れてしまう(スナップバック電流
)。この結果第5図のような特性となってしまい使用電
圧範囲が狭くなってしまうという問題点があった。この
ためドレイン近傍の電界を弱めるため、ドレインの構造
を二重拡散ドレイン(DDD)としたりLDD構造を行
っているが、その効果は、スナップバック電位の抑制に
は十分ではなかった。
In particular, in N-type MO8FET, the source/drain diffusion layer and P
The junction depth with the mold well is formed as shallow as about 01 to 0.2 μm. Therefore, the junction between the drain diffusion layer and the P-type well is steep, and a high electric field is generated near the drain. This high electric field accelerates the electrons flowing from the source, and the avalanche effect causes electron-hole pairing. to occur. The generated electrons will flow to the drain side, and the holes will flow to the well side, and the holes that flowed into the well side will eventually reach the source, but if there are many holes generated, the resistance of the well will be high. When the potential of the well is increased, the parasitic NPN transistor shown in FIG. 4 operates, and a current suddenly flows from the drain to the source (snapback current). As a result, the characteristics shown in FIG. 5 are obtained, resulting in a problem that the usable voltage range becomes narrow. Therefore, in order to weaken the electric field near the drain, the drain structure is made into a double diffused drain (DDD) or an LDD structure, but the effect is not sufficient to suppress the snapback potential.

又、P型MO8FETに関しても同様である。The same applies to the P-type MO8FET.

〔課題を解決するための手段〕[Means to solve the problem]

N型MO8FETのスナップバックの発生をおさえるに
は第4図に示す寄生NPN  Trの電流増幅率を低下
させ寄生NPN)ランジスタが導通しにくくすることが
有効である。
In order to suppress the occurrence of snapback in the N-type MO8FET, it is effective to lower the current amplification factor of the parasitic NPN transistor shown in FIG. 4 to make it difficult for the parasitic NPN transistor to conduct.

本発明では寄生NPN)ランジスタの電流増幅率を低下
させるため、寄生NPN)ランジスタのベース領域であ
るP型ウェル領域に高エネルギーのポロンイオン注入に
より、MOS)ランシスタの特性に影響を及ぼさない領
域に高濃度のP型領域の島を作る工程を付加することに
より寄生NPNトランジスタのベース領域の抵抗を下げ
、電流増幅率も低下させる方法を用いている。P型M○
5FETも同様に考えることが臼来、N型ウェル領域に
高エネルギーのリンイオン注入によりN型ウェル領域内
部に高濃度N型の島を形成することにより寄生PNP 
)ランジスタのベース抵抗を下げ電流増幅率を低下させ
る。
In the present invention, in order to reduce the current amplification factor of the parasitic NPN) transistor, high-energy poron ions are implanted into the P-type well region, which is the base region of the parasitic NPN) transistor, in a region that does not affect the characteristics of the MOS) transistor. A method is used in which the resistance of the base region of the parasitic NPN transistor is lowered and the current amplification factor is also lowered by adding a step of creating islands of highly doped P-type regions. P type M○
5FET can be considered in the same way.Usuki said that by implanting high-energy phosphorus ions into the N-type well region, a high-concentration N-type island is formed inside the N-type well region, thereby eliminating the parasitic PNP.
) Lower the base resistance of the transistor and lower the current amplification factor.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を示す工程順
に示した断面図である。
FIGS. 1(a) to 1(d) are sectional views showing an embodiment of the present invention in the order of steps.

先ず、第1図(a)に示すようにP型半導体基板1にN
型ウェル領域2をリンのイオン注入(150KeV、 
1.5 X 10 ”am−2)後、1200℃4時間
の熱処理を行ない形成し、次にP型ウェル領域3をポ0
7のイオン注入(100KeV、  1.5 X 10
”Cm−2)後、1200℃2時間の熱処理により形成
する。次に素子分離酸化膜4を8000人程度熱酸化に
より形成する。
First, as shown in FIG. 1(a), N is applied to a P-type semiconductor substrate 1.
Type well region 2 is implanted with phosphorus ions (150KeV,
After 1.5 x 10" am-2), heat treatment is performed at 1200°C for 4 hours to form the P-type well region 3.
7 ion implantation (100KeV, 1.5 x 10
After "Cm-2), it is formed by heat treatment at 1200 DEG C. for 2 hours. Next, the element isolation oxide film 4 is formed by thermal oxidation by about 8000 people.

