JPH0483714A - Production of thin-film superconductor - Google Patents

Production of thin-film superconductor

Info

Publication number
JPH0483714A
JPH0483714A JP2197294A JP19729490A JPH0483714A JP H0483714 A JPH0483714 A JP H0483714A JP 2197294 A JP2197294 A JP 2197294A JP 19729490 A JP19729490 A JP 19729490A JP H0483714 A JPH0483714 A JP H0483714A
Authority
JP
Japan
Prior art keywords
thin film
heat treatment
temperature
stepwise
film superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2197294A
Other languages
Japanese (ja)
Inventor
Kumiko Nishikura
西倉 久美子
Toshifumi Sato
利文 佐藤
Hiroshi Ichikawa
洋 市川
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2197294A priority Critical patent/JPH0483714A/en
Publication of JPH0483714A publication Critical patent/JPH0483714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable production of the subject superconductor which is a single crystal without any oxygen defects by forming an oxide thin film of a prescribed composition in an amorphous state on a substrate and carrying out specific heat treatment. CONSTITUTION:An oxide thin film (e.g. Y-Ca-Ba-Cu-O thin film) of an A-B-Cu- O-based oxide thin film (A is one or more elements of Sc, Y and La-series of the periodic table) at a molar ratio of 0.5<(A+B)/Cu<1.0 is formed in an amorphous state on a substrate and instantaneous heat treatment accompanied by quick heating and quick cooling is carried out for the resultant thin film. Stepwise heat treatment for changing the heating temperature stepwise is then carried out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化物の薄膜超電導体の製造方法に関すも 従来の技術 高温超電導体として、A15型二元系化合物の窒化ニオ
ブ(N b N)やゲルマニウムニオブ(NtzGe)
などが知られていたカミ これらの材料の超電導転移温
度(Tc)はたかだか23にであっち 一人 ペロブスカイト系化合物(よ さらに高いTcが
期待さtl、  Ba−La−Cu−0系の高温超電導
体が提案された[J、G、Bedonorz and 
K、A、Muller、7yイトシスリフト・フェア・
フィシ゛−り(Zetshrift  Fur  Ph
ysik B)−Condensed Matter 
Vol、64.189−193(1986)]。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an oxide thin film superconductor.As a conventional high temperature superconductor, A15 type binary compound niobium nitride (N b N) and Germanium niobium (NtzGe)
The superconducting transition temperature (Tc) of these materials was at most 23%, while perovskite compounds (tl), which are expected to have an even higher Tc, and Ba-La-Cu-0 high-temperature superconductors. proposed [J.G., Bedonorz and
K, A, Muller, 7y Itosyrift Fair.
Zetshrift Fur Ph
ysik B)-Condensed Matter
Vol. 64.189-193 (1986)].

