JPH0483920A - Hydraulic power transmission joint - Google Patents

Hydraulic power transmission joint

Info

Publication number
JPH0483920A
JPH0483920A JP19594790A JP19594790A JPH0483920A JP H0483920 A JPH0483920 A JP H0483920A JP 19594790 A JP19594790 A JP 19594790A JP 19594790 A JP19594790 A JP 19594790A JP H0483920 A JPH0483920 A JP H0483920A
Authority
JP
Japan
Prior art keywords
orifice
pressure
pressure receiving
receiving member
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19594790A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
悟 鈴木
Hideaki Ina
伊奈 秀明
Takehisa Yamada
剛央 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Tool and Die Co Ltd
Original Assignee
Fuji Tool and Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Tool and Die Co Ltd filed Critical Fuji Tool and Die Co Ltd
Priority to JP19594790A priority Critical patent/JPH0483920A/en
Publication of JPH0483920A publication Critical patent/JPH0483920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To reduce the number of parts and stabilize oil pressure that locks up an orifice by providing the orifice as a flow resistance generating means at the outer diameter part of a pressure receiving member, and closing the orifice with a guide member that holds the pressure receiving member capable of freely sliding. CONSTITUTION:Since generated transfer torque is proportional to the oil pressure that acts on a plunger 18, the oil pressure is proportional to the square of the flow velocity of the oil that passes through an orifice 25, and the flow velocity of the oil is proportional to the difference in the rotation speed of a cam housing 15 and a rotor 16, large torque proportional to the square of the difference in the rotation speed can be obtained. And, when discharge pressure exceeds a threshold value, a pressure receiving member 26 moves rightward resisting a return spring 24, and a guide member 23 closes the orifice 25. Since the orifice closing member need not to receive the load acting on the pressure receiving member 26 due to oil pressure like this, wear of orifice closing member does not occur, malfunction of being incapable of releasing lock does not occur, and the number of parts can be reduced as the guide member 23 doubles as the orifice closing member.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、車両の駆動力配分に使用される油圧式動力伝
達継手に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic power transmission joint used for distributing driving force in a vehicle.

[従来の技術] 従来の油圧式動力伝達継手としては、第9図に示すよう
なものを本出願人は提案している(特願平01−094
722号、参照)。
[Prior Art] The present applicant has proposed a conventional hydraulic power transmission joint as shown in FIG. 9 (Japanese Patent Application No. 01-094).
722, see).

この油圧式動力伝達継手は、相対回転可能な第1、第2
の回転部材51.52間の回転速度差により駆動される
オイルポンプと、オイルポンプの吐出路に流動抵抗を発
生する手段としてオリフィス53を備え、 前記流動抵抗により前記第1.第2の回転部材51.5
2間のトルクが制御されるものであって、前記ポンプの
吐出圧により移動するとともに摺動可能に保持された受
圧部材54と、吐出圧に抗し受圧部材54を押圧するリ
ターンスプリング55とを有し、受圧部材54の受圧部
にその摺動方向と平行にオリフィス53を設け、リター
ンスプリング55側にオリフィス閉止部材56を設けて
、リターンスプリング55の設定によるしきい値を越え
るポンプ吐出圧の受圧時のみ受圧部材54の移動により
、オリフィス53を閉止するものである。また、本出願
人は、オイルポンプに固定されたオリフィスと、ポンプ
吐出圧を受けて移動するオリフィス閉止部材と、吐出圧
に抗しオリフィス閉止部材を押圧するスプリングを有し
、オリフィス閉止部材が所定値を越えるポンプ吐出圧を
受けた時に、オリフィス閉止部材が移動してオリフィス
を閉止するようにしたものも提案している。
This hydraulic power transmission joint has relatively rotatable first and second
The oil pump is driven by the difference in rotational speed between the rotating members 51 and 52 of the oil pump, and an orifice 53 is provided as a means for generating flow resistance in the discharge passage of the oil pump, and the flow resistance causes the oil pump to be driven by the rotational speed difference between the rotation members 51 and 52 of the first oil pump. Second rotating member 51.5
A pressure receiving member 54 is moved by the discharge pressure of the pump and is slidably held, and a return spring 55 presses the pressure receiving member 54 against the discharge pressure. An orifice 53 is provided in the pressure receiving portion of the pressure receiving member 54 in parallel to its sliding direction, and an orifice closing member 56 is provided on the return spring 55 side to prevent pump discharge pressure exceeding a threshold value set by the return spring 55. The orifice 53 is closed by moving the pressure receiving member 54 only when pressure is received. Further, the present applicant has an orifice fixed to an oil pump, an orifice closing member that moves in response to pump discharge pressure, and a spring that presses the orifice closing member against the discharge pressure, and the orifice closing member is configured to have a predetermined position. Another proposal has been made in which an orifice closing member moves to close the orifice when a pump discharge pressure exceeding a certain value is received.

