JPH0481290A - Laser welding method and device - Google Patents

Laser welding method and device

Info

Publication number
JPH0481290A
JPH0481290A JP2194151A JP19415190A JPH0481290A JP H0481290 A JPH0481290 A JP H0481290A JP 2194151 A JP2194151 A JP 2194151A JP 19415190 A JP19415190 A JP 19415190A JP H0481290 A JPH0481290 A JP H0481290A
Authority
JP
Japan
Prior art keywords
plasma
straight pipe
laser welding
laser beam
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2194151A
Other languages
Japanese (ja)
Inventor
Susumu Ito
進 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2194151A priority Critical patent/JPH0481290A/en
Publication of JPH0481290A publication Critical patent/JPH0481290A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/147Features outside the nozzle for feeding the fluid stream towards the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0042Devices for removing chips
    • B23Q11/005Devices for removing chips by blowing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To exactly remove plasma and to stably and efficiently execute the laser welding by moving the front end of a pipe which sucks the plasma generated by laser welding or injects an inert gas so as to follow up a weld zone at all times. CONSTITUTION:A laser beam 14 is condensed by a condenser lens 16 in a nozzle 13 to a work 17 to form the weld zone 18. The metal vapor in this weld zone 18 in the above-mentioned laser welding method is converted to the plasma 21 by the high- energy density of the laser beam 14 to absorb or scatter the laser beam 14. This laser welding device has a cylindrical straight pipe part 23 connected to the front end of the conduit in order to inject the inert gas 30, such as argon, to the weld zone 30 to remove such plasma 21 from the optical path of the laser beam 14. Further, a sensor 24 for detecting the above-mentioned plasma 21 is provided deep in the straight pipe part 23. A control section 33 or the like to move the straight pipe part 23 to follow up in the direction of the weld zone 18 in accordance with the signal of this sensor is provided. The straight pipe part 23 is maintained in the posture of always the specified angle with the laser beam 14 and is vertically moved relative to the work 17 by a driving motor 35, by which the plasma 21 is exactly removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶接部に発生するプラズマを除去しつつ溶接
することができるレーザ溶接方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser welding method and apparatus that can perform welding while removing plasma generated at a welding part.

〔従来の技術〕[Conventional technology]

従来、レーザ溶接においては、第8図に示されるように
、レーザ発振器1から出力されたレーザ光2を反射鏡3
によって方向転換した後、加工ノズル4内に収納された
集光レンズ5により被加工物6の表面に集光し溶接を行
っている。そして、この溶接の際、加工ノズル4からア
ルゴン等の不活性ガス7を噴出させて溶接部8をシール
ドしている。
Conventionally, in laser welding, as shown in FIG.
After changing direction, the condensing lens 5 housed in the processing nozzle 4 focuses the light on the surface of the workpiece 6 to perform welding. During this welding, an inert gas 7 such as argon is ejected from the processing nozzle 4 to shield the welded portion 8.

ところが、このようなレーザ溶接では、レーザ光2の高
エネルギ密度により溶接部8においては金属蒸気がプラ
ズマ9と化し、レーザ光2を吸収し、散乱させるため深
い溶は込みが得られない。
However, in such laser welding, deep penetration cannot be achieved because the high energy density of the laser beam 2 turns the metal vapor into plasma 9 in the welding area 8, which absorbs and scatters the laser beam 2.

そのため、従来はノズル10からアルゴン等の不活性ガ
ス11を溶接部8に噴射してレーザ光2の光路上からプ
ラズマ9を除去するようにしている。
Therefore, conventionally, an inert gas 11 such as argon is injected from a nozzle 10 to the welding part 8 to remove the plasma 9 from the optical path of the laser beam 2.

また、プラズマ9を除去する手段としては、例えば特開
昭58−61991号公報に示されるように、吸引ノズ
ルから吸引するようなことも考えられている。
Furthermore, as a means for removing the plasma 9, suction from a suction nozzle has been considered, for example, as disclosed in Japanese Patent Laid-Open No. 58-61991.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来のプラズマを除去するための方
法及び装置は不活性ガスを噴射し又はプラズマを吸引す
るノズルを、溶接部に対向する加工ノズルに固着一体化
しているので、次のような不都合を生じる。
However, in the above-mentioned conventional method and apparatus for removing plasma, the nozzle for injecting inert gas or sucking plasma is fixedly integrated with the processing nozzle facing the welding part, resulting in the following disadvantages. arise.