次に、第1図(b)に示す様にP型MO8FET形成領
域(N型ウェル領域)を開口したイオン注入マスク5 
(例えばアルミニウム)を形成し、リンを500X〜I
MeV、  I X 10”〜I X 10”am−2
の注入条件でイオン注入し、N型ウェル領域内に高濃度
のN型の島6を形成する。この時、イオン注入マスクは
チャンネルドープのマスクと共用出来る。
Next, as shown in FIG. 1(b), an ion implantation mask 5 with an opening for the P-type MO8FET formation region (N-type well region)
(e.g. aluminum) and phosphorus from 500X to I
MeV, I x 10"~I x 10" am-2
Ion implantation is performed under the following implantation conditions to form a highly doped N-type island 6 in the N-type well region. At this time, the ion implantation mask can be used in common with the channel doping mask.

次に、第1図(c)に示す様にN型MO8FET形成領
域(P型ウェル領域)を開口したイオン注入マスク7を
形成し、ボロンを400に〜IMeV。
Next, as shown in FIG. 1(c), an ion implantation mask 7 with an opening in the N-type MO8FET formation region (P-type well region) is formed, and boron is heated to 400 to IMeV.

l×1013〜lXl0”ロー2の条件でイオン注入し
、P型ウェル領域内に高濃度のP型の島8を形成する。
Ion implantation is performed under the condition of 1×10 13 to 1×10” low 2 to form a highly concentrated P-type island 8 in the P-type well region.

この時、イオン注入マスクはチャンネルドープのマスク
と共用出来るため、1回のイオン注入工程の増加で形成
出来る。
At this time, since the ion implantation mask can be used in common with the mask for channel doping, the ion implantation process can be performed in one additional ion implantation process.

次に、第1図(d)に示す様にゲート多結晶シリコン9
を形成し、N型MO8FET形成領域にヒ素70 Ke
y、 5 X 1015cm−2の条件でイオン注入し
、N型高濃度ソース・ドレイン領域10を形成する。同
様にして、P型MO8FET形成領域にボロン、 30
KeV、 5 X 1015am−2の条件でイオン注
入し、P空高濃度ソース・ドレイン領域11を形成する
。以上のようにして本発明の半導体装置は製造される。
Next, as shown in FIG. 1(d), the gate polycrystalline silicon 9
and arsenic 70 Ke in the N-type MO8FET formation region.
Ion implantation is performed under the conditions of y, 5 x 1015 cm-2 to form N-type heavily doped source/drain regions 10. Similarly, boron, 30
Ion implantation is performed under the conditions of KeV and 5 x 1015 am-2 to form P-vacant high concentration source/drain regions 11. The semiconductor device of the present invention is manufactured as described above.

第2図(a)〜(c)は本発明の第2の実施例を工程順
に示した断面図である。
FIGS. 2(a) to 2(c) are cross-sectional views showing the second embodiment of the present invention in the order of steps.

第2図(a)に示す様にN型ウェル領域2内に高濃度の
N型の島を形成する際、フィールド上の所定領域にも注
入する様にイオン注入マスクを形成し、800〜2.0
MeV、  1〜5 X 10 ”cm−2の条件でリ
ンのイオン注入を行う。これにより、N型ウェル内に高
濃度のN型の島6を作ると同時にN型のチャンネル・ス
トッパー領域12を形成出来、しかもマスクはチャンネ
ルドープのイオン注入マスクと共用出来るため、リソグ
ラフィー工程を増やすことなく、イオン注入工程−回だ
けの増加で済む。
As shown in FIG. 2(a), when forming a highly doped N-type island in the N-type well region 2, an ion implantation mask is formed so that the ion implantation is also carried out in a predetermined region on the field. .0
Phosphorus ion implantation is performed under the conditions of MeV and 1 to 5 x 10"cm-2. This creates a highly concentrated N-type island 6 in the N-type well and at the same time forms an N-type channel stopper region 12. Moreover, since the mask can be used in common with the ion implantation mask for channel doping, the number of ion implantation steps can be increased without increasing the number of lithography steps.