[発明が解決しようとする課題] しかしながら、このような従来の油圧式動力伝達継手に
あっては、いずれの場合も、オリフィス孔端部にオリフ
ィス閉止部材に設けられたテーパ面を押しつけることで
、油の流れを遮断し、オリフィスを完全に閉止しようと
するものであり、オリフィスとオリフィス閉止部材は、
理論的には線接触となる。さらに、線接触部が受圧部材
のストッパーを兼ね、オリフィス閉止後も継手に与えら
れる入出力軸間の差動トルクが上昇すると、それに伴っ
て上昇する油圧による押しつけ力を受けなければならな
い。このため、テーパ面とオリフィスの接触部分は、接
触面圧が非常に大きくなり、また、この現象は継手がロ
ックする度に繰り返されることになるため、オリフィス
閉止部材のオリフィスとの接触部分が、段付き摩耗して
しまう。
[Problems to be Solved by the Invention] However, in any of these conventional hydraulic power transmission joints, by pressing the tapered surface provided on the orifice closing member against the end of the orifice hole, The purpose is to cut off the flow of oil and completely close the orifice, and the orifice and orifice closing member are
Theoretically, there is a line contact. Furthermore, the line contact portion also serves as a stopper for the pressure receiving member, and as the differential torque between the input and output shafts applied to the joint increases even after the orifice is closed, it must receive the pressing force due to the increased hydraulic pressure. For this reason, the contact area between the tapered surface and the orifice becomes very large in contact surface pressure, and this phenomenon is repeated every time the joint locks, so the contact area between the orifice closing member and the orifice becomes extremely large. It will wear out in stages.

オリフィス閉止部材のテーバ部が段付き摩耗すると、再
度大きなトルクが発生し、高い油圧を受けると、オリフ
ィス閉止部材がオリフィス孔にはまり込んでしまい、ト
ルクが下がって油圧が所定のしきい値以下になっても、
ロックが解除しないという問題が発生する。例えば、継
手をセンターデフとして車両に搭載した場合、前後輪間
の差動トルクが下がっても、継手がロック状態のままだ
と、舗装路走行時に以下のような問題が発生する。
When the tapered part of the orifice closing member wears out stepwise, large torque is generated again, and when high oil pressure is applied, the orifice closing member gets stuck in the orifice hole, causing the torque to drop and the oil pressure to drop below the predetermined threshold. Even if it becomes
A problem occurs where the lock is not released. For example, when a joint is mounted on a vehicle as a center differential, even if the differential torque between the front and rear wheels decreases, if the joint remains locked, the following problems will occur when driving on paved roads.

■タイトコーナーブレーキ現象が現れ、小径旋回時にブ
レーキトルクにより、エンストし再発進が困難になる、 タイヤのスリップ、グリップの繰り返しにより不快な振
動が発生する、 ハンドルが重くなる、 などの問題点が生じる。
■Tight corner braking phenomenon occurs, causing problems such as the brake torque causing the engine to stall when making small diameter turns and making restarting difficult, unpleasant vibrations caused by repeated tire slipping and gripping, and the steering wheel becoming heavy. .

■タイヤ摩耗量が増え、タイヤ寿命が短くなる。■Tire wear increases and tire life becomes shorter.

■燃費が悪化する。■Fuel efficiency worsens.

■発進加速性能が悪化する。■Starting acceleration performance deteriorates.

これらは、リジッド4WDで舗装路を走行時に起こる不
都合として、−量的に言われていることである。
These are quantitatively described as inconveniences that occur when driving a rigid 4WD on a paved road.

また、もしロック解除不能にまで至らなくとも、オリフ
ィス閉止部材の摩耗によって受圧部材のロックまでの移
動量が変化し、ロックする油圧、すなわちロックする差
動トルクのしきい値が経時変化を起こすことが考えられ
る。また、オリフィス閉止部材の摩耗状況によってはオ
リフィスを完全に閉止することが不可能となり、継手の
ロックができなくなることも考え得る。
Additionally, even if it does not become impossible to release the lock, the amount of movement of the pressure-receiving member to lock changes due to wear of the orifice closing member, and the locking oil pressure, that is, the locking differential torque threshold, may change over time. is possible. Further, depending on the wear condition of the orifice closing member, it may become impossible to completely close the orifice, and it may become impossible to lock the joint.