さらに Y−Ba−Cu−0系か液体窒素温度を越える
Tcを持ス より高温の超電導体であることが最近提案
された[M、に、Wuなど、フィシ゛カル レピューレ
タース’(Physical  Review  Le
tters)  Vol、58  No9.908−9
10(−1987)1゜さらE、B1−8r−Ca−C
u−0系の材料が100に以上のTcを示すことも発見
された[H9Maeda、 Y、Tanaka、 M、
Fukutomi and T、Asan0.シ゛ユへ
°ニース′・シ1ヤーナル・オフ゛・アブライビ°フィ
シ1フクスUapaneses  Journal  
of  Applied  Physics)Vol、
27.  L209−210(1988)L 加えてこのBi系よりも超電導転移温度の高いTl−B
a−Ca−Cu−〇系の材料が発見されるに至った[Z
、Z、Sheng and A、M、Hermann、
  ネイチャー(Nature)Vol、 332.1
38−139(1988) Lまた 酸素欠陥がなく、
安定性に優れ 従来とは異なった構造を持つY−Ba−
Cu−○系の高温超伝導体が提案された[(ジエイ・カ
ーピンスキー イー・カルディス イー・ジレッ久 ニ
ス・ラシェッキ、 ビー・バッカー、ネイチャー、第3
36巻 第660頁−第662頁<、 1988年)(
J、Karpinski、 E、Kaldis、 E、
Jilek、 S、Ru5ieck1and B、Bu
cher、 Letters to Nature、 
13fr、 660−662(1988)]。
Furthermore, it has recently been proposed that the Y-Ba-Cu-0 system is a higher temperature superconductor with a Tc exceeding the liquid nitrogen temperature [Physical Review Le
tters) Vol, 58 No9.908-9
10 (-1987) 1゜ Sara E, B1-8r-Ca-C
It was also discovered that u-0 series materials exhibit a Tc of over 100 [H9Maeda, Y., Tanaka, M.
Fukutomi and T, Asan0. To the New Year's Office/Abbreviation School/Uapaneses Journal
of Applied Physics) Vol.
27. L209-210 (1988)L In addition, Tl-B has a higher superconducting transition temperature than this Bi system.
A-Ca-Cu-〇-based materials were discovered [Z
, Z., Sheng and A., M., Hermann.
Nature Vol, 332.1
38-139 (1988) L also has no oxygen defects,
Y-Ba- has excellent stability and a structure different from conventional ones.
A high-temperature superconductor based on Cu-○ has been proposed [(J. Karpinski, E. Kardis, E. Jirekhisa, Nis Lasecki, B. Bakker, Nature, vol. 3).
Vol. 36, pp. 660-662 <, 1988) (
J., Karpinski, E., Kaldis, E.
Jilek, S., Ru5ieck1 and B, Bu.
cher, Letters to Nature,
13fr, 660-662 (1988)].

さらに この構造でY−Ca−Ba−Cu−0系が高温
状態で安定な より高温Tcをもつ超伝導体であること
が提案された[(ティー・ミャタケ、 ニス・ゴトウ、
 エヌ・コシズカ、ニス・タナカ、ネイチャー、第34
1表 第41頁−第42頁(1989年) (T、Mi
yatake、 S、Gotoh、 N、Koshiz
uka and S、Tanaka、 Letters
 to Nature、 3iX。
Furthermore, with this structure, it was proposed that the Y-Ca-Ba-Cu-0 system is a superconductor that is stable at high temperatures and has a higher temperature Tc [(T. Miyatake, Nis. Goto,
N Koshizuka, Nis Tanaka, Nature, No. 34
Table 1, pages 41-42 (1989) (T, Mi
yatake, S., Gotoh, N., Koshiz
uka and S, Tanaka, Letters
to Nature, 3iX.

4l−42(1989)]。4l-42 (1989)].

発明が解決しようとする課題 しかしながらBi系超電導材料(ム 混晶になりやすく
、単相の結晶化が困難であり、まへ 高温のTcを示す
相は特に単相化が難しい。まりTl系の材料はTIの蒸
気圧が高いために薄膜化のK  Tl量の制御が困難で
、薄膜化は非常に難し℃〜 これに対し Y−Ba−Cu−0系において、Y:  
Ba:  Cuの比が2=4:8)超電導材料は従来の
1:  2:  3の比のものと比べ 酸素欠陥がなく
、特に安定性がよく、実用化するには 優れた条件を合
わせ持っているといえも そこでこの材料を薄膜状に加工することか強く要望され
ているが、従来の技術で(表 良好な超電導特性を有す
る薄膜製造はむずかしいものかあつ九 すなわ板 この
系にはTcの異なるいくつかの相が存在することが知ら
れている力交 特に2:4=8の比を持つ結晶は他の結
晶と混晶をおこしやすく、単結晶を形成することが非常
に困難とされていた 本発明はこのような従来の課題を解決するもので、A−
B−Cu−○系の組成比2:  4:  8の薄膜超電
導体の製造方法の提供を目的とする。
Problems to be Solved by the Invention However, Bi-based superconducting materials (mu) tend to form mixed crystals and are difficult to crystallize into a single phase; Due to the high vapor pressure of TI, it is difficult to control the amount of TI, making it extremely difficult to make a thin film.In contrast, in the Y-Ba-Cu-0 system, Y:
The superconducting material has a Ba:Cu ratio of 2 = 4:8) compared to the conventional 1:2:3 ratio, has no oxygen defects, is particularly stable, and has excellent conditions for practical use. However, there is a strong desire to process this material into a thin film, but it is difficult to produce a thin film with good superconducting properties using conventional techniques (Table 1). It is known that several phases with different Tcs exist. In particular, crystals with a ratio of 2:4=8 tend to form mixed crystals with other crystals, making it extremely difficult to form a single crystal. The present invention, which was considered to be
The object of the present invention is to provide a method for manufacturing a thin film superconductor of B-Cu-○ system with a composition ratio of 2:4:8.

