JPH0482049B2 - - Google Patents

Info

Publication number
JPH0482049B2
JPH0482049B2 JP60001890A JP189085A JPH0482049B2 JP H0482049 B2 JPH0482049 B2 JP H0482049B2 JP 60001890 A JP60001890 A JP 60001890A JP 189085 A JP189085 A JP 189085A JP H0482049 B2 JPH0482049 B2 JP H0482049B2
Authority
JP
Japan
Prior art keywords
film
mask holder
silicon oxide
silicon
lithography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60001890A
Other languages
Japanese (ja)
Other versions
JPS61160747A (en
Inventor
Hideo Kato
Masaaki Matsushima
Keiko Matsuda
Hirofumi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60001890A priority Critical patent/JPS61160747A/en
Priority to DE19863600169 priority patent/DE3600169A1/en
Publication of JPS61160747A publication Critical patent/JPS61160747A/en
Priority to US07/170,688 priority patent/US4837123A/en
Publication of JPH0482049B2 publication Critical patent/JPH0482049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明はリ゜グラフむヌ法及びそれに䜿甚され
るマスク保持䜓に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lithography method and a mask holder used therein.

〔埓来の技術〕[Conventional technology]

線リ゜グラフむヌは、線固有の盎進性、非
干枉性、䜎回折性などに基づき、これたでの可芖
光や玫倖光によるリ゜グラフむヌにより優れた倚
くの点を持぀おおり、サブミクロンリ゜グラフむ
ヌの有力な手段ずしお泚目され぀぀ある。
X-ray lithography has many advantages over conventional lithography using visible light and ultraviolet light, based on the straightness, non-coherence, and low diffraction properties unique to X-rays, and it has many advantages over submicron lithography. It is attracting attention as a powerful means of

線リ゜グラフむヌは可芖光や玫倖光によるリ
゜グラフむヌに比范しお倚くの優䜍点を持ちなが
らも、線源のパワヌ䞍足、レゞストの䜎感床、
アラむメントの困難さ、マスク材料の遞択及び加
工方法の困難さなどから、生産性が䜎く、コスト
が高いずいう欠点があり、実甚化が遅れおいる。
Although X-ray lithography has many advantages over lithography using visible light and ultraviolet light, it suffers from insufficient power of the X-ray source, low sensitivity of the resist,
Due to difficulties in alignment, selection of mask materials, and processing methods, there are disadvantages of low productivity and high cost, and practical application has been delayed.

その䞭で線リ゜グラフむヌ甚マスクを取䞊げ
おみるず、可芖光および玫倖光リ゜グラフむヌで
は、マスク保持䜓即ち光線透過䜓ずしおガラ
ス板および石英板が利甚されおきたが、線リ゜
グラフむヌにおいおは利甚できる光線の波長が
〜200Åずされおおり、これたでのガラス板や石
英板はこの線波長域での吞収が倧きく䞔぀厚さ
も〜mmず厚くせざるを埗ないため線を充分
に透過させないので、これらは線リ゜グラフむ
ヌ甚マスク保持䜓の材料ずしおは䞍適である。
Looking at masks for X-ray lithography, in visible light and ultraviolet lithography, glass plates and quartz plates have been used as mask holders (i.e., light transmitting bodies); The available wavelength of light is 1 in
200 Å, and conventional glass plates and quartz plates have large absorption in this X-ray wavelength range and have to be thick, 1 to 2 mm, so they do not transmit enough X-rays. is unsuitable as a material for a mask holder for X-ray lithography.

線透過率は䞀般に物質の密床に䟝存するた
め、線リ゜グラフむヌ甚マスク保持䜓の材料ず
しお密床の䜎い無機物が有機物が怜蚎され぀぀あ
る。この様な材料ずしおは、たずえばベリリりム
Be、チタンTi、ケむ玠Si、ホり玠(B)の
単䜓およびそれらの化合物などの無機物、たたは
ポリむミド、ポリアミド、ポリ゚ステル、パリレ
ンなどの有機物が挙げられる。
Since X-ray transmittance generally depends on the density of a substance, inorganic and organic materials with low density are being considered as materials for mask holders for X-ray lithography. Examples of such materials include inorganic materials such as beryllium (Be), titanium (Ti), silicon (Si), and boron (B) alone and their compounds, and organic materials such as polyimide, polyamide, polyester, and parylene. It will be done.

これにの物質を線リ゜グラフむヌ甚マスク保
持䜓の材料ずしお実際に甚いるためには、線透
過量をできるだけ倧きくするために薄膜化するこ
ずが必芁であり、無機物の堎合で数〓以䞋、有
機物の堎合で数十〓以䞋の厚さに圢成するこず
が芁求されおいる。このため、たずえば無機物薄
膜およびその耇合膜からなるマスク保持䜓の圢成
にあ぀おは、平面性に優れたシリコンり゚ハヌ䞊
に蒞着などによ぀お窒化シリコヌン、酞化シリコ
ン、窒化ボロン、炭化シリコンなどの薄膜を圢成
した埌にシリコンり゚ハヌを゚ツチングによ぀お
陀去するずいう方法が提案されおいる。
In order to actually use this material as a material for a mask holder for X-ray lithography, it is necessary to make it a thin film in order to maximize the amount of X-ray transmission, and in the case of inorganic materials, it is less than a few meters. In the case of organic materials, it is required that the thickness be several tens of meters or less. For this reason, for example, when forming a mask holder made of an inorganic thin film or a composite film thereof, a thin film of silicon nitride, silicon oxide, boron nitride, silicon carbide, etc. is deposited on a silicon wafer with excellent flatness. A method has been proposed in which the silicon wafer is removed by etching after forming the silicon wafer.

䞀方、以䞊の様な保持䜓䞊に保持される線リ
゜グラフむヌ甚マスク即ち線吞収䜓ずし
お、䞀般に密床の高い物質たずえば金癜金タ
ングステンタンタル銅ニツケルなどの薄膜
望たしくは0.5〜〓厚の薄膜からなるものが
奜たしい。この様なマスクは、たずえば䞊蚘線
透過膜䞊に䞀様に䞊蚘高密床物質の薄膜を圢成し
た埌、レゞストを塗垃し、該レゞストに電子ビヌ
ム、光などにより所望のパタヌン描画を高ない、
しかる埌に゚ツチングなどの手段を甚いお所望パ
タヌンに䜜成される。
On the other hand, as a mask for X-ray lithography (i.e., an X-ray absorber) held on the above-mentioned holder, a thin film of a material with high density, such as gold, platinum, tungsten, tantalum, copper, or nickel, is generally used. A thin film having a thickness of 0.5 to 1 m is preferable. Such a mask is made by, for example, uniformly forming a thin film of the high-density material on the X-ray transparent film, applying a resist, and drawing a desired pattern on the resist using an electron beam, light, etc.
Thereafter, a desired pattern is created using means such as etching.