即ち、第6図及び第7図から明らかなように、被加工物
6の形状により溶接位置が変化したりしてノズル10の
中心軸線Aが溶接部8からずれると溶は込み深さが急激
に小さくなる。
That is, as is clear from FIGS. 6 and 7, if the welding position changes depending on the shape of the workpiece 6 and the central axis A of the nozzle 10 deviates from the welding part 8, the penetration depth will suddenly increase. becomes smaller.

また、溶接部8に対する不活性ガス11の噴射位置がず
れると不活性ガス11が周囲の空気を巻込んでしまい、
溶接部8が酸化したり、外観形状が悪くなったりする。
Furthermore, if the injection position of the inert gas 11 relative to the welding part 8 is shifted, the inert gas 11 will entrain the surrounding air.
The welded portion 8 may become oxidized or its appearance may deteriorate.

空気の巻込みを防ぐためには不活性ガス11の噴射量を
増やすことも考えられるが、かかるガスにはヘリウム等
の高価なものもあり、コスト高の原因となる。
In order to prevent air entrainment, it may be possible to increase the amount of inert gas 11 injected, but such gases include expensive gases such as helium, which causes high costs.

本発明は、このような欠点を解消することのできるレー
ザ溶接方法及び装置を提供することを目的とする。
An object of the present invention is to provide a laser welding method and apparatus that can eliminate such drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本第1の発明は、レーザ溶接
の際に溶接部に生ずるプラズマを吸引することにより又
は不活性ガスを噴射することにより溶接部から前記プラ
ズマを除去するレーザ溶接方法において、前記プラズマ
を吸引し又は前記不活性ガスを噴射する管の先を溶接部
に追従させる構成を採用している。
In order to achieve the above object, the first invention provides a laser welding method in which plasma generated in the welding part during laser welding is removed from the welding part by suctioning the plasma or by injecting an inert gas. , a configuration is adopted in which the tip of the tube that sucks the plasma or injects the inert gas follows the welding part.

また、本第2の発明は、レーザ溶接の際に溶接部に生ず
るプラズマを吸引し又は該プラズマに対して不活性ガス
を噴射する直管部と、該直管部の奥に設けられた前記プ
ラズマを検知するセンサと、該センサからの信号に基づ
き前記直管部を前記溶接部の方に追従させる制御部とを
備えた構成を採用している。
The second invention also provides a straight pipe section that sucks plasma generated in a welded part during laser welding or injects an inert gas to the plasma, and a straight pipe section that is provided at the back of the straight pipe section. A configuration is adopted that includes a sensor that detects plasma and a control section that causes the straight pipe section to follow the weld section based on a signal from the sensor.

〔作用〕[Effect]

レーザ溶接に際し、溶接部にはプラズマが発生し、これ
をセンサが検知して制御部に信号を送る。
During laser welding, plasma is generated in the welding area, and a sensor detects this and sends a signal to the control unit.

制御部はこの信号を利用して直管部の軸線と溶接部との
ずれを検出し、そのずれを解消するよう出力する。これ
により、直管部の先は常時溶接部の方に向くこととなる
The control unit uses this signal to detect a misalignment between the axis of the straight pipe section and the welded portion, and outputs an output to eliminate the misalignment. As a result, the tip of the straight pipe section always faces toward the welding section.

〔実施例〕〔Example〕

以下、第1図ないし第5図を参照して本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 to 5.

レーザ溶接装置は、CO2レーザ発振器12とレーザ加
工ノズル13とを備え、C02レーザ発振器12から発
振されたレーザ光14を反射鏡15によってレーザ加工
ノズル13の方に反射させ、これを該ノズル13内の集
光レンズ16で集光して被加工物17に照射するように
なっている。
The laser welding device includes a CO2 laser oscillator 12 and a laser processing nozzle 13. The laser beam 14 emitted from the CO2 laser oscillator 12 is reflected toward the laser processing nozzle 13 by a reflecting mirror 15, and is reflected inside the nozzle 13. The light is condensed by a condenser lens 16 and irradiated onto the workpiece 17.

該レーザ光14は、具体的には波長10.6μmのもの
である。
Specifically, the laser beam 14 has a wavelength of 10.6 μm.

このレーザ光14により被加工物17には溶接部18が
形成されることとなる。
A welded portion 18 is formed on the workpiece 17 by this laser beam 14 .