これらの問題を避けるため、オリフィス閉止部材とオリ
フィスとの当たり部分を面当たりとした例を第10図〜
第12図に示す。この場合では、オリフィス閉止部材6
1の摩耗は緩和されるものの、以下のような問題がある
。すなわち、受圧部材62にかかる油圧が上昇し、オリ
フィス63を閉止するに至る間にオリフィス63を閉止
する合わせ面間りが狭くなってくると、合わせ面間りの
油圧が上昇し、オリフィス63が閉止する油圧か安定し
ない。また、合わせ面が完全に密着し、合わせ面間りの
油が排除されてしまった場合には、合わせ面間の油圧は
発生しなくなり、トルク低下により、油圧が下降し、ロ
ックが解除されるポイントは、トルク上昇により、油圧
が上昇した時にロックするポイントと異なってしまう。
In order to avoid these problems, an example in which the contact portion of the orifice closing member and the orifice is made into surface contact is shown in Figures 10-10.
It is shown in FIG. In this case, the orifice closing member 6
Although the wear of No. 1 is alleviated, there are the following problems. That is, when the hydraulic pressure applied to the pressure receiving member 62 increases and the gap between the mating surfaces that closes the orifice 63 becomes narrower, the hydraulic pressure between the mating surfaces increases and the orifice 63 closes. Hydraulic pressure closing or not stable. In addition, if the mating surfaces are completely in contact and the oil between the mating surfaces is removed, oil pressure between the mating surfaces will no longer be generated, and the torque will drop, causing the oil pressure to drop and the lock to be released. The point will be different from the lock point when the oil pressure increases due to an increase in torque.

なお、64はガイド部材、65はリターンスプリングで
ある。
Note that 64 is a guide member and 65 is a return spring.

本発明は、このような従来の問題点に鑑みてなされたも
のであって、オリフィス閉止部材の摩耗の発生を防止し
、オリフィスを閉止するときの油圧が安定する油圧式動
力伝達継手を提供することを目的としている。
The present invention has been made in view of such conventional problems, and provides a hydraulic power transmission joint that prevents the occurrence of wear of the orifice closing member and stabilizes the hydraulic pressure when closing the orifice. The purpose is to

[課題を解決するための手段] 前記目的を達成するために、本発明は、相対回転可能な
第1.第2の回転部材間の回転速度差により駆動される
オイルポンプと、該オイルポンプの吐出路に流動抵抗を
発生する手段としてオリフィスを備え、 前記流動抵抗により前記第1.第2の回転部材間のトル
クが制御される油圧式動力伝達継手において、 前記オイルポンプの吐出圧により移動し前記オリフィス
をその外周部に形成した受圧部材と、該受圧部材を押圧
するリターンスプリングと、前記受圧部材を摺動自在に
保持し前記吐出圧がしきい値を越えて前記受圧部材が移
動したとき前記オリフィスを閉止するガイド部材を備え
たものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a relatively rotatable first . An oil pump driven by a difference in rotational speed between the second rotating members, and an orifice as means for generating flow resistance in a discharge path of the oil pump, the flow resistance causing the first. A hydraulic power transmission joint in which the torque between the second rotating members is controlled, the pressure receiving member being moved by the discharge pressure of the oil pump and having the orifice formed on its outer periphery, and a return spring that presses the pressure receiving member. and a guide member that slidably holds the pressure receiving member and closes the orifice when the discharge pressure exceeds a threshold value and the pressure receiving member moves.

[作用] 本発明においては、オリフィスを受圧部材の外径部に設
けるとともに、受圧部材を摺動自在に保持するガイド部
材でオリフィスを閉止するようにしたため、ガイド部材
はオリフィス閉止部材を兼ねるので、部品点数を減らす
ことができる。また、油圧により受圧部材にかかる荷重
をオリフィス閉止部材で受ける必要がなく、受圧部材は
充分な当たり面積を有するストッパ面を設定することが
できるので、オリフィス閉止部材が摩耗することがない
[Function] In the present invention, the orifice is provided on the outer diameter part of the pressure receiving member, and the orifice is closed by the guide member that slidably holds the pressure receiving member, so that the guide member also serves as the orifice closing member. The number of parts can be reduced. Further, there is no need for the orifice closing member to receive the load applied to the pressure receiving member due to hydraulic pressure, and the pressure receiving member can be provided with a stopper surface having a sufficient contact area, so that the orifice closing member does not wear out.

また、従来のように、オリフィスを閉止するに至る間に
オリフィスを閉止する合わせ面間が狭くなることがない
ので、オリフィスを閉止する油圧が安定する。
Further, since the gap between the mating surfaces for closing the orifice does not become narrow while the orifice is being closed, as in the conventional case, the hydraulic pressure for closing the orifice is stabilized.

[実施例コ 以下、本発明の実施例を図面に基づいて説明する。[Example code] Embodiments of the present invention will be described below based on the drawings.