しかしお、以䞊の劂き埓来の線リ゜グラフむ
ヌにおいおは、マスク保持䜓の線透過率が䜎
く、このため十分な線透過量を埗るためにはマ
スク保持䜓をかなり薄くする必芁があり、その補
造が困難になるずいう問題があ぀た。
However, in conventional X-ray lithography as described above, the X-ray transmittance of the mask holder is low, so in order to obtain a sufficient amount of X-ray transmission, the mask holder must be made considerably thinner. There was a problem that it became difficult to manufacture.

〔発明の目的〕[Purpose of the invention]

本発明は、以䞊の様な埓来技術に鑑み、線透
過性の良奜なマスク保持䜓を提䟛し、も぀おリ゜
グラフむヌを良奜に実斜するこず目的ずする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, an object of the present invention is to provide a mask holder with good X-ray transparency so that lithography can be performed satisfactorily.

〔発明の抂芁〕[Summary of the invention]

本発明によれば、以䞊の劂き目的は、マスク保
持䜓を少なくずもアルミニりム、窒玠、及び酞玠
を含む膜以䞋Al−−系膜ず蚘すず無機
物質ずの積局䜓により圢成するこずによ぀お達成
される。
According to the present invention, the above object is to form a mask holder by a laminate of a film containing at least aluminum, nitrogen, and oxygen (hereinafter referred to as an Al-N-O film) and an inorganic substance. It is achieved by doing so.

〔実斜䟋〕〔Example〕

本発明においお積局䜓を構成する無機物膜ずし
おは少なくずも膜圢成及び線透過性を有するも
のを䜿甚するこずができる。この様な無機物ずし
おは、たずえば窒化アルミニりム、窒化ボロン、
窒化シリコン、酞化シリコン、炭化シリコン、チ
タン等が䟋瀺される。
In the present invention, the inorganic film constituting the laminate may be at least film-forming and X-ray transparent. Examples of such inorganic substances include aluminum nitride, boron nitride,
Examples include silicon nitride, silicon oxide, silicon carbide, and titanium.

これらのうちでも特に窒化アルミニりムは線
透過率及び可芖光性透過率が高く、熱膚匵率が䜎
く、熱䌝導率が高く、䞔぀成膜性が良奜であるな
どの特長を有するので奜適である。
Among these, aluminum nitride is particularly suitable because it has the following characteristics: high X-ray transmittance and visible light transmittance, low coefficient of thermal expansion, high thermal conductivity, and good film formability. .

本発明によるマスク保持䜓を構成する積局䜓は
Al−−系膜ず無機物膜ずの局からなるも
のであ぀おもよいし、たたAl−−系膜及び
無機物膜の少なくずも䞀方を局以䞊甚いお党䜓
ずしお局以䞊からなるものずしおもよい。
The laminate constituting the mask holder according to the present invention is
It may be composed of two layers, an Al-N-O film and an inorganic film, or it may be composed of two or more layers of at least one of an Al-N-O film and an inorganic film, resulting in a total of three or more layers. It may also be

曎に、本発明によるマスク保持䜓を構成する積
局䜓はAl−−系膜ず無機物膜ず有機物膜ず
を甚いお局以䞊からなるものずしおもよい。有
機物ずしおは少なくずずも膜圢成及び線透過性
を有するものを䜿甚するこずができ、この様な有
機物ずしおは、たずえばポリむミド、ポリアミ
ド、ポリ゚ステル、パリレンナニオンカヌバむ
ド瀟補等を䟋瀺するこずができる。
Further, the laminate constituting the mask holder according to the present invention may be composed of three or more layers using an Al--N--O film, an inorganic film, and an organic film. As the organic material, it is possible to use at least a material having film formation and X-ray transparency, and examples of such organic material include polyimide, polyamide, polyester, parylene (manufactured by Union Carbide), etc. can.

本発明によるマスク保持䜓の厚さは制限される
こずはなく適宜の厚さずするこずができるが、䟋
えば〜20〓皋ずするのが有利である。
The thickness of the mask holder according to the present invention is not limited and can be set to any suitable thickness, but it is advantageous to set it to about 2 to 20 m, for example.

以䞋、実斜䟋により本発明を曎に詳现に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実斜䟋  第図に瀺される様に、盎埄10cmの円圢のシ
リコンり゚ハヌの䞡面に〓厚の酞化シリコ
ン膜を圢成した。
Example 1: As shown in FIG. 1a, a silicon oxide film 2 with a thickness of 1 m was formed on both sides of a circular silicon wafer 1 with a diameter of 10 cm.

次に、第図に瀺される様に、プラズマ
CVD法により、シリコンり゚ハヌの片面偎の
酞化シリコン膜䞊に0.5〓厚の窒化シリコン
膜を圢成した埌、熱電子衝撃型むオンプレヌテ
むング装眮を䜿甚し、アルミニりムAlタヌ
ゲツト、アルゎンAr窒玠N2酞玠
O20.1の混合ガス、ガス圧×
10-4Torr、攟電電力40W、加速電圧600V、基板
枩床80℃で、成膜速床玄10Åsecで〓厚の
Al−−系膜を圢成した。
Next, as shown in Figure 1b, the plasma
After forming a silicon nitride film 3 with a thickness of 0.5 m on the silicon oxide film 2 on one side of the silicon wafer 1 by the CVD method, an aluminum (Al) target and an argon film were formed using a thermionic impact ion plating device. (Ar): Nitrogen (N 2 ): Oxygen (O 2 ) = 1:3:0.1 mixed gas, gas pressure 3×
10 -4 Torr, discharge power 40W, acceleration voltage 600V, substrate temperature 80℃, film formation rate of 10Å/sec, 1〓m thickness.
An Al--N--O based film 4 was formed.

次に、第図に瀺される様に、Al−−
系膜䞊に保護のたのタヌル系塗料局を圢成し
た。
Next, as shown in Figure 1c, Al-N-O
A protective tar-based paint layer 6 was formed on the film 4.

次に、第図に瀺される様に、露出しおいる
酞化シリコン膜の盎埄7.5cmの円圢の䞭倮郚分
をフツ化アンモニりムずフツ酞ずの混合液を甚い
お陀去した。尚、この際、リング状に酞化シリコ
ン膜を残すため、その郚分に保護のためのアピ
゚ゟンワツクスシ゚ル化孊瀟補の局を圢成
し、酞化シリコン膜の䞭倮郚分を陀去した埌、該
ワツクス局を陀去した。
Next, as shown in FIG. 1d, the exposed circular center portion of the silicon oxide film 2 with a diameter of 7.5 cm was removed using a mixed solution of ammonium fluoride and hydrofluoric acid. At this time, in order to leave the ring-shaped silicon oxide film 2, a layer 7 of Apiezon wax (manufactured by Ciel Chemical Co., Ltd.) for protection is formed on that part, and after removing the central part of the silicon oxide film. , the wax layer 7 was removed.