また、前記レーザ加工ノズル13にはアルゴン等の不活
性ガス19の供給口2oが設けられており、ここから不
活性ガス19を導入してノズル先端から溶接部18の方
に噴射することで溶接部18をシールドするようになっ
ている。
Further, the laser processing nozzle 13 is provided with a supply port 2o for an inert gas 19 such as argon, and the inert gas 19 is introduced from this and is injected from the nozzle tip toward the welding part 18, thereby welding. The portion 18 is shielded.

前記溶接部18には、レーザ光14の高エネルギ密度に
よって金属蒸気がプラズマ21と化し、レーザ光14を
吸収し、また散乱させる。このようなプラズマ21をレ
ーザ光14の光路上から除去するためにアルゴン等の不
活性ガス22を溶接部18に噴射するべく、導管の先に
接続された円筒状の直管部23を備えている。この場合
、直管部23はノズルとして機能するものである。
In the welding part 18, metal vapor is converted into plasma 21 due to the high energy density of the laser beam 14, and the laser beam 14 is absorbed and scattered. In order to inject an inert gas 22 such as argon into the welding part 18 in order to remove such plasma 21 from the optical path of the laser beam 14, a cylindrical straight pipe part 23 connected to the tip of the conduit is provided. There is. In this case, the straight pipe portion 23 functions as a nozzle.

この直管部23は前記プラズマ21を確実に除去できる
よう溶接部18に追従するようになっている。
This straight pipe portion 23 follows the welded portion 18 so that the plasma 21 can be reliably removed.

即ち、直管部23の奥には前記プラズマ21を検知する
ためのセンサ24を備え、がっ該センサ24からの信号
に基づき直管部23を溶接部18の方に追従させる制御
部とを備えている。
That is, a sensor 24 for detecting the plasma 21 is provided at the back of the straight pipe section 23, and a control section for causing the straight pipe section 23 to follow the welding section 18 based on a signal from the sensor 24 is provided. We are prepared.

センサ24は、分光感度の波長範囲が紫外線領域である
ような受光素子であり、溶接部18に発生するプラズマ
21からの放射電磁波25を検知する性質のものである
。該センサ24は、第2図に示されるように、直管部2
3の最奥部において中心軸線A上に固定されている。該
センサ24の前方には固定金具26とOリング27とに
よってフィルタ28が固定されている。このフィルタ2
8は紫外線領域の波長範囲のみを透過させるものである
The sensor 24 is a light-receiving element whose spectral sensitivity has a wavelength range in the ultraviolet region, and has the property of detecting the radiated electromagnetic waves 25 from the plasma 21 generated in the welding part 18 . The sensor 24 is connected to the straight pipe section 2 as shown in FIG.
It is fixed on the central axis A at the innermost part of 3. A filter 28 is fixed in front of the sensor 24 by a fixing fitting 26 and an O-ring 27. This filter 2
Reference numeral 8 transmits only wavelengths in the ultraviolet region.

なお、センサ24とフィルタ28は、被加工物17の種
類や加工条件に応じて適宜選択されるべきものである。
Note that the sensor 24 and filter 28 should be appropriately selected depending on the type of workpiece 17 and processing conditions.

また、プラズマ21の検知手段としては、プラズマ21
からの放射電磁波を検知するセンサを使用する他、静電
プローブを用いることもできる。
Further, as a detection means for the plasma 21, the plasma 21
In addition to using a sensor that detects electromagnetic waves radiated from the sensor, an electrostatic probe can also be used.

直管部23の開口端29とフィルタ28の固定箇所との
間には不活性ガス30の供給口31が設けられており、
直管部23は、不活性ガス30をこの供給口31から内
部に取り込んで開口端29からプラズマ21に向は噴出
させるようになっている。
A supply port 31 for inert gas 30 is provided between the open end 29 of the straight pipe section 23 and the fixed location of the filter 28.
The straight pipe portion 23 is configured to take inert gas 30 into the interior through the supply port 31 and eject it toward the plasma 21 from the open end 29 .