第1図〜第3図は本発明の第1実施例を示す図である。1 to 3 are diagrams showing a first embodiment of the present invention.

まず、構成を説明すると、第1図において、11は内側
面にカム面12を形成したカムであり、カム11は入力
軸14に連結され、入力軸14と一体で回転する。また
、カム11はカムハウジング(第1または第2の回転部
材)15に固定され、カムハウジング15はカム11と
一体で回転する。
First, the configuration will be described. In FIG. 1, 11 is a cam with a cam surface 12 formed on its inner surface. The cam 11 is connected to the input shaft 14 and rotates integrally with the input shaft 14. Further, the cam 11 is fixed to a cam housing (first or second rotating member) 15, and the cam housing 15 rotates integrally with the cam 11.

16はカムハウジング15内に回転自在に収納されたロ
ータ(第2または第1回転部材)であり、ロータ16は
出力軸16Aと一体に形成され、出力軸16Aと一体で
回転する。
A rotor 16 (second or first rotating member) is rotatably housed in the cam housing 15. The rotor 16 is formed integrally with the output shaft 16A and rotates integrally with the output shaft 16A.

ロータ16には、軸方向に複数のプランジャー室17が
形成され、プランジャー室17内には複数個のプランジ
ャー18がリターンスプリング19を介して摺動自在に
収納されている。
A plurality of plunger chambers 17 are formed in the rotor 16 in the axial direction, and a plurality of plungers 18 are slidably housed in the plunger chamber 17 via a return spring 19.

また、20はプランジャー室17に連通する吐出路であ
り、吐出路20にはリターンスプリング21により吐出
弁22が介装され、オイルが一方向に流れるようにして
いる。
Further, 20 is a discharge passage communicating with the plunger chamber 17, and a discharge valve 22 is interposed in the discharge passage 20 by a return spring 21, so that oil flows in one direction.

ロータ16内にはオリフィス閉止部材を兼ねるガイド部
材23が嵌入され、ガイド部材23内には摺動自在に受
圧部材26が収納されている。受圧部材26とリテーナ
13との間にはリターンスプリング24が介装され、受
圧部材26により一方側には高圧室27が、他方側には
低圧室28がそれぞれ画成されている。
A guide member 23 that also serves as an orifice closing member is fitted into the rotor 16, and a pressure receiving member 26 is slidably housed within the guide member 23. A return spring 24 is interposed between the pressure receiving member 26 and the retainer 13, and the pressure receiving member 26 defines a high pressure chamber 27 on one side and a low pressure chamber 28 on the other side.

受圧部材26の外周部には流動抵抗発生手段としてのオ
リフィス25が形成され、プランジャー18による吐出
圧がしきい値を越えて、受圧部材26が図中右方向に移
動すると、オリフィス25はガイド部材23により閉止
される。なお、26Aは受圧部材26のストッパ面であ
る。
An orifice 25 is formed on the outer periphery of the pressure receiving member 26 as a flow resistance generating means, and when the discharge pressure by the plunger 18 exceeds a threshold and the pressure receiving member 26 moves to the right in the figure, the orifice 25 acts as a guide. It is closed by member 23. Note that 26A is a stopper surface of the pressure receiving member 26.

また、ロータ16の外径部の隣り合うプランジャー18
の中間位置には図示しないオイル循環溝が形成され、こ
のオイル循環溝を介して低圧室28と吸入路30が連通
し、吸入路30は吸入弁31を介してプランジャー室1
7に連通している。
In addition, adjacent plungers 18 on the outer diameter part of the rotor 16
An oil circulation groove (not shown) is formed at an intermediate position between the two, and the low pressure chamber 28 and the suction passage 30 communicate with each other through the oil circulation groove, and the suction passage 30 communicates with the plunger chamber 1 through the suction valve 31.
It is connected to 7.

したがって、オイルはロータ16の外径側を循環するよ
うになっている。
Therefore, the oil circulates around the outer diameter side of the rotor 16.

ロータ16には長溝43が形成され、長溝43に摺動可
能に嵌入されるピン44をプランジャー18に貫通して
設けている。また、長溝43の幅の寸法は、ピン44の
直径と同程度に形成される。
A long groove 43 is formed in the rotor 16, and a pin 44 that is slidably fitted into the long groove 43 is provided to penetrate the plunger 18. Further, the width of the long groove 43 is formed to be approximately the same as the diameter of the pin 44.

これらの長溝43およびピン44が全体として、組立時
にプランジャー18の抜けを防止するとともに、運転時
にプランジャー18の回転を防止する手段を構成してい
る。
These long grooves 43 and pins 44 collectively constitute a means for preventing the plunger 18 from coming off during assembly and for preventing rotation of the plunger 18 during operation.