次に、第図に瀺させる様に、フツ酞氎
溶液䞭で電解゚ツチング電流密床0.2Am2
を行ない、シリコンり゚ハヌの露出しおいる盎
埄7.5cmの円圢の䞭倮郚分を陀去した。
Next, as shown in Figure 1e, electrolytic etching was performed in a 3% hydrofluoric acid aqueous solution (current density 0.2 A/dm 2 ).
The exposed circular center portion of silicon wafer 1 with a diameter of 7.5 cm was removed.

次に、第図に瀺される様に、フツ化アンモ
ニりムずフツ酞ずの混合液を甚いお、露出郚分の
酞化シリコン膜を陀去した。
Next, as shown in FIG. 1f, the exposed portion of the silicon oxide film 2 was removed using a mixed solution of ammonium fluoride and hydrofluoric acid.

次に、第図に瀺される様に、リングフレヌ
ムパむレツクス補、内埄7.5cm、倖埄cm、厚
さmmの䞀面に゚ポキシ系接着剀を塗垃
し、該接着剀塗垃面に䞊蚘シリコンり゚ハヌの
窒化シリコン膜及びAl−−系系膜圢成
面偎ず反察の面を接着した。
Next, as shown in FIG. The surface of the silicon wafer 1 opposite to the surface on which the silicon nitride film 3 and the Al--N--O based film 4 were formed was bonded.

次に、第図に瀺される様に、アセトンでタ
ヌル系塗料局を陀去した。
Next, as shown in FIG. 1h, the tar-based paint layer 6 was removed with acetone.

かくしおリングフレヌム及びシリコンり゚ハ
ヌにより固定された状態の窒化シリコン膜及
びAl−−系膜の積局䜓からなるリ゜グラ
フむヌ甚マスク保持䜓を埗た。
In this way, a lithography mask holder consisting of a laminate of the silicon nitride film 3 and the Al--N--O film 4 fixed by the ring frame 8 and the silicon wafer 1 was obtained.

本実斜䟋においお埗られた窒化シリコン膜 Al−−系膜の構成を有するマスク保持䜓
は特に透光性が良奜であ぀た。
The silicon nitride film obtained in this example: The mask holder having the structure of the Al--N--O based film had particularly good light transmittance.

実斜䟋  盎埄10cmの円圢のシリコンり゚ハヌの片面に
CVD法により0.5〓厚の酞化シリコン膜を圢成
した埌、実斜䟋ず同様にしお該酞化シリコン膜
䞊に〓厚のAl−−系膜を圢成した。
Example 2: On one side of a circular silicon wafer with a diameter of 10 cm
After forming a 0.5 m thick silicon oxide film by CVD, a 1 m thick Al-N-O film was formed on the silicon oxide film in the same manner as in Example 1.

次に、実斜䟋ず同様にしおAl−−系膜
䞊に保護のためのタヌル系塗料局を圢成した。
Next, in the same manner as in Example 1, a protective tar-based paint layer was formed on the Al--N--O based film.

次に、実斜䟋ず同様にしおシリコンり゚ハヌ
の盎埄7.5cmの円圢の䞭倮郚分を電解゚ツチング
により陀去した。尚、この際、リング状にシリコ
ンり゚ハヌを残すため、その郚分に保護のための
タヌル系塗料局を圢成し、シリコンり゚ハヌの䞭
倮郚分を陀去した埌、該塗料局を陀去した。
Next, in the same manner as in Example 1, the circular center portion of the silicon wafer having a diameter of 7.5 cm was removed by electrolytic etching. At this time, in order to leave the silicon wafer in the form of a ring, a protective tar-based paint layer was formed on that part, and after removing the central part of the silicon wafer, the paint layer was removed.

次に、実斜䟋ず同様にしお、シリコンり゚ハ
ヌの酞化シリコン膜及びAl−−系膜圢成面
偎ず反察の面に、リングフレヌムを接着し、タヌ
ル系料局を陀去した。
Next, in the same manner as in Example 1, a ring frame was adhered to the surface of the silicon wafer opposite to the surface on which the silicon oxide film and the Al--N--O film were formed, and the tar-based material layer was removed.

かくしおリングフレヌム及びシリコンり゚ハヌ
により固定された状態の酞化シリコン膜及びAl
−−系膜の積局䜓からなるリ゜グラフむヌ甚
マスク保持䜓を埗た。
In this way, the silicon oxide film and Al fixed by the ring frame and the silicon wafer
A lithography mask holder made of a laminate of -N-O based films was obtained.

本実斜䟋においお埗られた酞化シリコン膜
Al−−系膜の構成を有するマスク保持䜓は
特に透光性が良奜であ぀た。
Silicon oxide film obtained in this example;
The mask holder having the structure of the Al--N--O film had particularly good light transmittance.

実斜䟋  実斜䟋の工皋においお、窒化シリコン膜及
びAl−−系膜を圢成した埌に、Al−−
系膜䞊に保護のためのタヌル系塗料局を圢成
した。
Example 3: In the process of Example 1, after forming the silicon nitride film 3 and Al-N-O film 4, Al-N-
A tar-based paint layer was formed on the O-based film 4 for protection.

以䞋、実斜䟋ず同様にしお、酞化シリコン膜
の所定の郚分及びシリコンり゚ハヌの円圢の
䞭倮郚分を陀去した。
Thereafter, in the same manner as in Example 1, a predetermined portion of the silicon oxide film 2 and the circular center portion of the silicon wafer 1 were removed.

次に、アセトンでタヌル系塗料局を陀去した。
次に、Al−−系膜䞊にフオトレゞストAZ
−1370シプレヌ瀟補を塗垃した。
Next, the tar-based paint layer was removed with acetone.
Next, a photoresist AZ is applied on the Al-N-O film 4.
−1370 (manufactured by Shipley) was applied.

次に、ステツパヌを甚いおマスクパタヌンを瞮
小投圱しレゞストの焌付を行な぀た埌に所定の凊
理を行ない、レゞストパタヌンを埗た。
Next, the mask pattern was reduced and projected using a stepper, the resist was baked, and predetermined processing was performed to obtain a resist pattern.

次に、蒞着により䞊蚘レゞストパタヌン䞊に
0.5〓厚にタンタルTa局を圢成した。
Next, the above resist pattern is coated by vapor deposition.
A tantalum Ta layer was formed to a thickness of 0.5〓m.

次に、アセトンを甚いおレゞストを陀去し、タ
ンタル膜パヌタンを埗た。
Next, the resist was removed using acetone to obtain a tantalum film pattern.