課題を解決するための手段 上記の目的を達成するために 本発明の薄膜超電導体の
製造方法(表 基板上にA−B−Cu−0系の下記モル
比率の酸化物薄膜をアモルファス状態に形成し 急速加
肱 急速冷却を伴う瞬間的熱処理を行(入 その後、加
熱温度を段階的に変化させる段階的熱処理を行なう。
Means for Solving the Problems In order to achieve the above objects, a method for manufacturing a thin film superconductor of the present invention (Table 1) Forming an oxide thin film of the A-B-Cu-0 system in an amorphous state on a substrate with the following molar ratio: Rapid heating Instant heat treatment accompanied by rapid cooling (in) After that, staged heat treatment is performed in which the heating temperature is changed in stages.

ここでAはSc、Yおよびランタン系列のうちの一種以
上の元−&BはIIa族元素のうちの一種以上の元素で
、モル比率は0. 5<A+B/Cu<1.0である。
Here, A is Sc, Y, and one or more elements of the lanthanum series - &B is one or more elements of Group IIa elements, and the molar ratio is 0. 5<A+B/Cu<1.0.

作用 本発明は上記した方法により、モル比率を制御した薄膜
をアモルファス状態で形成し その後急速加肱 急速冷
却することにより2:  4:  8の構造をもつ結晶
核を膜内部につくり、それを核として、徐々に加肱 冷
却する熱処理方法で、 2:4:8の結晶構造の薄膜を
優先的に製造できることになる。
Function The present invention uses the method described above to form a thin film with a controlled molar ratio in an amorphous state, and then rapidly cools it to create crystal nuclei with a 2:4:8 structure inside the film, which are then used as nuclei. As a result, thin films with a 2:4:8 crystal structure can be preferentially produced using a heat treatment method that involves gradual cooling.

実施例 通家 A−B−Cu−○系薄膜超電導体(よ 400〜
600℃に加熱した基板上に蒸着して形成すも 蒸着後、そのままでも薄膜は超電導特性を示す力叉 そ
の後850〜950℃の熱処理を施し 超電導特性を向
上させる。
Example A-B-Cu-○ thin film superconductor (Y400~
The thin film is formed by vapor deposition on a substrate heated to 600° C. After vapor deposition, the thin film exhibits superconducting properties even as it is. After that, heat treatment at 850 to 950° C. is performed to improve the superconducting properties.