直管部23の向きをコントロール制御部は、第1図に示
されるような直管部23の移動機構32と、該移動機構
32を動作させるための第4図に示されるようなコンピ
ュータ33とを備えている。
The controller for controlling the direction of the straight pipe section 23 includes a moving mechanism 32 for the straight pipe section 23 as shown in FIG. 1, and a computer 33 as shown in FIG. 4 for operating the moving mechanism 32. It is equipped with

直管部23の移動機構32は、レーザ加工ノズル13の
側面にアーム34を介して縦型に連結固定された駆動モ
ータ35と、該モータ35の出力軸の下端に連結された
送りねじ36と、該送りねじ36に係合する前記直管部
23を支えるためのブロック37と、該ブロック37を
案内する前記アーム34に固定されたガイド板38とを
備えている。
The moving mechanism 32 of the straight tube section 23 includes a drive motor 35 vertically connected and fixed to the side surface of the laser processing nozzle 13 via an arm 34, and a feed screw 36 connected to the lower end of the output shaft of the motor 35. , a block 37 for supporting the straight pipe portion 23 that engages with the feed screw 36, and a guide plate 38 fixed to the arm 34 for guiding the block 37.

これにより、直管部23はレーザ光14に対して常時一
定な角度の姿勢を維持し、駆動モータ35が回転すると
被加工物17に対して上下動することとなる。
As a result, the straight tube section 23 always maintains a constant angular posture with respect to the laser beam 14, and when the drive motor 35 rotates, it moves up and down with respect to the workpiece 17.

コンピュータ33は、CPU39.ROM40゜RAM
41及び入出力用のポート42を備えており、前記セン
サ24からの信号に基づき第5図のような操作を行って
駆動モータ35に出力し、前記直管部23を溶接部18
に常時向けようとするものである。
The computer 33 has a CPU 39. ROM40°RAM
41 and an input/output port 42. Based on the signal from the sensor 24, the operation as shown in FIG.
The aim is to always aim at

次に、第5図のフローチャートを用いてこのレーザ溶接
装置の動作について説明する。
Next, the operation of this laser welding apparatus will be explained using the flowchart shown in FIG.

まず、レーザ加工が終了したか否かを判断して(Sl)
、終了していないならばセンサ24によりプラズマ21
からの放射電磁波25の強度測定を行いこれをPlとし
て取り込む(S2)。そして、駆動モータ35を駆動し
、送りねじ36を正方向に回転させる(S3)。これに
より、直管部23は第6図の+Xの方に移動する。
First, determine whether or not laser processing has been completed (Sl).
, if it has not finished, the sensor 24 detects the plasma 21
The intensity of the radiated electromagnetic wave 25 is measured and taken in as Pl (S2). Then, the drive motor 35 is driven to rotate the feed screw 36 in the forward direction (S3). As a result, the straight pipe portion 23 moves in the direction of +X in FIG.

直管部23が所定量移動すると、再び放射電磁25の強
度測定を行ってこれをP2として取り込む(S4)。P
 とP を比較してP2の方が強ければ更に正方向に送
りねしを回転させ、逆にPlの方が強ければ次の判断を
行う(S5)。
When the straight pipe section 23 moves by a predetermined amount, the intensity of the radiated electromagnetic field 25 is measured again and this is taken in as P2 (S4). P
and P are compared, and if P2 is stronger, the feed screw is further rotated in the positive direction, and conversely, if Pl is stronger, the next judgment is made (S5).

前回の測定値P1の方が大きければ、レーザ加工が終了
したか否かを判断して(S6)、未だ終わってない場合
は更に強度測定を行ってこれをPlとして取り込む(S
7)。そして、駆動モータ35を逆方向に駆動し、送り
ねじ36を負方向に回転させる(S8)。これにより、
直管部23は第6図の−Xの方に移動する。
If the previous measurement value P1 is larger, it is determined whether the laser processing has been completed (S6), and if it has not been completed, further intensity measurement is performed and this is taken in as Pl (S6).
7). Then, the drive motor 35 is driven in the opposite direction to rotate the feed screw 36 in the negative direction (S8). This results in
The straight tube section 23 moves in the direction of -X in FIG.

直管部23が所定量移動すると、再び放射電磁波25の
強度測定を行ってこれをP4として取り込む(S9)。
When the straight pipe section 23 moves by a predetermined amount, the intensity of the radiated electromagnetic wave 25 is measured again and this is taken in as P4 (S9).

P とP を比較してP4の方が強ければ更に負方向に
送りねじを回転させ、逆にPlの方が強ければスタート
に戻り上記と同様な操作を繰り返す(S 10)。
P and P are compared, and if P4 is stronger, the feed screw is further rotated in the negative direction, and conversely, if Pl is stronger, the process returns to the start and repeats the same operation as above (S10).