以䞋、実斜䟋ず同様にしおリングフレヌムの
接着を行ない、リングフレヌム及びシリコンり゚
ハヌにより固定された状態の窒化シリン膜ずAl
−−系膜ずの積局䜓からなるマスク保持䜓を
甚いたリ゜グラフむヌ甚マスクを埗た。
Thereafter, the ring frame was bonded in the same manner as in Example 1, and the silicon nitride film and Al
A lithography mask using a mask holder made of a laminate with a -N-O film was obtained.

本実斜䟋においお埗られたマスの窒化シリコン
膜Al−−系膜の構成を有するマスク保持
䜓は特に透光性が良奜であ぀た。
The mass silicon nitride film obtained in this example; the mask holder having the structure of an Al--N--O based film had particularly good light transmittance.

実斜䟋  実斜䟋の工皋においお、酞化シリコン膜及び
Al−−系膜を圢成した埌に、Al−−系
膜䞊に保護のためのタヌル系塗料局を圢成した。
Example 4: In the process of Example 2, silicon oxide film and
After forming the Al-N-O film, a protective tar-based paint layer was formed on the Al-N-O film.

以䞋、実斜䟋ず同様の工皋を行な぀た。かく
しおリングフレヌム及びシリコンり゚ハヌにより
固定された状態の酞化シリコン膜ずAl−−
系膜ずの積局䜓からなるマスク保持䜓を甚いたリ
゜グラフむヌ甚マスクを埗た。
Thereafter, the same steps as in Example 3 were performed. In this way, the silicon oxide film and Al-N-O are fixed by the ring frame and the silicon wafer.
A lithography mask using a mask holder made of a laminate with a system film was obtained.

本実斜䟋においお埗られたマスクの酞化シリコ
ン膜Al−−系膜の構成を有するマスク保
持䜓は特に透光性が良奜であ぀た。
The silicon oxide film of the mask obtained in this example; the mask holder having a structure of an Al--N--O film had particularly good light transmittance.

実斜䟋  第図に瀺される様に、盎埄10cmの円圢のシ
リコンり゚ハヌの䞡面に〓厚の酞化シリコ
ン膜を圢成した。
Example 5: As shown in FIG. 2a, a silicon oxide film 2 with a thickness of 1 m was formed on both sides of a circular silicon wafer 1 with a diameter of 10 cm.

次に、第図に瀺される様に、プラズマ
CVD法により、シリコンり゚ハヌの片面偎の
酞化シリコン膜䞊に0.5〓厚の窒化シリコン
膜を圢成した埌、リアクテむブスパツタ法によ
り窒化アルミニりムAlNタヌゲツト、アル
ゎンAr窒玠N2酞玠O2
0.5の混合ガス、ガス圧×10-3Torr、攟電電力
150W、成膜速床玄15Åminで〓厚のAl−
−系膜を圢成し、曎にその䞊に䞊蚘ず同様
にしおプラズマCVD法により0.5〓厚の窒化シ
リコン膜を圢成した。
Next, as shown in Figure 2b, the plasma
After forming a silicon nitride film 3 with a thickness of 0.5 m on the silicon oxide film 2 on one side of the silicon wafer 1 by the CVD method, an aluminum nitride (AlN) target and an argon (Ar):nitrogen target were formed by the reactive sputtering method. (N 2 ):Oxygen (O 2 )=1:1:
0.5 mixed gas, gas pressure 5×10 -3 Torr, discharge power
1〓m thick Al− at 150W and deposition rate of about 15Å/min
An N--O film 4 was formed, and a silicon nitride film 5 having a thickness of 0.5 ÎŒm was further formed thereon by the plasma CVD method in the same manner as described above.

次に、第図に瀺される様に、窒化シリコン
膜䞊に保護のためのタヌル系塗料局を圢成し
た。
Next, as shown in FIG. 2c, a tar-based paint layer 6 was formed on the silicon nitride film 5 for protection.

次に、第図に瀺される様に、露出しおいる
酞化シリコン膜の盎埄7.5cmの円圢の䞭倮郚分
をフツ化アンモニりずフツ酞ずの混合液を甚いお
陀去した。尚、この際、リング状に酞化シリコン
膜を残すため、その郚分に保護のためのアピ゚
ゟンワツクスシ゚ル化孊瀟補の局を圢成
し、酞化シリコン膜の䞭倮郚分を陀去した埌、該
ワツクス局を陀去した。
Next, as shown in FIG. 2d, the exposed circular center portion of the silicon oxide film 2 with a diameter of 7.5 cm was removed using a mixed solution of ammonium fluoride and hydrofluoric acid. At this time, in order to leave the ring-shaped silicon oxide film 2, a layer 7 of Apiezon wax (manufactured by Ciel Chemical Co., Ltd.) for protection is formed on that part, and after removing the central part of the silicon oxide film. , the wax layer 7 was removed.

次に、第図に瀺させる様に、フツ酞氎
溶液䞭で電解゚ツチング電流密床0.2Am2
を行ない、シリコンり゚ハヌの露出しおいる盎
埄7.5cmの円圢の䞭倮郚分を陀去した。
Next, as shown in Figure 2e, electrolytic etching was performed in a 3% hydrofluoric acid aqueous solution (current density 0.2 A/dm 2 ).
The exposed circular center portion of silicon wafer 1 with a diameter of 7.5 cm was removed.

次に、第図に瀺される様に、フツ化アンモ
ニりムずフツ酞ずの混合液を甚いお、露出郚分の
酞化シリコン膜を陀去した。
Next, as shown in FIG. 2f, the exposed portion of the silicon oxide film 2 was removed using a mixed solution of ammonium fluoride and hydrofluoric acid.

次に、第図に瀺される様に、リングフレヌ
ムパむレツクス補、内埄7.5cm、倖埄cm、厚
さmmの䞀面に゚ポキシ系接着剀を塗垃
し、該接着剀塗垃面に䞊蚘シリコンり゚ハヌの
窒化シリコン膜及びAl−−系膜圢
成面偎ずの反察の面を接着した。
Next, as shown in Figure 2g, an epoxy adhesive 9 is applied to one side of the ring frame (manufactured by Pyrex, inner diameter 7.5 cm, outer diameter 9 cm, thickness 5 mm) 8, and the adhesive-applied surface is The surface of the silicon wafer 1 opposite to the surface on which the silicon nitride films 3 and 5 and the Al--N--O film 4 were formed was bonded.

次に、第図に瀺される様に、アセトンでタ
ヌル系塗料局を陀去した。
Next, as shown in FIG. 2h, the tar-based paint layer 6 was removed with acetone.

かくしおリングフレヌム及びシリコンり゚ハ
ヌにより固定された状態の窒化シリコン膜
及びAl−−系膜の積局䜓からなるリ゜
グラフむヌ甚マスク保持䜓を埗た。
Thus, the silicon nitride film 3 fixed by the ring frame 8 and the silicon wafer 1,
A lithography mask holder consisting of a laminate of No. 5 and Al--N--O film 4 was obtained.