第2図(b)に示す様にP型ウェル領域3に高濃度P型
頭域8を形成する時、所定領域のイオン注入マスクも開
口し、400〜IMeV、  1〜5×10 ”cm−
2の条件でボロンのイオン注入を行なうことにより高濃
度P型頭域8と同時にP型チャンネル・ストッパー領域
13を形成する。
As shown in FIG. 2(b), when forming the high-concentration P-type head region 8 in the P-type well region 3, the ion implantation mask in a predetermined region is also opened, and the ion implantation mask is heated at 400 to IMeV, 1 to 5×10”cm−.
By performing boron ion implantation under the conditions of 2, the P-type channel stopper region 13 is formed simultaneously with the high-concentration P-type head region 8.

この時イオン注入マスクは、チャンネルドープのイオン
注入マスクと共用出来るため、イオン注入工程の増加だ
けで済む。以下第1の実施例と同様に第2図(C)に示
す様にゲート多結晶シリコン層9及び高濃度N型ソース
・ドレイン領域10゜高濃度P型ソース・ドレイン領域
11を形成して完成する。
At this time, since the ion implantation mask can be used in common with the ion implantation mask for channel doping, only an increase in the number of ion implantation steps is required. Thereafter, as in the first embodiment, a gate polycrystalline silicon layer 9, a highly doped N-type source/drain region 10°, and a highly doped P-type source/drain region 11 are formed as shown in FIG. 2(C). do.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、P型ウェル領域及
びN型ウェル領域内にそれぞれ高濃度のP型の島、N型
の島を形成することにより、スナップバックを発生させ
る寄生PNP又はNPNトランジスタの電流増幅率を低
下させることが出来、第6図に示す様にスナップバック
は発生しなくなるという効果がある。又、寄生PNP、
NPNトランジスタの電流増幅率が小さいため、ラッチ
アップにも非常に強くなるという利点もある。
As explained above, according to the present invention, by forming highly concentrated P-type islands and N-type islands in the P-type well region and the N-type well region, respectively, parasitic PNP or NPN that causes snapback can be formed. This has the effect that the current amplification factor of the transistor can be lowered, and snapback no longer occurs as shown in FIG. Also, parasitic PNP,
Since the current amplification factor of the NPN transistor is small, it also has the advantage of being extremely resistant to latch-up.

工程としてはP型ウェル領域及びN型ウェル領域に行な
うチャンネルドープのイオン注入マスクを共用出来、そ
れぞれ1回づつのイオン注入工程の増加ですむ。又、高
エネルギーイオン注入を行った場合、結晶欠陥の発生が
問題となるが、結晶欠陥は高濃度N及びP型の島近傍に
集中し、基板表面は無欠陥領域となるため、デバイス特
性にはほとんど影響を与えない。
As for the process, the ion implantation mask for channel doping in the P-type well region and the N-type well region can be shared, and only one ion implantation step is required for each. Furthermore, when performing high-energy ion implantation, the occurrence of crystal defects becomes a problem, but the crystal defects are concentrated near the islands of high concentration N and P types, and the substrate surface becomes a defect-free region, which affects device characteristics. has almost no effect.

第2の実施例で示した様にP型及びN型のチャンネル・
ストッパー領域をウェル内高濃度N及びP型の島と同時
に形成することも可能であり、工程の短縮が出来るとい
う利点も発生する。この様に、イオン注入工程を1回又
は2回増やすたけで、非常に使いやすいトランジスタが
得られ、しかもラッチ7ツプにも強いという利点のある
半導体装置が出来上る。
As shown in the second embodiment, P-type and N-type channels
It is also possible to form the stopper region at the same time as the high-concentration N- and P-type islands in the well, which has the advantage of shortening the process. In this way, by increasing the number of ion implantation steps by one or two times, a transistor that is extremely easy to use can be obtained, and a semiconductor device that has the advantage of being resistant to latch failures can be completed.