かくて、直管部23は常時プラズマ21の方に向きを変
えながら不活性ガス30をプラズマ21に向けて噴射す
ることとなる。
In this way, the straight pipe portion 23 injects the inert gas 30 toward the plasma 21 while constantly changing its direction toward the plasma 21 .

なお、本発明において、前記直管部23を真空ポンプ等
に接続して吸引を行うようにすることもできる。このよ
うにしてもプラズマ21を溶接部18から除去すること
ができる。
In the present invention, the straight pipe portion 23 may be connected to a vacuum pump or the like to perform suction. Plasma 21 can also be removed from welded portion 18 in this manner.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のような構成を備えるものであるから、プ
ラズマを吸引し又は不活性ガスを噴射する管の先を常に
溶接部に追従させることができる。
Since the present invention has the above configuration, the tip of the tube that sucks plasma or injects inert gas can always follow the welding part.

従って、プラズマの除去を的確に行ってレーザ溶接を安
定的にかつ効率良く行うことができるという効果を奏す
る。
Therefore, it is possible to accurately remove plasma and perform laser welding stably and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の実施例を示し、第1図は
レーザ溶接装置の要部の概略垂直断面図、第2図は直管
部の垂直断面図、第3図はレーザ溶接装置の概略垂直断
面図、第4図は制御部のコンピュータ部分のブロック図
、第5図は制御部の操作を示すフローチャート、第6図
は溶接部に生じたプラズマと直管部との位置関係を示す
説明図、第7図は第6図に対応して示す溶は込み深さ−
ノズル位置関係線図、第8図は従来のレーザ溶接装置の
概略垂直断面図である。 12・・・レーザ発振器、13・・・レーザ加工ノズル
、14・・・レーザ光、17・・・被加工物、18・・
・溶接部、21・・・プラズマ、22・・・不活性ガス
、23・・・直管部、24・・・センサ、25・・・放
射電磁波、28・・・フィルタ、29・・・開口端、3
0・・・不活性ガス、31・・・供給口、32・・・移
動機構、33・・・コンピュータ、34・・・アーム、
35・・・駆動モータ、36・・・送りねじ、37・・
・ブロック、38・・・ガイド板、39・・・CPU、
40・・・ROM、41・・・RAM。 42・・・入出力用のボート。
1 to 5 show embodiments of the present invention, FIG. 1 is a schematic vertical sectional view of the main parts of the laser welding device, FIG. 2 is a vertical sectional view of the straight pipe section, and FIG. 3 is the laser welding device. A schematic vertical sectional view of the device, Figure 4 is a block diagram of the computer part of the control unit, Figure 5 is a flowchart showing the operation of the control unit, and Figure 6 is the positional relationship between the plasma generated in the welding part and the straight pipe part. Fig. 7 is an explanatory diagram showing the melt penetration depth corresponding to Fig. 6.
The nozzle position relationship diagram, FIG. 8, is a schematic vertical sectional view of a conventional laser welding device. 12... Laser oscillator, 13... Laser processing nozzle, 14... Laser light, 17... Workpiece, 18...
- Welded part, 21... Plasma, 22... Inert gas, 23... Straight pipe part, 24... Sensor, 25... Radiated electromagnetic wave, 28... Filter, 29... Opening edge, 3
0... Inert gas, 31... Supply port, 32... Moving mechanism, 33... Computer, 34... Arm,
35... Drive motor, 36... Feed screw, 37...
・Block, 38...Guide plate, 39...CPU,
40...ROM, 41...RAM. 42...Boat for input/output.

Claims (1)