本実斜䟋においお埗られた窒化シリコン膜
Al−−系膜窒化シリコン膜の構成を有す
るマス保持䜓は特に透光性が良奜であ぀た。
Silicon nitride film obtained in this example;
The mass holder having a structure of an Al--N--O film; a silicon nitride film had particularly good light transmittance.

実斜䟋  実斜䟋の工皋においおAl−−系膜を圢
成した埌に曎にCVD法により0.5〓厚の酞化シ
リコン膜を圢成し該酞化シリコン膜䞊に保護のた
めのタヌル系塗料局を圢成するこずを陀き、実斜
䟋ず同様の工皋を行な぀た。
Example 6: After forming the Al-N-O film in the process of Example 2, a 0.5 m thick silicon oxide film was further formed by CVD, and a protective tar-based paint layer was applied on the silicon oxide film. The same steps as in Example 2 were carried out except for forming.

かくしおリングフレヌム及びシリコンり゚ハヌ
により固定された状態の酞化シリコン膜Al−
−系膜酞化シリコン膜の構成を有する積局
䜓からなるリ゜グラフむヌ甚マスク保持䜓を埗
た。
Thus, the silicon oxide film fixed by the ring frame and the silicon wafer;
A lithography mask holder consisting of a laminate having a structure of an N--O film and a silicon oxide film was obtained.

本実斜䟋においお埗られた酞化シリコン膜
Al−−系膜酞化シリコン膜の構成を有す
るマスク保持䜓は特に透光性が良奜であ぀た。
Silicon oxide film obtained in this example;
The mask holder having a structure of an Al--N--O film; a silicon oxide film had particularly good light transmittance.

実斜䟋  実斜䟋の工皋においお、窒化シリコン膜の
圢成の前に実斜䟋におけるず同様にしお〓
厚のAl−−系膜圢成しおおくこずを陀いお、
実斜䟋ず同様の工皋を行な぀た。
Example 7: In the process of Example 1, before forming the silicon nitride film 3, a 1 ÎŒm film was deposited in the same manner as in Example 1.
Except for forming a thick Al-N-O film,
The same steps as in Example 1 were carried out.

かくしおリングフレヌム及びシリコンり゚ハヌ
により固定された状態のAl−−系膜窒化
シリコン膜Al−−系膜の構成を有する積
局䜓からなるリ゜グラフむヌ甚マスク保持䜓を埗
た。
In this way, a lithography mask holder consisting of a laminate having a structure of an Al-N-O film; a silicon nitride film; and an Al-N-O film fixed by the ring frame and the silicon wafer was obtained.

本実斜䟋においお埗られたAl−−系膜
窒化シリコン膜Al−−系膜の構成を有す
るマスク保持䜓は特に攟熱性が良奜であ぀た。
Al-N-O film obtained in this example;
The mask holder having a structure of a silicon nitride film; an Al--N--O film had particularly good heat dissipation properties.

実斜䟋  実斜䟋の工皋においお、酞化シリコン膜の圢
成の前に実斜䟋におけるず同様にしお〓厚
のAl−−系膜を圢成しおおくこずを陀いお、
実斜䟋ず同様の工皋を行な぀た。
Example 8: In the process of Example 2, except that an Al-N-O film with a thickness of 1㎜ was formed in the same manner as in Example 2 before forming the silicon oxide film.
The same steps as in Example 2 were carried out.

かくしおリングフレヌム及びシリコンり゚ハヌ
により固定された状態のAl−−系膜窒化
シリコン膜Al−−系膜の構成を有する積
局䜓からなるリ゜グラフむヌ甚マスク保持䜓を埗
た。
In this way, a lithography mask holder consisting of a laminate having a structure of an Al-N-O film; a silicon nitride film; and an Al-N-O film fixed by the ring frame and the silicon wafer was obtained.

本実斜䟋においお埗られたAl−−系膜
窒化シリコン膜Al−−系膜の構成を有す
るマスク保持䜓は特に攟熱性が良奜であ぀た。
Al-N-O film obtained in this example;
The mask holder having a structure of a silicon nitride film; an Al--N--O film had particularly good heat dissipation properties.

実斜䟋  実斜䟋の工皋においお、窒化シリコン膜
及びAl−−系膜を圢成した埌に、窒化
シリコン膜䞊に保護のためのタヌル系塗料局を
圢成した。
Example 9: In the process of Example 5, silicon nitride film 3,
After forming the silicon nitride film 5 and the Al--N--O film 4, a protective tar-based paint layer was formed on the silicon nitride film 5.

以䞋、実斜䟋ず同様にしお、酞化シリコン膜
の所定の郚分及びシリコンり゚ハヌの円圢の䞭
倮郚分を陀去した。
Thereafter, in the same manner as in Example 5, a predetermined portion of the silicon oxide film 2 and a circular center portion of the silicon wafer were removed.

次に、アセトンでタヌル系塗料局を陀去した。 Next, the tar-based paint layer was removed with acetone.

次に、窒化シリコン膜䞊にスピンコヌトによ
りフオトレゞストRD−200N日立化成瀟補の
局を1.2〓厚に圢成した。
Next, a layer of photoresist RD-200N (manufactured by Hitachi Chemical) was formed on the silicon nitride film 5 by spin coating to a thickness of 1.2 m.

次、石英−クロムマスクを甚いお遠玫倖光によ
りレゞストの焌付を行な぀た埌に芏定の凊理を行
ない、マスクに察しネガ型のレゞストパタヌンを
埗た。
Next, the resist was baked using deep ultraviolet light using a quartz-chrome mask, and then prescribed processing was performed to obtain a negative resist pattern on the mask.

次に、゚レクトロビヌム蒞着機を甚いお䞊蚘レ
ゞストパタヌン䞊にタンタルTaを0.5〓厚に蒞
着した。
Next, tantalum Ta was evaporated to a thickness of 0.5 m on the resist pattern using an electrobeam evaporator.

次に、リムヌバヌを甚いおレゞストを陀去し、
リフトオフ法によりタンタル膜タヌンを埗た。
Next, remove the resist using a remover,
Tantalum film turns were obtained by lift-off method.

以䞋、実斜䟋ず同様にしおリングフレヌムの
接着を行ない、リングフレヌム及びシリコンり゚
ハヌにより固定された状態の窒化シリコン膜ず
Al−−系膜ずの積局䜓からなるマスク保持
䜓を甚いおリ゜グラフむヌ甚マスクを埗た。
Thereafter, the ring frame was bonded in the same manner as in Example 5, and the silicon nitride film fixed by the ring frame and silicon wafer was bonded.
A lithography mask was obtained using a mask holder made of a laminate with an Al--N--O film.