32はカムハウジング15と一体で回転するスラストブ
ロックであり、スラストブロック32内にはリング状の
アキュムレータピストン33が同心状でかつ摺動可能に
収納されている。アキュムレータピストン33とリテー
ナ34との間にはリターンスプリング35が介装されて
いる。また、スラストブロック32には吸入路30に連
通する通路36が形成され、通路36を介して内圧がア
キュムレータピストン33に作用する。
A thrust block 32 rotates integrally with the cam housing 15, and a ring-shaped accumulator piston 33 is concentrically and slidably accommodated in the thrust block 32. A return spring 35 is interposed between the accumulator piston 33 and the retainer 34. Further, a passage 36 communicating with the suction passage 30 is formed in the thrust block 32, and internal pressure acts on the accumulator piston 33 via the passage 36.

アキュムレータピストン33の外径部にはOリング45
が設けられ、内径部はロータ16上にまで延在され、延
在部に隣接してオイルシール38が設けられている。な
お、37はスナップリング、39はニードルベアリング
である。
An O-ring 45 is attached to the outer diameter of the accumulator piston 33.
is provided, the inner diameter portion of which extends above the rotor 16, and an oil seal 38 is provided adjacent to the extended portion. Note that 37 is a snap ring and 39 is a needle bearing.

次に、動作を説明する。Next, the operation will be explained.

カムハウジング15とロータ16の間に回転差が生じな
いときは、プランジャー18は作動せず、トルクは伝達
されない。なお、プランジャー18はリターンスプリン
グ19によりカム面12に押しつけられている。
When there is no difference in rotation between the cam housing 15 and the rotor 16, the plunger 18 does not operate and no torque is transmitted. Note that the plunger 18 is pressed against the cam surface 12 by a return spring 19.

次に、カムハウジング15とロータ16との間に回転差
が生じると吐出行程にあるプランジャー18はカムハウ
ジング15のカム面12により軸方向に押し込まれる。
Next, when a rotation difference occurs between the cam housing 15 and the rotor 16, the plunger 18, which is in the discharge stroke, is pushed in the axial direction by the cam surface 12 of the cam housing 15.

このため、プランジャー18は、プランジャー室17の
オイルを吐出路20から吐出弁22を介して高圧室27
へ押し出すとともに、吸入弁31は吸入路30を閉じる
Therefore, the plunger 18 supplies the oil in the plunger chamber 17 from the discharge passage 20 to the high pressure chamber 27 via the discharge valve 22.
At the same time, the suction valve 31 closes the suction passage 30.

ここで、第2図に示すように、高圧室27に押し出され
たオイルは受圧部材26のオリフィス25を通って低圧
室28へ供給される。この時オリフィス25の抵抗によ
り高圧室27およびプランジャー室17の油圧が上昇し
、プランジャー18に反力が発生する。このプランジャ
ー反力に逆ってカムハウジング15を回転させることに
よりトルクが発生し、カムハウジング15とロータ16
の間でトルクが伝達される。
Here, as shown in FIG. 2, the oil pushed out into the high pressure chamber 27 is supplied to the low pressure chamber 28 through the orifice 25 of the pressure receiving member 26. At this time, the oil pressure in the high pressure chamber 27 and the plunger chamber 17 increases due to the resistance of the orifice 25, and a reaction force is generated in the plunger 18. By rotating the cam housing 15 against this plunger reaction force, torque is generated, and the cam housing 15 and rotor 16
Torque is transmitted between.

さらに、カムハウジング15が回転すると、吸入行程と
なり、低圧室28のオイルはオイル循環溝、吸入路30
および吸入弁31を介してプランジャー室17に吸入さ
れ、プランジャー18はカムハウジング15のカム面1
2に沿って戻る。
Furthermore, when the cam housing 15 rotates, a suction stroke occurs, and the oil in the low pressure chamber 28 is transferred to the oil circulation groove and the suction path 30.
and is sucked into the plunger chamber 17 via the suction valve 31, and the plunger 18 is sucked into the cam surface 1 of the cam housing 15.
Return along 2.

すなわち、オイルはロータ16の外径側を循環してプラ
ンジャー室17に戻る。
That is, the oil circulates around the outer diameter side of the rotor 16 and returns to the plunger chamber 17.

このようにして発生する伝達トルクは、プランジャー1
8に加わる油圧に比例し、該油圧はオリフィス25を通
過する油の流速の二乗に比例し、該油の流速はカムハウ
ジング15とロータ16の回転速度差に比例するため、
回転速度差の二乗に比例した大きなトルクを得ることが
できる。
The transmitted torque generated in this way is
8, the oil pressure is proportional to the square of the flow velocity of the oil passing through the orifice 25, and the flow velocity of the oil is proportional to the difference in rotational speed between the cam housing 15 and the rotor 16.
A large torque proportional to the square of the rotational speed difference can be obtained.