しかし 従来の方法で(よ 例えfLY−Ba −Cu
−0系においてI−L  1:  2:  3が優先的
に配向し 安定性に優れる2:  4:  8は結晶化
しなかつ通 そこで、種々の検討を行った結果 本発明者ら(よ 急
速加糺 急速冷却を含む熱処理方法て 2:4二8の結
晶構造が核のような形で、単独で、生成することを見い
だした その理由は ゆっくりとした熱処理でG;&1:2:3
の相が優先的に成長するカミ 高熱で生成する2:  
4:  8の相が急冷の過程で凍結されたものと考えら
れも この発見に基づき、この2:  4:  8の結晶相の
成長条件を検討し 単結晶の製造に成功しれこの核を製
造した後、ゆっくり熱処理を行うと、核を中心に2: 
 4:  F3の結晶相が成長してくるものと思われも ま7’Q  A +B / Cuのモル比率が0.5よ
り大きく1、0未満である薄膜は特に安定性に優れ高い
Jcも示す。2:  4:  8の相からの組成のずれ
がこの範囲内で起こってL 単結晶にならないものもあ
るカミ 安定性に優h  7OK以上のゼロ抵抗温度も
示し 実用に耐えうるものとなム以下、図面を参照しな
がら本発明の実施例について具体的に説明すも 実施例1 第1図は本発明の薄膜超電導体の製造に用いたマグネト
ロンスパッタリング装置内部の構成図である。 1はY
−Ba−Cu−○ターゲット、 2は基板であも ターゲット1は酸化物粉末をプレス成形加工焼成して製
造し九 Y−Ba−Cu−0薄膜は基板2を加熱しない
で室温でスパッタリングしてアモルファス状態に形成し
た 入力電九 スパッタリング時間を制御することによ
り膜厚を変えたなおスパッタリングはアルゴン・酸素(
1:  1)混合ガス雰囲気0.5Pa中で行し′X、
スパッタリング電力は100Wとし 薄膜の組成比はY
:Ba:Cuが2:  4:  8となるようにターゲ
ットの組成を調節し九 Y−Ba−Cu−0薄膜を約1000人形成した ここ
では室温で形成している力t 約200℃以下で形成す
ると、この薄膜はアモルファス状態を示した 次へ このアモルファス状態の薄膜に瞬間的加熱を行う
。例えばあらかじ取 750℃に加熱しておいた加熱炉
にこの薄膜を3分間いれる。
However, using the conventional method (for example, fLY-Ba-Cu
In the -0 system, I-L 1: 2: 3 is preferentially oriented and has excellent stability, while 2: 4: 8 does not crystallize and passes through various studies. It was discovered that the 2:428 crystal structure was formed independently in the form of a nucleus using a heat treatment method that included rapid cooling.The reason for this was that with slow heat treatment, G;
Formation in which the phase of 2 grows preferentially at high heat:
It is thought that the 4:8 phase was frozen during the rapid cooling process, but based on this discovery, they investigated the growth conditions for the 2:4:8 crystal phase and succeeded in producing a single crystal, which produced this core. After that, when heat treatment is performed slowly, 2:
4: Although it is thought that the crystalline phase of F3 is growing, thin films in which the molar ratio of 7'Q A + B / Cu is greater than 0.5 and less than 1.0 are particularly stable and exhibit high Jc. . 2: 4: A deviation of the composition from the 8 phase occurs within this range, and some of them do not become single crystals.Excellent stability.H Also exhibits a zero resistance temperature of 7OK or higher, making it suitable for practical use. Embodiments of the present invention will be specifically described with reference to the drawings.Example 1 FIG. 1 is a diagram showing the internal configuration of a magnetron sputtering apparatus used for manufacturing a thin film superconductor of the present invention. 1 is Y
-Ba-Cu-○ target, 2 is a substrate; target 1 is manufactured by pressing and firing oxide powder; Y-Ba-Cu-0 thin film is sputtered at room temperature without heating substrate 2; The input film was formed in an amorphous state.The film thickness was changed by controlling the sputtering time.
1: 1) Performed in a mixed gas atmosphere of 0.5 Pa'X,
The sputtering power was 100W, and the composition ratio of the thin film was Y.
The composition of the target was adjusted so that the ratio of :Ba:Cu was 2: 4: 8, and approximately 1,000 9Y-Ba-Cu-0 thin films were formed. Once formed, this thin film exhibits an amorphous state. Next, this thin film in an amorphous state is instantaneously heated. For example, place this thin film in a heating furnace preheated to 750°C for 3 minutes.