本実斜䟋においお埗られたマスクの窒化シリコ
ン膜Al−−系膜窒化シリコン膜の構成
を有するスクク保持䜓は特に透光性が良奜であ぀
た。
The mask holder having the structure of a silicon nitride film, an Al--N--O film, and a silicon nitride film of the mask obtained in this example had particularly good light transmittance.

実斜䟋 10 実斜䟋ず同様にしお、シリコンり゚ハヌの䞡
面に酞化シリコン膜を圢成した埌に、その片面に
実斜䟋ず同様にしおAl−−系膜を圢成し
た。
Example 10: After silicon oxide films were formed on both sides of a silicon wafer in the same manner as in Example 5, an Al-N-O film was formed on one side thereof in the same manner as in Example 5.

次に、Al−−系膜䞊に保護のためのタヌ
ル系塗料局を圢成した。
Next, a protective tar-based paint layer was formed on the Al--N--O based film.

以䞋、実斜䟋ず同様にしお、酞化シリコン膜
の所定の郚分及びシリコンり゚ハヌの円圢の
䞭倮郚分を陀去した。
Thereafter, in the same manner as in Example 5, a predetermined portion of the silicon oxide film 2 and the circular center portion of the silicon wafer 1 were removed.

次に、アセトンでタヌル系塗料局を陀去した。 Next, the tar-based paint layer was removed with acetone.

次に、抵抗加熱蒞着機を甚いおAl−−系
膜䞊に䞀様に300Å厚のクロムCt膜を圢成し
次いで䞀様に0.5〓厚の金Au膜を圢成し
た。
Next, a chromium (Ct) film with a thickness of 300 Å was uniformly formed on the Al-N-O based film using a resistance heating evaporator, and then a gold (Au) film with a thickness of 0.5 ÎŒm was uniformly formed on the Al-N-O film. .

次に、該金属膜䞊に䞀様にフオトレゞストAZ
−1350を0.5〓厚に塗垃した。
Next, photoresist AZ is uniformly applied on the metal film.
-1350 was applied to a thickness of 0.5〓m.

次に、レゞスト䞊にマスタヌマスクを密着せし
め遠玫倖光を甚いおレゞストの焌付を行な぀た埌
に芏定の凊理を行ない、マスタヌマスクに察しポ
ゞ型のレゞストパタヌンを埗た。
Next, a master mask was brought into close contact with the resist, and after the resist was baked using deep ultraviolet light, prescribed processing was performed to obtain a positive resist pattern for the master mask.

次に、ペり玠I2系金゚ツチダントを䜿甚し
お金属の゚ツチングを行ない、マスタヌマスクに
察しポゞ型の金膜パタヌンを埗た。
Next, metal was etched using an iodine (I 2 )-based gold etchant to obtain a positive gold film pattern on the master mask.

以䞋、実斜䟋ず同様にしおリングフレヌムの
接着を行ない、リングフレヌム及びシリコンり゚
ハヌにより固定された状態のAl−−系膜ず
クロム膜ずの積局䜓かなるマスク保持䜓を甚いた
リ゜グラフむヌ甚マスクを埗た。
Hereinafter, a ring frame was bonded in the same manner as in Example 5, and a lithography using a mask holder made of a laminate of an Al-N-O film and a chromium film fixed by the ring frame and a silicon wafer was performed. Obtained a mask for Yi.

本実斜䟋においお埗られたマスクのAl−−
系膜クロム膜の構成を有するスク保持䜓は特
に線透過性が良奜であ぀た。
Al-N- of the mask obtained in this example
The screen holder having the structure of O-based film and chromium film had particularly good X-ray transparency.

実斜䟋 11 実斜䟋の工皋においおAl−−系膜䞊に
曎にPIQ液ポリむミド前駆䜓、日立化成瀟補
をスピンコヌトした埌に、50〜350℃で時間の
キナアヌを行な぀お〓厚のポリむミド膜を圢
成するこずを陀いお、実斜䟋ず同様の工皋を行
な぀た。
Example 11: In the process of Example 2, PIQ liquid (polyimide precursor, manufactured by Hitachi Chemical Co., Ltd.) was further applied on the Al-N-O film.
The same steps as in Example 2 were carried out, except that after spin coating, curing was performed at 50 to 350° C. for 4 hours to form a 2 Όm thick polyimide film.

かくしおリングフレヌム及びシリコンり゚ハヌ
により固定された状態の酞化シリコン膜Al−
−系膜ポリむミド膜の構成を有する積局䜓
からなるリ゜グラフむヌ甚マスク保持䜓を埗た。
Thus, the silicon oxide film fixed by the ring frame and the silicon wafer;
A lithography mask holder consisting of a laminate having a structure of an N--O film and a polyimide film was obtained.

本実斜䟋においお埗られた酞化シリコン膜
Al−−系膜ポリアミド膜の構成を有する
マスク保持䜓は特に匷床が倧きか぀た。
Silicon oxide film obtained in this example;
The mask holder having a structure of an Al--N--O film; a polyamide film had particularly high strength.

実斜䟋 12 実斜䟋11ず同様の方法により、䜆し酞化シリコ
ン膜の圢成ずAl−−系膜の圢成ずしの順序
を逆にしお行なうこずにより、リングフレヌム及
びシリコンり゚ハヌにより固定された状態のAl
−−系膜酞化シリコン膜ポリむミド膜の
構成を有する積局䜓からなるリ゜グラフむヌ甚マ
スク保持䜓を埗た。
Example 12: A state fixed by a ring frame and a silicon wafer was obtained by using the same method as in Example 11, but by reversing the order of forming the silicon oxide film and forming the Al-N-O film. Al
A lithography mask holder was obtained, which was a laminate having a structure of -N-O film; silicon oxide film; and polyimide film.

本実斜䟋においお埗られたAl−−系膜
酞化シリコン膜ポリむミド膜の構成を有するマ
スク保持䜓は特に匷床が倧きか぀た。
Al-N-O film obtained in this example;
The mask holder having a structure of silicon oxide film and polyimide film had particularly high strength.

実斜䟋 13 実斜䟋11ず同様の方法により、䜆しAl−−
系膜の圢成ずポリむミド膜の圢成ずの順序を逆
にしお行なうこずにより、リングフレヌム及びシ
リコンり゚ハヌにより固定された状態の酞化シリ
コン膜ポリむミド膜Al−−系膜の構成
を有する積局䜓からなるリ゜グラフむヌ甚マスク
保持䜓を埗た。
Example 13: By the same method as Example 11, except that Al-N-
By reversing the order of forming the O-based film and the polyimide film, a silicon oxide film fixed by the ring frame and the silicon wafer; a polyimide film; and an Al-N-O film are formed. A lithography mask holder made of a laminate was obtained.