【特許請求の範囲】 1、レーザ溶接の際に溶接部に生ずるプラズマを吸引す
ることにより又は不活性ガスを噴射することにより溶接
部から前記プラズマを除去するレーザ溶接方法において
、前記プラズマを吸引し又は前記不活性ガスを噴射する
管の先を溶接部に追従させることを特徴とするレーザ溶
接方法。 2、レーザ溶接の際に溶接部に生ずるプラズマを吸引し
又は該プラズマに対して不活性ガスを噴射する直管部と
、該直管部の奥に設けられた前記プラズマを検知するセ
ンサと、該センサからの信号に基づき前記直管部を前記
溶接部の方に追従させる制御部とを備えたことを特徴と
するレーザ溶接装置。
[Claims] 1. In a laser welding method in which the plasma generated in the welding area during laser welding is removed by suctioning the plasma or by injecting an inert gas, the plasma is removed from the welding area by suctioning the plasma. Or a laser welding method, characterized in that the tip of the tube that injects the inert gas follows the welding part. 2. A straight pipe section that sucks plasma generated in the welding part during laser welding or injects inert gas against the plasma, and a sensor that detects the plasma provided at the back of the straight pipe section; A laser welding device comprising: a control section that causes the straight pipe section to follow the welding section based on a signal from the sensor.
JP2194151A 1990-07-23 1990-07-23 Laser welding method and device Pending JPH0481290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194151A JPH0481290A (en) 1990-07-23 1990-07-23 Laser welding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194151A JPH0481290A (en) 1990-07-23 1990-07-23 Laser welding method and device

Publications (1)

Publication Number Publication Date
JPH0481290A true JPH0481290A (en) 1992-03-13

Family

ID=16319768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194151A Pending JPH0481290A (en) 1990-07-23 1990-07-23 Laser welding method and device

Country Status (1)

Country Link
JP (1) JPH0481290A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268570A (en) * 2006-03-31 2007-10-18 Tokyu Car Corp Laser beam welding equipment
US7319204B2 (en) * 2004-11-17 2008-01-15 Trumpf Laser Gmbh + Co. Kg Laser welding device and method
JP2011152573A (en) * 2010-01-27 2011-08-11 Hitachi High-Technologies Corp Method and apparatus for inspecting laser beam state, laser beam machining method and apparatus, and method for manufacturing solar panel
CN102941412A (en) * 2012-10-15 2013-02-27 华中科技大学 Method and device for controlling laser welding seam holes
CN106041625A (en) * 2016-08-02 2016-10-26 无锡尊宝电动车有限公司 Machine part model identification device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319204B2 (en) * 2004-11-17 2008-01-15 Trumpf Laser Gmbh + Co. Kg Laser welding device and method
JP2007268570A (en) * 2006-03-31 2007-10-18 Tokyu Car Corp Laser beam welding equipment
JP2011152573A (en) * 2010-01-27 2011-08-11 Hitachi High-Technologies Corp Method and apparatus for inspecting laser beam state, laser beam machining method and apparatus, and method for manufacturing solar panel
CN102941412A (en) * 2012-10-15 2013-02-27 华中科技大学 Method and device for controlling laser welding seam holes
CN106041625A (en) * 2016-08-02 2016-10-26 无锡尊宝电动车有限公司 Machine part model identification device

Similar Documents

Publication Publication Date Title
EP0452138B2 (en) Apparatus and method for automatically aligning a welding device for butt welding workpieces
US4689467A (en) Laser machining apparatus
JP2001321976A (en) Method of laser beam welding, laser beam welding equipment, and gas shield device for laser beam welding
JPH08192283A (en) Laser beam machining device
JP2007275962A (en) Laser beam machining apparatus
KR100492245B1 (en) A precision processing tool by use of femtosecond laser
JP5482384B2 (en) Liquid column observation apparatus and liquid column observation method for laser processing apparatus
CN111971144A (en) Laser welding method
JPH0481290A (en) Laser welding method and device
JPH07144289A (en) Method and device for centering nozzle of laser beam machine
JP3157294B2 (en) Laser cutting method and apparatus
JP3126788B2 (en) Assist gas injection control device for laser welding equipment
JPS5933079B2 (en) Laser cutting method and device
JPS5641091A (en) Welding method of pipe
JP3222430B2 (en) Laser processing apparatus and adjustment method
JP2015009263A (en) Laser processing apparatus and laser optical axis adjusting method
JPH07214357A (en) Laser beam machine
JPH067980A (en) Laser beam machine
JP4269230B2 (en) Axis alignment method for hybrid machining apparatus and hybrid machining apparatus
JP2005536359A (en) Inspection device and inspection method for welding, overlaying or processing work by laser beam of workpiece
JP7455289B1 (en) laser processing equipment
JP2013215769A (en) Laser beam machining apparatus
JPS5987990A (en) Laser beam machine
JPH0577073A (en) Device for observing state of laser beam machining
Ocaña et al. Intensity and Time Resolved Scattered Laser Radiation Monitoring in Single Pulse Micro-Drilling as a Method for Quality Control.