この瞬間的加熱によって、薄膜は少し結晶化す、LX線
回折によると2:  4:  8の結晶相のみが確認さ
れ通 しかし ピークは非常に弱く、超電導特性を得る
には 結晶化が足りなl、%そこで、続いて段階的加熱
を行う。電気炉に於いて、酸素雰囲気で、 1時間あた
り400℃温度を上昇させ、650℃に約2時間採板 
その後1時間あたり400℃の勾配で冷却する。段階的
熱処理を施した薄膜+t  X線回折による評価をおこ
なうと2:  4:  8結晶相の鋭いピークが見られ
単結晶化していた この薄膜の超電導特性を評価すると、焼結体と同程度へ
 ゼロ抵抗温度85Kを示し九瞬間的熱処理の温度4;
t、、500℃〜1000℃がよく、膜厚 構成元素に
より温度に差はあるものへ 2:  4:  8の結晶
構造ζよ 500℃以上に温度を上げた場合に観察され
九 ま?、、、1000℃を超える温度以上に上昇させ
ると、逆に混晶となる場合が多かっ九 瞬間的熱処理の温度の時間に対する勾配41  膜厚組
成にある程度依存するが、100℃/分より小さいと、
他の結晶相の成長が顕著になり、続いての段階的熱処理
条件を選んでL 超電導特性が悪くなることがわかった また 段階的熱処理の温度勾配は 20℃/分以下のゆ
っくりとした温度変化が望ましI、%  ゆっくりとし
た温度変化により、 2:  4:  8の結晶相の核
が成長していくものと考えられる。
Due to this instantaneous heating, the thin film slightly crystallizes.According to LX-ray diffraction, only a 2:4:8 crystal phase was confirmed.However, the peak was very weak, and the crystallization was insufficient to obtain superconducting properties. % Then stepwise heating is carried out subsequently. In an electric furnace, the temperature is increased by 400℃ per hour in an oxygen atmosphere, and the plate is sampled at 650℃ for about 2 hours.
Thereafter, it is cooled at a gradient of 400° C. per hour. A thin film subjected to stepwise heat treatment + T When evaluated by X-ray diffraction, a sharp peak of 2:4:8 crystal phase was observed, and the superconducting properties of this thin film, which had become single crystal, were evaluated to be on the same level as the sintered body. 9 momentary heat treatment temperature 4 showing zero resistance temperature 85K;
t, 500℃ to 1000℃ is preferable, and the temperature varies depending on the film thickness constituent elements.2: 4: 8 crystal structure ζ is observed when the temperature is raised to 500℃ or higher. On the contrary, if the temperature is increased to over 1000℃, it often becomes a mixed crystal. ,
It was found that the growth of other crystal phases became significant and that the subsequent stepwise heat treatment conditions deteriorated the superconducting properties.In addition, the temperature gradient of the stepwise heat treatment was a slow temperature change of less than 20℃/min. Desired is I,% It is thought that the slow temperature change causes the nuclei of the 2:4:8 crystal phase to grow.

段階的熱処理の保持温度i;L400〜900℃程度が
よく、低いと結晶相の成長が確認できtあまり高いと多
結晶になる場合が多い。
Holding temperature i for stepwise heat treatment: L is preferably about 400 to 900°C; if it is too low, growth of a crystalline phase can be observed; if it is too high, polycrystals often form.

この温度、温度勾配は 膜の構成元素の種類膜厚などに
依存し最適な温度がある。
This temperature and temperature gradient depend on the type and thickness of the constituent elements of the film, and there is an optimum temperature.

段階的熱処理ζよ 酸素雰囲気屯 あるいは酸化性雰囲
気中で行うと、超電導特性がよりよいことがわかった 組成の(A元素+B元素)/Cuのモル比率が0.5よ
り太きく1.0未満の−様なアモルファス状態の膜が形
成できれ(f、、形成法は選ばな(■ここでl−L  
A元素としてY、  8元素としてBaを用いた場合に
ついて例にしだが、AはSc、Yおよびランタン系列元
素のうち少なくとも一服BはIIa族元素のうちの少な
くとも一種の元素であればよ(、ま7’、Z、  Y−
Ca−Ba−Cu−0薄膜のように AとしてYとCa
の2元素を用いたような場合も同様に多元系の薄膜にも
効果かある。
Stepwise heat treatment ζ In an oxygen atmosphere or in an oxidizing atmosphere, the molar ratio of (element A + element B)/Cu is greater than 0.5 and less than 1.0, which was found to have better superconducting properties. A film in an amorphous state like - can be formed (f,, the formation method is not selected (■Here, l-L
As an example, let us consider the case where Y is used as the A element and Ba is used as the 8th element.A is at least one of Sc, Y and a lanthanum series element. 7', Z, Y-
Like Ca-Ba-Cu-0 thin film, Y and Ca as A
Similarly, the case where two elements are used is also effective for multi-component thin films.

次に他の実施例について図面を参照しながら説明する。Next, other embodiments will be described with reference to the drawings.