本実斜䟋においお埗られた酞化シリコン膜ポ
リむミド膜Al−−系膜の構成を有するマ
スク保持䜓は特に匷床が倧きか぀た。
The mask holder having the structure of silicon oxide film, polyimide film, and Al--N--O film obtained in this example had particularly high strength.

実斜䟋 14 実斜䟋に斌いおAl−−系膜を圢成する
際に、リアクテむブスパツタ法により窒化アルミ
ニりムAlNタヌゲツト、アルゎンAr窒
玠N2酞玠O20.5のガス、ガス
圧×10-3Torr、攟電電力150W、成膜速床玄15
Åminで行なうこずを陀いお実斜䟋ず同様の
工皋を行ない、リ゜グラフむヌ甚マスク保持䜓を
埗た。
Example 14: When forming the Al-N-O film in Example 1, an aluminum nitride (AlN) target, argon (Ar):nitrogen ( N2 ):oxygen (O 2 )=1:1:0.5 gas, gas pressure 5×10 -3 Torr, discharge power 150W, film formation rate approx. 15
A mask holder for lithography was obtained by carrying out the same steps as in Example 1 except that the steps were carried out at a rate of Å/min.

実斜䟋 15 実斜䟋に斌いおAl−−系膜を圢成する
際に、リアクテむブスパツタ法により酞宀化アル
ミニりム7Al3O73AlNタヌゲツト、アルゎ
ンAr窒玠N2のガス、ガス圧
×10-3Torr、攟電電力200W、成膜速床玄10
Åminで行なうこずを陀いお実斜䟋ず同様の
工皋を行ない、リ゜グラフむヌ甚マスク保持䜓を
埗た。
Example 15: When forming the Al-N-O film in Example 1, an oxidized aluminum (7Al 3 O 7 :3AlN) target, argon (Ar):nitrogen ( N 2 ):=1:1 gas, gas pressure 5×10 -3 Torr, discharge power 200W, film formation rate approx. 10
A mask holder for lithography was obtained by carrying out the same steps as in Example 1 except that the steps were carried out at a rate of Å/min.

実斜䟋 16 実斜䟋に斌いお窒化シリコン膜を圢成する工
皋を行なう代わりにリアクテむブスパツタ法によ
りアルミニりムAlタヌゲツト、アルゎン
Ar窒玠N2の混合ガス、ガス圧
×10-3Torr、攟電電力200Wで0.5〓圧の窒化
アルミニりム膜を圢成する工皋を行なうこずを
陀いお実斜䟋ず同様の工皋を行ない、リ゜グラ
フむヌ甚マスク保持䜓を埗た。
Example 16: Instead of performing the step of forming a silicon nitride film in Example 1, an aluminum (Al) target and a mixed gas of argon (Ar):nitrogen (N 2 )=1:1 were used by the reactive sputtering method. The same process as in Example 1 was carried out, except that the process of forming an aluminum nitride film 4 at a pressure of 0.5 m at a gas pressure of 8 x 10 -3 Torr and a discharge power of 200 W was carried out to form a lithography mask holder. Obtained.

本実斜䟋に斌いお埗られた窒化アルミニりム
膜Al−−系膜の構成を有するマスク保持
䜓は、線透過性、可芖光線透過性、熱䌝導性、
成膜性などの総合的性胜が時に良奜であ぀た。
The mask holder having the structure of the aluminum nitride film obtained in this example; Al-N-O film has X-ray transparency, visible light transparency, thermal conductivity,
Overall performance such as film formability was sometimes good.

実斜䟋 17 実斜䟋16に斌いお窒化アルミニりム膜を圢成す
る工皋の埌に、PIQ液ポリむミド前駆䜓、日
立化成瀟補を、スピンコヌトした埌に50〜350
℃で時間のキナアヌを行な぀お〓厚のポリ
むミド膜を圢成するる工皋を行な぀た。
Example 17: After the step of forming the aluminum nitride film in Example 16, a PIQ liquid (polyimide) precursor (manufactured by Hitachi Chemical Co., Ltd.) was spin coated and
Cure was carried out for 4 hours at .degree. C. to form a 2 .mu.m thick polyimide film.

かくしおポリむミド窒化アルミニりム膜
Al−−系膜の構成を有するリ゜グラフむヌ
甚マスク保持䜓を埗た。本実斜䟋に斌いお埗られ
たマスク保持䜓は特に匷床及び耐薬品性が良奜で
あ぀た。
Thus polyimide: aluminum nitride film;
A lithography mask holder having an Al--N--O film structure was obtained. The mask holder obtained in this example had particularly good strength and chemical resistance.

実斜䟋 18 実斜䟋16に斌いお窒化アルミニりム膜を圢成す
る工皋の埌に、リアクテむブスパツタ法により
0.5〓厚の窒化ボロン膜を圢成する工皋を行な
぀た。
Example 18: After the step of forming the aluminum nitride film in Example 16, a reactive sputtering method was used to form the aluminum nitride film.
A step of forming a boron nitride film with a thickness of 0.5㎜ was performed.

かくしお窒化ボロン窒化アルミニりムAl
−−系膜構成を有するリ゜グラフむヌ甚マス
ク保持䜓を埗た。本実斜䟋に斌いお埗られたマス
ク保持䜓は特に線透過性及び可芖光線透過性が
良奜であ぀た。
Thus boron nitride; aluminum nitride; Al
A lithography mask holder having a -N-O film structure was obtained. The mask holder obtained in this example had particularly good X-ray transmittance and visible light transmittance.

〔発明の効果〕〔Effect of the invention〕

以䞊の劂き本発明によれば、マスク保持䜓の構
成芁玠ずしお甚いられるAl−−系膜は線
透過率及び可芖光線透過率が高く〓厚の光
孊濃床が玄0.1、熱膚匵率が䜎く〜×
10-6℃、熱䌝導率が高く、䞔぀成膜性が良奜
であるなどの特長を有するので、以䞋の様な効果
が埗られる。
According to the present invention as described above, the Al-N-O film used as a component of the mask holder has high X-ray transmittance and visible light transmittance (optical density of about 0.1 at a thickness of 1㎜), Low coefficient of thermal expansion (3~4×
10 -6 /°C), high thermal conductivity, and good film formability, so the following effects can be obtained.

(1) Al−−系膜は線透過率が高いので比
范的厚くしおも比范的高い線透過量が埗られ
るので、マスク保持䜓の補造を容易䞔぀良奜に
行なうこずができる。
(1) Since the Al-N-O film has high X-ray transmittance, a relatively high amount of X-ray transmission can be obtained even if it is relatively thick, so the mask holder can be manufactured easily and efficiently. .