また、吐出圧がしきい値を越えると、受圧部材26はリ
ターンスプリング24に抗して、第3図に示すように、
右方向に移動し、ガイド部材23がオリフィス25を閉
止する。
Furthermore, when the discharge pressure exceeds the threshold, the pressure receiving member 26 resists the return spring 24, as shown in FIG.
Moving to the right, the guide member 23 closes the orifice 25.

このように油圧により受圧部材26にかかる荷重を従来
のようにオリフィス閉止部材で受ける必要がないので、
オリフィス閉止部材が摩耗することがなく、ロック解除
できないという不具合も発生しない。また、ガイド部材
23がオリフィス閉止部材を兼ねているので、部品点数
を減らすことができる。
In this way, the load applied to the pressure receiving member 26 by hydraulic pressure does not have to be received by the orifice closing member as in the conventional case.
The orifice closing member does not wear out, and the problem of not being able to release the lock does not occur. Further, since the guide member 23 also serves as an orifice closing member, the number of parts can be reduced.

また、従来のように、オリフィスを閉止する合わせ面間
が狭くなって、合わせ面間の油圧が上昇することがなく
、ロックする油圧は安定する。
Further, unlike in the conventional art, the gap between the mating surfaces that close the orifice is narrowed and the hydraulic pressure between the mating surfaces does not increase, and the locking hydraulic pressure is stabilized.

また、前記しきい値を越えさらに大きな油圧がかかった
場合でも受圧部材26は充分な当たり面積を有するスト
ッパ面26Aを有しており、各部材が異常摩耗すること
はない。
Further, even if a larger hydraulic pressure exceeding the threshold is applied, the pressure receiving member 26 has a stopper surface 26A having a sufficient contact area, so that each member will not be abnormally worn.

第4図および第5図は本発明の第2実施例を示す図であ
る。
FIG. 4 and FIG. 5 are diagrams showing a second embodiment of the present invention.

本実施例は、受圧部材のストッパ面をさらに大きくした
ものである。
In this embodiment, the stopper surface of the pressure receiving member is further enlarged.

第4図および第5図において、受圧部材26はオリフィ
ス25を形成した受圧部26Bに連続して大径部26C
が一体に形成され、大径部26C内にはリターンスプリ
ング24が収納されている。
In FIGS. 4 and 5, the pressure receiving member 26 has a large diameter portion 26C that is continuous with the pressure receiving portion 26B in which the orifice 25 is formed.
are integrally formed, and a return spring 24 is housed in the large diameter portion 26C.

大径部26Cのストッパ面26Aはさらに大きな面積を
有するように形成されている。
The stopper surface 26A of the large diameter portion 26C is formed to have an even larger area.

第5図に示すように、オリフィス25の閉止状態では大
径部26Cのストッパ面26Aがリテーナ13に当接す
る。本実施例においても前記実施例と同様な効果を得る
ことができる。
As shown in FIG. 5, when the orifice 25 is in the closed state, the stopper surface 26A of the large diameter portion 26C comes into contact with the retainer 13. In this embodiment as well, the same effects as in the previous embodiment can be obtained.

第6図〜第8図は本発明の第3実施例を示す図である。6 to 8 are diagrams showing a third embodiment of the present invention.

本実施例は受圧部材に溝を形成してオリフィスとした例
である。
This embodiment is an example in which a groove is formed in the pressure receiving member to serve as an orifice.

第6図〜第8図において、受圧部材26の受圧部26B
には凹溝が形成され、凹溝がオリフィス25Aを形成し
ている。ガイド部材23のガイド部23Aには受圧部材
26が摺動自在に挿入され、ガイド部23Aに連続して
テーパ面23Bが形成されている。
In FIGS. 6 to 8, the pressure receiving portion 26B of the pressure receiving member 26
A groove is formed in the groove, and the groove forms an orifice 25A. A pressure receiving member 26 is slidably inserted into the guide portion 23A of the guide member 23, and a tapered surface 23B is formed continuously to the guide portion 23A.

また、第2実施例と同様に大径部26Cには充分な当た
り面積を有するストッパ面26Aが形成されている。第
8図に示すように、オリフィス25Aの閉止状態にあっ
ては、大径部26Cのストッパ面26Aがリテーナ13
に当接する。本実施例においても、前記実施例と同様な
効果を得ることができる。
Further, as in the second embodiment, a stopper surface 26A having a sufficient contact area is formed on the large diameter portion 26C. As shown in FIG. 8, when the orifice 25A is in the closed state, the stopper surface 26A of the large diameter portion 26C is connected to the retainer 13.
comes into contact with. In this embodiment as well, the same effects as in the previous embodiment can be obtained.