実施例2 ここで用いた薄膜はY−Ca−Ba−Cu−0の薄膜を
スパッタリング法で形成したものである。
Example 2 The thin film used here was a Y-Ca-Ba-Cu-0 thin film formed by sputtering.

第2図は本実施例で行った熱処理の時間に対する温度変
化を示す。 3は瞬間的熱処理の部分、 4は段階的熱
処理の部分を示していも スパッタリング法(よ 組成のモル比が、ターゲットに
対してあまり変化せ慣 アモルファス構造の薄膜を目的
の組成で形成する方法として、有効である。
FIG. 2 shows the temperature change with respect to the time of the heat treatment performed in this example. 3 shows the instantaneous heat treatment part, 4 shows the stepwise heat treatment part, and sputtering method (the molar ratio of the composition does not change much with respect to the target) is a method for forming a thin film with an amorphous structure with the desired composition. ,It is valid.

本実施例の薄膜イよ は1社 (Y+Ca):  Ba
二Cuの組成比が2:  4:  8の0. 2μmの
薄膜である。
The thin film used in this example was manufactured by one company (Y+Ca): Ba
0.2 Cu composition ratio of 2:4:8. It is a thin film of 2 μm.

この薄膜を第2図に示すような瞬間的熱処理段階的熱処
理を連続的に行う方法で熱処理を行っこのようにして形
成された薄膜超電導体(よ ゼロ抵抗温度的88Kを示
L  2:  4:  8の単結晶薄膜であることがX
線回折、電子線回折などにより確認された このように連続的に熱処理を行ってL 瞬間的熱処理と
段階的熱処理の温度差があれば 有効であることがわか
っ九 このようにして形成された2:  4:  8の構造を
持つ薄膜は従来の1:  2:  3の薄膜に比べ経時
変化が少なく、温度変化に対してL 高温にさらしてL
 特性が変化せず耐環境性のある77にの液体窒素温度
より高いTcを有する薄膜超電導体が得られた な耘 実施例ではAとしてY、  BとしてBa、Ca
を用いた場合について説明したが、Yに代えてScおよ
びランタン系列のうちの一種以上の元t  Ba、Ca
に代えてIIa族のうちの一種以上の元素としてもよし
− また実施例ではスパッタリング法による薄膜形成方法に
ついて述べた力\ 各種CV D /1.  M B 
E法などの各種PVD法でもよい。
This thin film was heat-treated by a method of continuous instantaneous heat treatment and stepwise heat treatment as shown in Figure 2, and the thus formed thin film superconductor (showing a zero resistance temperature of 88 K) was obtained. X is a single crystal thin film of 8
It was confirmed by line diffraction, electron beam diffraction, etc. that continuous heat treatment is effective as long as there is a temperature difference between instantaneous heat treatment and stepwise heat treatment. : A thin film with a 4:8 structure has less change over time than a conventional 1:2:3 thin film, and has a low resistance to temperature changes.
A thin film superconductor having a Tc higher than the liquid nitrogen temperature of 77 was obtained with no change in properties and environmental resistance.In the example, A is Y, B is Ba and Ca.
Although we have explained the case using
Alternatively, one or more elements of Group IIa may be used. In addition, in the examples, the thin film forming method by sputtering method is described.\Various CV D /1. M B
Various PVD methods such as the E method may be used.