これまで、N型、P型ウェル領域双方に高濃度の島を設
けることを述べて来たが、P型ウェル領域内にのみ設け
ても効果は十分にある。
So far, it has been described that high concentration islands are provided in both the N-type and P-type well regions, but the effect is sufficient even if they are provided only in the P-type well region.

5・・・・・・イオン注入マスク、6・・・・・・高濃
度N型領域、7・・・・・・イオン注入マスク、8・・
・・・・高濃度P型頭域、9・・・・・ゲート多結晶シ
リコン、10・・・・・・N型ソース・ドレイン領tl
l・・・・・・P型ソース・Fレイン領域、12・・・
・・・N型チャンネル・ストツバ−領域、13・・・・
・・P型チャンネル・ストッパー領域、14・・・・・
・寄生NPN)ランジスタ、15・・・・寄生PNP 
)ランジスタ。
5...Ion implantation mask, 6...High concentration N type region, 7...Ion implantation mask, 8...
...High concentration P type head region, 9...Gate polycrystalline silicon, 10...N type source/drain region tl
l...P-type source/F rain region, 12...
...N-type channel stopper region, 13...
...P-type channel stopper area, 14...
- Parasitic NPN) transistor, 15... Parasitic PNP
) Langista.

代理人 弁理士  内 原   晋Agent: Patent Attorney Susumu Uchihara

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を工程順に示
した断面図、第2図(a)〜(c)は第2の実施例を示
す断面図、第3図は従来方法を示す断面図、第4図は寄
生トランジスタを示すための断面図、第5図は従来の特
性を示す工ゎ−v9.特性、第6図は本発明の効果を示
す工。−vD、特性である。 1・・・・・・P型半導体基板、2・・・・・・N型ウ
ェル領域、3・・・・・・P型ウェル領域、4・・・・
・・素子分M酸化膜、(b) 第 l 図 第2 図 (り 第 図 第 第4図 とン 弔 図 第6
FIGS. 1(a) to (d) are cross-sectional views showing one embodiment of the present invention in the order of steps, FIGS. 2(a) to (c) are cross-sectional views showing the second embodiment, and FIG. FIG. 4 is a sectional view showing a conventional method, FIG. 4 is a sectional view showing a parasitic transistor, and FIG. 5 is a sectional view showing conventional characteristics. Characteristics: Figure 6 shows the effects of the present invention. -vD, characteristic. 1... P-type semiconductor substrate, 2... N-type well region, 3... P-type well region, 4...
...Element M oxide film, (b) Figure 1 Figure 2 (Figure 4 and Funeral Figure 6)