[発明の効果〕 以上説明してきたように、本発明によれば、オリフィス
を受圧部材の外径部に設けるとともに受圧部材を摺動自
在に保持するガイド部材でオリフィスを閉止するように
したため、ガイド部材がオリフィス閉止部材を兼ねるの
で、部品点数を減らすことができる。
[Effects of the Invention] As described above, according to the present invention, the orifice is provided on the outer diameter of the pressure receiving member and the orifice is closed by the guide member that slidably holds the pressure receiving member. Since the member also serves as an orifice closing member, the number of parts can be reduced.

また、油圧により受圧部材にかかる荷重をオリフィス閉
止部材で受ける必要がなく、受圧部材は十分な当たり面
積を有するストッパ面を持つので、オリフィス閉止部材
が摩耗することがない。
Further, there is no need for the orifice closing member to receive the load applied to the pressure receiving member due to hydraulic pressure, and since the pressure receiving member has a stopper surface having a sufficient contact area, the orifice closing member does not wear out.

また、オリフィスを閉止する合わせ面間が狭くなること
がないので、オリフィスを閉止する油圧が安定する。
Furthermore, since the distance between the mating surfaces that close the orifice does not become narrow, the hydraulic pressure that closes the orifice is stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す断面図、第2図は油
圧がしきい値未満のときの状態を示す図、 第3図はオリフィス閉止状態を示す図、第4図は本発明
の第2実施例を示す要部断面図、第5図はオリフィス閉
止状態を示す図・、第6図は本発明の第3実施例を示す
要部断面図、第7図は受圧部の断面図、 第8図はオリフィス閉止状態を示す図、第9図は従来例
を示す図、 第10図は他の従来例を示す図、 第11図はオリフィス閉止直前の状態を示す図、第12
図はオリフィス閉止状態を示す図である。 図中、 11・・・カム、 12・・・カム面、 13・・・リテーナ、 14・・・入力軸、 15・・・カムハウジング、 16・・・ロータ、 16A・・・出力軸、 17・・・プランジャー室、 18・・・プランジャー 19・・・リターンスプリング、 20・・・吐出路、 21・・・リターンスプリング、 22・・・吐出弁、 23・・・カイト部材、 23A・・・ガイド部、 23B・・・テーパ面、 24・・・リターンスプリング、 25.25A・・・オリフィス、 26・・・受圧部材、 26A・・・ストッパ面、 26B・・・受圧部、 26C・・・大径部、 27・・・高圧室、 8・・・低圧室、 0・・・吸入路、 1・・・吸入弁、 2・・・スラストブロック、 3・・・アキュムレータピストン、 4・・・リテーナ、 5・・・リターンスプリング、 6・・・通路、 7・・・スナップリング、 8・・・オイルシール、 9・・・ニードルベアリング、 3・・・長溝、 4・・・ピン、 5・・・0リング。 特許出願人 株式会社富士鉄工所
Figure 1 is a sectional view showing the first embodiment of the present invention, Figure 2 is a diagram showing the state when the oil pressure is less than the threshold value, Figure 3 is a diagram showing the orifice closed state, and Figure 4 is the main figure. FIG. 5 is a sectional view of the main part showing the second embodiment of the invention, FIG. 5 is a diagram showing the orifice closed state, FIG. 6 is a sectional view of the main part showing the third embodiment of the invention, and FIG. 7 is a view of the pressure receiving part. 8 is a diagram showing the orifice closed state, FIG. 9 is a diagram showing the conventional example, FIG. 10 is a diagram showing another conventional example, FIG. 11 is a diagram showing the state just before the orifice is closed, 12
The figure shows the orifice closed state. In the figure, 11... cam, 12... cam surface, 13... retainer, 14... input shaft, 15... cam housing, 16... rotor, 16A... output shaft, 17 ... Plunger chamber, 18... Plunger 19... Return spring, 20... Discharge path, 21... Return spring, 22... Discharge valve, 23... Kite member, 23A. ... Guide portion, 23B... Tapered surface, 24... Return spring, 25.25A... Orifice, 26... Pressure receiving member, 26A... Stopper surface, 26B... Pressure receiving portion, 26C. ...Large diameter part, 27...High pressure chamber, 8...Low pressure chamber, 0...Suction path, 1...Suction valve, 2...Thrust block, 3...Accumulator piston, 4... ...Retainer, 5...Return spring, 6...Passage, 7...Snap ring, 8...Oil seal, 9...Needle bearing, 3...Long groove, 4...Pin, 5...0 ring. Patent applicant: Fuji Iron Works Co., Ltd.