また実施例において(よ 電気炉を用いて薄膜を瞬間的
熱処理する場合を述べため(加熱炉の代わりにレーザー
光を照射し 熱処理する方法も効果があることがわかっ
通 例えばCO2レーザー光を用いると約7分程度て 
効果か現れ通 また 赤外線を発生し パワーの大きな光源であれば同
様の効果が現れ九 照射時間(よ 膜尾照射光源パワー
により異なる力交 概れ 20分以内がよく、あまり長
いと他の結晶相の成長が確認され總 発明の効果 以上のよう番ξ  本発明は0. 5<A+B/Cu<
1.0の範囲のモル比率を有するA−B−Cu−〇系酸
化物薄膜をアモルファス状態に基板上に形成し この酸
化物薄膜を急速加熱及び急速冷却する瞬間的熱処理を行
((シかる後段階的熱処理を行う薄膜超電導体の製造方
法によれEA−BCu−0系の組成比2:  4:  
8の薄膜超電導体を安定に製造できることになり、工業
上極めて大きな価値を有する。
In addition, in this example, we will discuss the case of instantaneous heat treatment of a thin film using an electric furnace. About 7 minutes
The same effect will appear if the light source generates infrared rays and has a large power.9 Irradiation time (force exchange varies depending on the power of the tail irradiation light source) Generally, 20 minutes or less is best; if it is too long, other crystal phases may appear. It was confirmed that the growth of ξ exceeded the effect of the invention.
An A-B-Cu-〇-based oxide thin film having a molar ratio in the range of 1.0 is formed in an amorphous state on a substrate, and this oxide thin film is subjected to instantaneous heat treatment to rapidly heat and rapidly cool it. The composition ratio of the EA-BCu-0 system is 2:4:
This makes it possible to stably produce the thin film superconductor No. 8, which has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜超電導体の製造に用いたスパッタ
リング装置の構成@ 第2図は本発明の一実施例の熱処
理温度と時間の関係を示した図である。 ■・・・ターゲット、 2・・・基板、 3・・・瞬間
的熱処理4・・・段階的熱処堆 代理人の氏名 弁理士 粟野重孝 はか1名基牝しホル
ター
FIG. 1 is a diagram showing the configuration of a sputtering apparatus used for manufacturing the thin film superconductor of the present invention. FIG. 2 is a diagram showing the relationship between heat treatment temperature and time in an embodiment of the present invention. ■...Target, 2...Substrate, 3...Instant heat treatment 4...Stepwise heat treatment Name of agent Patent attorney Shigetaka Awano, 1 person based Holter

Claims (7)

【特許請求の範囲】[Claims] (1)基板上にA−B−Cu−O系の下記モル比率の酸
化物薄膜をアモルファス状態に形成し、前記酸化物薄膜
に急速加熱、急速冷却を伴う瞬間的熱処理を行い、その
後加熱温度を段階的に変化させる段階的熱処理を行なう
ことを特徴とする薄膜超電導体の製造方法。ここでAは
Sc、Yおよびランタン系列のうちの一種以上の元素、
BはIIa族元素のうちの一種以上の元素で、モル比率は
0.5<A+B/Cu<1.0である。
(1) An A-B-Cu-O based oxide thin film having the following molar ratio is formed on a substrate in an amorphous state, and the oxide thin film is subjected to an instantaneous heat treatment involving rapid heating and rapid cooling, and then the heating temperature is 1. A method for manufacturing a thin film superconductor, characterized by performing stepwise heat treatment to change the temperature stepwise. Here, A is one or more elements of Sc, Y, and the lanthanum series,
B is one or more elements of group IIa elements, and the molar ratio is 0.5<A+B/Cu<1.0.
(2)瞬間的熱処理の加熱温度が、500℃〜1000
℃であることを特徴とする、請求項1記載の薄膜超電導
体の製造方法。
(2) The heating temperature of instantaneous heat treatment is 500°C to 1000°C.
2. The method for producing a thin film superconductor according to claim 1, wherein the temperature is .degree.
(3)瞬間的熱処理の温度の時間に対する勾配が、10
0℃/分以上とすることを特徴とする、請求項1記載の
薄膜超電導体の製造方法。
(3) The gradient of the instantaneous heat treatment temperature with respect to time is 10
2. The method for manufacturing a thin film superconductor according to claim 1, wherein the heating rate is 0° C./min or more.
(4)段階的熱処理の加熱温度が、400℃〜900℃
であることを特徴とする、請求項1記載の薄膜超電導体
の製造方法。
(4) The heating temperature of the stepwise heat treatment is 400°C to 900°C
The method for manufacturing a thin film superconductor according to claim 1, characterized in that:
(5)段階的熱処理を酸素または酸化性雰囲気中で行う
ことを特徴とする、請求項1記載の薄膜超電導体の製造
方法。
(5) The method for producing a thin film superconductor according to claim 1, wherein the stepwise heat treatment is performed in an oxygen or oxidizing atmosphere.
(6)瞬間的熱処理に、レーザ光を用いることを特徴と
する、請求項1記載の薄膜超電導体の製造方法。
(6) The method for producing a thin film superconductor according to claim 1, characterized in that a laser beam is used for the instantaneous heat treatment.
(7)瞬間的熱処理に、赤外線を用いることを特徴とす
る、請求項1記載の薄膜超電導体の製造方法。
(7) The method for manufacturing a thin film superconductor according to claim 1, characterized in that infrared rays are used for the instantaneous heat treatment.
JP2197294A 1990-07-25 1990-07-25 Production of thin-film superconductor Pending JPH0483714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2197294A JPH0483714A (en) 1990-07-25 1990-07-25 Production of thin-film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2197294A JPH0483714A (en) 1990-07-25 1990-07-25 Production of thin-film superconductor