Claims (5)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板に、第2導電型ウェル領域
を形成する工程と、第1導電型半導体基板内に高エネル
ギーのイオン注入を行ない、高濃度の第1導電型領域を
形成する工程とを含むことを特徴とする半導体装置の製
造方法。
(1) Forming a second conductivity type well region in the first conductivity type semiconductor substrate, and performing high energy ion implantation into the first conductivity type semiconductor substrate to form a highly concentrated first conductivity type region. A method for manufacturing a semiconductor device, comprising the steps of:
(2)第1導電型半導体基板に、第2導電型ウェル領域
を形成する工程と、第1導電型ウェル領域を形成する工
程と、この第1導電型ウェル領域内に高エネルギーイオ
ン注入を用いて高濃度の第1導電型領域を形成する工程
とを含むことを特徴とする半導体装置の製造方法。
(2) A step of forming a second conductivity type well region in a first conductivity type semiconductor substrate, a step of forming a first conductivity type well region, and using high energy ion implantation into the first conductivity type well region. forming a highly concentrated first conductivity type region.
(3)第1導電型半導体基板に、第2導電型及び第1導
電型のウェル領域を形成する工程と、この第2導電型ウ
ェル領域内に高エネルギーイオン注入により高濃度の第
2導電型領域を形成する工程と、第1導電型ウェル領域
内に高エネルギーイオン注入を用いて高濃度第1導電型
領域を形成する工程とを含むことを特徴とする半導体装
置の製造方法。
(3) forming well regions of the second conductivity type and the first conductivity type in the first conductivity type semiconductor substrate, and implanting high-concentration second conductivity type well regions into the second conductivity type well regions by high-energy ion implantation; 1. A method of manufacturing a semiconductor device, comprising: forming a region; and forming a highly concentrated first conductivity type region in a first conductivity type well region using high energy ion implantation.
(4)第1導電型半導体基板に第2及び第1導電型ウェ
ル領域を形成する工程と、素子分離酸化膜を形成する工
程と、第1導電型ウェル領域内に第1導電型高濃度領域
を高エネルギーイオン注入により形成すると同時に、素
子分離酸化膜直下に第1導電型チャンネルストッパー領
域を形成する工程とを含むことを特性とする半導体装置
の製造方法。
(4) A step of forming second and first conductivity type well regions in the first conductivity type semiconductor substrate, a step of forming an element isolation oxide film, and a first conductivity type high concentration region in the first conductivity type well region. 1. A method for manufacturing a semiconductor device, comprising the step of forming a first conductivity type channel stopper region directly under an element isolation oxide film at the same time as forming a first conductivity type channel stopper region by high-energy ion implantation.
(5)第1導電型半導体基板に、第2及び第1導電型ウ
ェル領域を形成する工程と、素子分離酸化膜を形成する
工程と、第1導電型ウェル領域内に第1導電型高濃度領
域を高エネルギーイオン注入を用いて形成すると同時に
、素子分離酸化膜直下に第1導電型チャンネルストッパ
ー領域を形成する工程と、第2導電型ウェル領域内に高
エネルギーイオン注入により高濃度第2導電型ウェル領
域を形成すると同時に、素子分離酸化膜直下に第2導電
型チャンネルストッパー領域を形成する工程とを含むこ
とを特徴とする半導体装置の製造方法。
(5) forming second and first conductivity type well regions in the first conductivity type semiconductor substrate; forming an element isolation oxide film; and forming a first conductivity type high concentration layer in the first conductivity type well region. A step of forming a channel stopper region of the first conductivity type directly under the element isolation oxide film at the same time as forming a channel stopper region using high energy ion implantation, and a step of forming a channel stopper region of the first conductivity type in the well region of the second conductivity type by high energy ion implantation. 1. A method of manufacturing a semiconductor device, comprising the step of forming a second conductivity type channel stopper region directly under an element isolation oxide film at the same time as forming a type well region.
JP2199555A 1990-07-27 1990-07-27 Manufacture of semiconductor device Pending JPH0484456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199555A JPH0484456A (en) 1990-07-27 1990-07-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199555A JPH0484456A (en) 1990-07-27 1990-07-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0484456A true JPH0484456A (en) 1992-03-17

Family

ID=16409777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199555A Pending JPH0484456A (en) 1990-07-27 1990-07-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0484456A (en)

Similar Documents

Publication Publication Date Title
JPH0555484A (en) Manufacture of semiconductor device
JPH04239760A (en) Manufacture of semiconductor device
JPH0348458A (en) Bi-cmos integrated circuit and manufacture thereof
JPH02219262A (en) Semiconductor device
JPH10135349A (en) Cmos type semiconductor device and its manufacturing method
JP2914293B2 (en) Method for manufacturing semiconductor device
JPH0351309B2 (en)
JPH0484456A (en) Manufacture of semiconductor device
JPH02306663A (en) Manufacture of semiconductor device
US6337252B1 (en) Semiconductor device manufacturing method
JPS62181458A (en) Complementary type mos transistor and manufacture thereof
JPH0575041A (en) Cmos semiconductor device
JP2001291781A (en) Method for manufacturing semiconductor device
JP2881833B2 (en) Method for manufacturing semiconductor device
JPH023270A (en) Manufacture of hct semiconductor device
JPH0575032A (en) Semiconductor integrated circuit device
JP4014992B2 (en) Manufacturing method of semiconductor device
JP2808620B2 (en) Method for manufacturing semiconductor device
JP2537886B2 (en) Semiconductor device
JP2571449B2 (en) Manufacturing method of bipolar IC
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPH0296364A (en) Semiconductor device and manufacture thereof
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
KR950012742B1 (en) Method for simultaneously fabricating bipolar and complementar and complementary field transistors
JP3272596B2 (en) Semiconductor device and manufacturing method thereof