Claims (1)

【特許請求の範囲】 相対回転可能な第1、第2の回転部材間の回転速度差に
より駆動されるオイルポンプと、該オイルポンプの吐出
路に流動抵抗を発生する手段としてオリフィスを備え、 前記流動抵抗により前記第1、第2の回転部材間のトル
クが制御される油圧式動力伝達継手において、 前記オイルポンプの吐出圧により移動し前記オリフィス
をその外周部に形成した受圧部材と、該受圧部材を押圧
するリターンスプリングと、前記受圧部材を摺動自在に
保持し前記吐出圧がしきい値を越えて前記受圧部材が移
動したとき前記オリフィスを閉止するガイド部材を備え
たことを特徴とする油圧式動力伝達継手。
[Scope of Claims] An oil pump driven by a difference in rotational speed between first and second rotary members that are relatively rotatable, and an orifice as a means for generating flow resistance in a discharge path of the oil pump, A hydraulic power transmission joint in which torque between the first and second rotating members is controlled by flow resistance, the pressure receiving member being moved by the discharge pressure of the oil pump and having the orifice formed on its outer periphery; The present invention is characterized by comprising a return spring that presses the member, and a guide member that slidably holds the pressure receiving member and closes the orifice when the discharge pressure exceeds a threshold value and the pressure receiving member moves. Hydraulic power transmission coupling.
JP19594790A 1990-07-24 1990-07-24 Hydraulic power transmission joint Pending JPH0483920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19594790A JPH0483920A (en) 1990-07-24 1990-07-24 Hydraulic power transmission joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19594790A JPH0483920A (en) 1990-07-24 1990-07-24 Hydraulic power transmission joint

Publications (1)

Publication Number Publication Date
JPH0483920A true JPH0483920A (en) 1992-03-17

Family

ID=16349625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19594790A Pending JPH0483920A (en) 1990-07-24 1990-07-24 Hydraulic power transmission joint

Country Status (1)

Country Link
JP (1) JPH0483920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336539B1 (en) 1999-05-17 2002-01-08 Fujiunivance Co. Drain mechanism for hydraulic power transmission joint
US6422368B1 (en) * 1999-05-28 2002-07-23 Fujiunivance Co. Hydraulic power transmission joint
US6454070B1 (en) * 1999-05-17 2002-09-24 Fujiunivance Co. Drain mechanism for hydraulic power transmission joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120521A (en) * 1988-10-31 1990-05-08 Koyo Seiko Co Ltd Driving coupling device for four-wheel drive

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120521A (en) * 1988-10-31 1990-05-08 Koyo Seiko Co Ltd Driving coupling device for four-wheel drive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336539B1 (en) 1999-05-17 2002-01-08 Fujiunivance Co. Drain mechanism for hydraulic power transmission joint
US6454070B1 (en) * 1999-05-17 2002-09-24 Fujiunivance Co. Drain mechanism for hydraulic power transmission joint
US6422368B1 (en) * 1999-05-28 2002-07-23 Fujiunivance Co. Hydraulic power transmission joint

Similar Documents

Publication Publication Date Title
US6001040A (en) Hydraulically operated limited slip differential
US5951426A (en) Hydraulically triggered limited slip differential
JPH0483920A (en) Hydraulic power transmission joint
JP3562104B2 (en) Differential-sensitive hydraulic coupling device
US5983635A (en) Rotary shaft coupler with rotary valve plate position dependent on direction of shaft rotation
US6814198B2 (en) Multi-directional coupling
JP2815731B2 (en) Hydraulic power transmission coupling
JP2989467B2 (en) Hydraulic power transmission coupling
JP2931705B2 (en) Hydraulic power transmission coupling
JP3913307B2 (en) Differential device and clutch device
JP2886816B2 (en) Hydraulic power transmission coupling
JP2564878Y2 (en) Hydraulic power transmission coupling
JP3562103B2 (en) Differential-sensitive hydraulic coupling device
JPS6183494A (en) Vane pump
JP3657311B2 (en) Drive coupling device for four-wheel drive
JP2005061541A (en) Drain mechanism of hydraulic power transmission joint
JPH02275123A (en) Hydraulic power transmission coupling
JPH02190626A (en) Hydraulic power transmitting coupling
JPH03213729A (en) Hydraulic power transmission coupling
JPH0819974B2 (en) Controlled differential rotation sensitive joint
JPH0341227A (en) Hydraulic power transmitting coupling
JPH02159424A (en) Hydraulic power transmission coupling
JPH03213727A (en) Hydraulic power transmission coupling
JPH0579520A (en) Hydraulic power transmission coupling
JPH04316722A (en) Rotation difference induction type coupling