Publications (1)

Publication Number Publication Date
JPH0483714A true JPH0483714A (en) 1992-03-17

Family

ID=16372071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2197294A Pending JPH0483714A (en) 1990-07-25 1990-07-25 Production of thin-film superconductor

Country Status (1)

Country Link
JP (1) JPH0483714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240487A (en) * 2000-02-29 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for substrate surface treatment, and substrate for film formation manufactured by this method
US8863805B2 (en) 2009-02-16 2014-10-21 Airbus Operations Gmbh Pressing-on device for pressing on fiber-reinforced thermoplastic materials, fiber arranging device, and method for arranging a fiber-reinforced thermoplastic material
RU206446U1 (en) * 2020-12-11 2021-09-13 Акционерное Общество "Наука И Инновации" DEVICE FOR MANUFACTURING HIGH-TEMPERATURE SUPERCONDUCTOR IN THE FORM OF METAL TAPES WITH TEXTURED FILMS RBa2Cu3O7

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240487A (en) * 2000-02-29 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for substrate surface treatment, and substrate for film formation manufactured by this method
US8863805B2 (en) 2009-02-16 2014-10-21 Airbus Operations Gmbh Pressing-on device for pressing on fiber-reinforced thermoplastic materials, fiber arranging device, and method for arranging a fiber-reinforced thermoplastic material
RU206446U1 (en) * 2020-12-11 2021-09-13 Акционерное Общество "Наука И Инновации" DEVICE FOR MANUFACTURING HIGH-TEMPERATURE SUPERCONDUCTOR IN THE FORM OF METAL TAPES WITH TEXTURED FILMS RBa2Cu3O7

Similar Documents

Publication Publication Date Title
CN108588648A (en) Method prepared by dystopy multi-element metal oxide thin film epitaxial growth and its serialization
JPH0483714A (en) Production of thin-film superconductor
Shi et al. Influence of substrate temperature on the orientation of YBa2Cu3O7 films
Hughes et al. In situ growth of PbSrYCaCuO films by laser ablation
JPH0218974A (en) Supeconducting device and its manufacture
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH01208327A (en) Production of thin film of superconductor
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JPS62170108A (en) Super conductor containing nb, si and al and oxide thereof having transition temperature 77k or more
JPH01275434A (en) Production of high temperature superconducting oxide film
Zheng et al. In situ synchrotron studies of the structural properties of Y‐Ba‐Cu‐O thin films during growth
JPH02252618A (en) Production of bi-based superconducting thin film
JPH04144913A (en) Production of thin-film superconductor
JPH0483715A (en) Thin-film superconductor
JPH01282128A (en) Production of thin film superconductor
JPH03197326A (en) Production of superconducting thin film of oxide
Yang et al. Growth and microstructure in Bi2Sr2CaCu2Oy single crystals
JPS63257127A (en) Manufacture of thin film superconductor
JPH01100096A (en) Production of oxide superconductor thin film
JPH01278449A (en) Production of oxide superconductor
JPS63276824A (en) Manufacturing of high-temperature superconducting film
Pandey et al. Growth of 2122-phase of Bi Ca Sr Cu O superconducting films by LPE process and possibility of its growth in microgravity environment
JPH03261607A (en) Manufacture of high-temperature superconducting thin film
JPH05139893A (en) Production of superconductive thin film
JPH04349108A (en) Formation of high temperature superconducting thin film