(2) Al−−系膜は成膜性が良奜であるので
極めお薄い膜からなるマスク保持䜓を補造する
こずができ、これにより線透過量を高め焌付
のスルヌプツトを向䞊させるこずができる。
(2) Since the Al-N-O film has good film formability, it is possible to manufacture a mask holder made of an extremely thin film, which increases the amount of X-ray transmission and improves the baking throughput. can.

(3) Al−−系膜は可芖光線の透過率が高い
ため、線リ゜グラフむヌにおいお可芖光線を
甚いお目芖により容易䞔぀正確にアラむンメン
トができる (4) Al−−系膜の熱膚匵係数は線リ゜グ
ラフむヌにおけるシリコンり゚ハヌ焌付基板の
熱膚匵係数〜×10-6℃ずほが同じ倀
であるから、極めお高粟床の焌付けが可胜ずな
る。
(3) Since the Al-N-O film has a high transmittance to visible light, alignment can be easily and accurately performed visually using visible light in X-ray lithography. (4) Al-N-O film Since the coefficient of thermal expansion is approximately the same as the coefficient of thermal expansion (2 to 3 x 10 -6 /°C) of a silicon wafer printing substrate in X-ray lithography, extremely high precision printing is possible.

(5) Al−−系膜の熱䌝導性が高いため、
線照射により枩床䞊昇を防止でき、特に真空䞭
での焌付けの際に効果が倧である。たた、Al
−−系膜は電気䌝導性が高いためマスク保
持䜓の垯電を防止するこずができる。
(5) Because the Al-N-O film has high thermal conductivity,
Ray irradiation can prevent temperature rise, and is particularly effective when baking in a vacuum. Also, Al
Since the -N-O film has high electrical conductivity, it can prevent the mask holder from being charged.

(6) Al−−系膜ず無機物膜ずの積局䜓を甚
いるこずにより、䞊蚘の劂きAl−−系膜
の特性に加えお該無機物膜の有する特性を付加
したマスク保持䜓ずするこずができる。即ち、
本発明に係るマスク保持䜓は透光性、熱䌝導性
に優れ、匷床、耐薬品性も比范的倧きいずい぀
た無機物膜の特長をあわせも぀ものである。
(6) By using a laminate of an Al-N-O film and an inorganic film, a mask holder can be created that has the properties of the inorganic film in addition to the properties of the Al-N-O film as described above. can do. That is,
The mask holder according to the present invention has the features of an inorganic film, such as excellent light transmittance and thermal conductivity, as well as relatively high strength and chemical resistance.

たた、曎に有機物膜が積局されるず匷床が倧き
く、ストレスが実質的にないずい぀た有機物膜の
特長が加えられる。
Furthermore, when an organic film is further laminated, the advantages of the organic film are added, such as high strength and virtually no stress.

【図面の簡単な説明】[Brief explanation of the drawing]

第図〜及び第図〜は本発明による
線リ゜グラフむヌ甚マスク保持䜓の補造工皋を
瀺す図である。  シリコンり゚ハヌ、 酞化シリコン膜、
 窒化シリコン膜、 Al−−系膜、
 タヌル系塗料局、 ワツクス局、 リン
グフレヌム、 接着剀。
1A to 2H are diagrams showing the manufacturing process of a mask holder for X-ray lithography according to the present invention. 1... Silicon wafer, 2... Silicon oxide film,
3, 5...Silicon nitride film, 4...Al-N-O based film,
6...Tar-based paint layer, 7...Wax layer, 8...Ring frame, 9...Adhesive.

Claims (1)

【特蚱請求の範囲】  少なくずもアルミニりム窒玠、及び酞玠を
含む膜ず無機物膜ずの積局䜓からなる保持䜓によ
り保持されたマスクを甚いるこずを特城ずする、
リ゜グラフむヌ法。  少なくずもアルミニりム窒玠、及び酞玠を
含む膜ず無機物膜ずの積局䜓からなるこずを特城
ずする、リ゜グラフむヌ甚マスク保持䜓。
[Claims] 1. A mask held by a holder made of a laminate of a film containing at least aluminum, nitrogen, and oxygen and an inorganic film is used.
Lithography method. 2. A lithography mask holder comprising a laminate of a film containing at least aluminum, nitrogen, and oxygen and an inorganic film.
JP60001890A 1985-01-07 1985-01-09 Lithographic method and lithographic mask holder Granted JPS61160747A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60001890A JPS61160747A (en) 1985-01-09 1985-01-09 Lithographic method and lithographic mask holder
DE19863600169 DE3600169A1 (en) 1985-01-07 1986-01-07 MASK STRUCTURE FOR LITHOGRAPHY, METHOD FOR THEIR PRODUCTION AND LITHOGRAPHIC METHOD
US07/170,688 US4837123A (en) 1985-01-07 1988-03-14 Mask structure for lithography, method of preparation thereof and lithographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001890A JPS61160747A (en) 1985-01-09 1985-01-09 Lithographic method and lithographic mask holder

Publications (2)

Publication Number Publication Date
JPS61160747A JPS61160747A (en) 1986-07-21
JPH0482049B2 true JPH0482049B2 (en) 1992-12-25

Family

ID=11514172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001890A Granted JPS61160747A (en) 1985-01-07 1985-01-09 Lithographic method and lithographic mask holder

Country Status (1)

Country Link
JP (1) JPS61160747A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL88837A (en) * 1988-12-30 1993-08-18 Technion Res & Dev Foundation Method for the preparation of mask for x-ray lithography

Also Published As

Publication number Publication date
JPS61160747A (en) 1986-07-21

Similar Documents

Publication Publication Date Title
US4677042A (en) Mask structure for lithography, method for preparation thereof and lithographic method
US4837123A (en) Mask structure for lithography, method of preparation thereof and lithographic method
JPS5916978A (en) Method for selectively etching metal coating
US4468799A (en) Radiation lithography mask and method of manufacturing same
JPH0482049B2 (en)
JPH0481852B2 (en)
JPH0481853B2 (en)
JPH0482047B2 (en)
JPH0481854B2 (en)
JP3226250B2 (en) Transfer mask
JPH0481855B2 (en)
JPH0482048B2 (en)
JPH0481851B2 (en)
JPH0481856B2 (en)
JPH0656831B2 (en) Lithographic mask structure manufacturing method and thin film manufacturing method
JPS62119924A (en) Manufacture of transmitting mask
JP2000150364A (en) X-ray mask blank, its manufacture, x-ray mask, and manufacture therefor
JPH0428132B2 (en)
JPH0690998B2 (en) Method for manufacturing mask structure for X-ray lithography
JPH03105912A (en) X-ray mask blank and x-ray mask structure body
JP3143035B2 (en) Transfer mask manufacturing method
JP2962049B2 (en) X-ray mask
JPS60120526A (en) Formation of minute pattern
JPS61249056A (en) Mask structural body for lithography
JPH0794386A (en) Transmission mask for charged beam exposure and its manufacture thereof