JPH0481283A - Solid phase diffusion joining method - Google Patents

Solid phase diffusion joining method

Info

Publication number
JPH0481283A
JPH0481283A JP19595990A JP19595990A JPH0481283A JP H0481283 A JPH0481283 A JP H0481283A JP 19595990 A JP19595990 A JP 19595990A JP 19595990 A JP19595990 A JP 19595990A JP H0481283 A JPH0481283 A JP H0481283A
Authority
JP
Japan
Prior art keywords
plating
bonding
joined
copper alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19595990A
Other languages
Japanese (ja)
Inventor
Shinichiro Inoue
真一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP19595990A priority Critical patent/JPH0481283A/en
Priority to DE69104845T priority patent/DE69104845T2/en
Priority to US07/966,170 priority patent/US5330097A/en
Priority to EP91913089A priority patent/EP0550749B1/en
Priority to PCT/JP1991/000976 priority patent/WO1992001528A1/en
Publication of JPH0481283A publication Critical patent/JPH0481283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To securely diffusively join a copper alloy and a metal of another kind in a solid-phase state by plating copper or copper alloy on the joint surface of the metal of another kind and pressurizing the joint surface of the two metals under heating. CONSTITUTION:The copper alloy which is the one metal to be joined (hereafter expressed as a joining material) is the copper alloy having the compsn. of any among Cu-Zn, Cu-Sn, Cu-Al, Cu-Pb systems. Fe castings of SCM, SS, etc., are generally frequently used as the other metal (hereafter expressed as the material to be joined). The kind of the plating to be formed on the joint surface of the material to be joined may be any, insofar as the plating is copper plating or copper alloy plating. After the material to be joined is plated, the joining material is heated and pressurized on the plated surface, by which both metals are diffusively joined in the solid phase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、2種の金属のうち少なくとも一方が銅合金
であるそれぞれの金属を接合させる固相拡散接合法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-phase diffusion bonding method for bonding two metals, at least one of which is a copper alloy.

〔従来の技術〕[Conventional technology]

従来、2種の金属の接合法としては鋳込み法が一般的で
あった。しかし、接合材が合金である場合、鋳込み法に
よって接合を行うことができる合金は限られていた。な
ぜなら鋳込み法では接合材を完全に溶融しなければなら
ないから、合金の成分に低沸点金属が含まれていると、
溶融時にその低沸点金属が気化してしまうからである。
Conventionally, casting has been a common method for joining two types of metals. However, when the joining material is an alloy, there are a limited number of alloys that can be joined by the casting method. This is because the casting method requires the joining material to be completely melted, so if the alloy contains low-boiling metals,
This is because the low boiling point metal vaporizes during melting.

例えば銅−亜鉛合金では亜鉛が合金の融点直上で蒸発し
て接合材の表面に亜鉛の層や酸化亜鉛の層が形成される
。その結果接合強度が著しく低下したり、銅−亜鉛の組
成比が鋳込み時と異なったものになったりする。したか
ってこのような材料を鋳込み法によって接合することは
困難であった。
For example, in a copper-zinc alloy, zinc evaporates just above the melting point of the alloy, forming a zinc layer or a zinc oxide layer on the surface of the bonding material. As a result, the joint strength may drop significantly, or the copper-zinc composition ratio may become different from that at the time of casting. Therefore, it has been difficult to join such materials by casting.

固相拡散接合法は接合材を熔融することなく固相のまま
加圧して接合させる方法であり、こうような難鋳込み材
料の接合に適している。この固相拡散接合法では接合強
度を上げることが主な課題となっている。その1つの解
決手段はアモルファスろう利等の中間Hを2種の材料の
間に介在させて圧接を行う方法である。また、別の手段
として同軸方向に超高圧を付加する超高圧法や静水圧的
に加圧するI(I P法等も行われている。
The solid phase diffusion bonding method is a method of pressurizing and bonding the bonding material in a solid phase without melting it, and is suitable for bonding such difficult-to-cast materials. The main challenge with this solid-phase diffusion bonding method is to increase the bonding strength. One solution is to interpose an intermediate H, such as an amorphous solder, between the two materials and perform pressure welding. Further, as other means, an ultra-high pressure method in which an ultra-high pressure is applied in the coaxial direction and an I (IP method) in which pressure is applied hydrostatically are also used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、アモルファスろう材を用いた固相拡散接
合法では一般に入手可能なアモルファスろう材の材質や
種類等に限りがあるために接合強度等に問題がある場合
が多い。ずなわら、アモルファスろう利は(a)融点が
低く延性に富んだ金属箔状のものが多く、摩捺による熱
やせん断力が加わると接合強度が低下する。(b)高融
点のものではタングステンやモリブデン等を成分に有す
るアモルファスろう材があるが、ぬれ性など接合材との
適合性に問題がある。(C)不純物として含有されてい
る金属と接合材との間で脆弱な金属間化合物を生成する
。したがって油圧機器の摺動部材のように耐熱性が求め
られ大きなせん断力が加わる部材に適用可能なほど満足
できる接合強度は得られなかった。
However, the solid-phase diffusion bonding method using an amorphous brazing filler metal often has problems with bonding strength, etc., because there are limits to the materials and types of amorphous brazing filler metals that are generally available. However, many amorphous solders (a) have a low melting point and are highly ductile in the form of metal foils, and the bonding strength decreases when heat or shearing force due to rubbing is applied. (b) Among those with high melting points, there are amorphous brazing fillers containing tungsten, molybdenum, etc. as components, but they have problems in wettability and compatibility with bonding materials. (C) A fragile intermetallic compound is generated between the metal contained as an impurity and the bonding material. Therefore, it has not been possible to obtain a bonding strength that is satisfactory enough to be applicable to members that require heat resistance and are subjected to large shear forces, such as sliding members of hydraulic equipment.

一方、超高圧法やHI P法ではコストが高くつくため
に、高付加価値を有する部材や部品にしか適用できなく
一般的な方法とは言えない。
On the other hand, the ultra-high pressure method and the HIP method are expensive and can only be applied to parts and components with high added value, so they cannot be considered general methods.

本発明は、このような問題を解決し、鋳込み法によって
は接合が困難であった材料(合金)についても適用可能
であり、コストが低くでき、大きな接合強度が得られる
固相拡散接合法を提供することを目的とする。
The present invention solves these problems and introduces a solid-phase diffusion bonding method that can be applied to materials (alloys) that are difficult to bond using the casting method, can be made at low cost, and can provide high bonding strength. The purpose is to provide.

〔課題を解決するだめの手段〕[Failure to solve the problem]

前述された課題を解決するために、本発明による固相拡
散接合法は、前述されたものにおいて、 (1)前記2種の金属のうち、一方の金属が接合される
べき他方の金属の接合面に銅メッキまたは銅合金メッキ
を施す工程と、 (2)このメッキされた接合面において前記一方の金属
を加熱・加圧条件下にて接合させる工程 とを有することを特徴とする。
In order to solve the above-mentioned problems, the solid-phase diffusion bonding method according to the present invention includes: (1) bonding of one of the two metals to which the other metal is to be bonded; It is characterized by comprising a step of applying copper plating or copper alloy plating to the surface, and (2) a step of joining the one metal on the plated joint surface under heating and pressurizing conditions.

本発明において接合される一方の金属である銅合金(以
下、接合材と称する。)は連続鋳造や押出等によって得
られるものであってよく、Cu−Zn系、Cu−3n系
、Cu−Al系、Cu−Pb系等いずれの組成を有する
銅合金であってもよい。また、他方の金属(以下、被接
合材と称する。)としては一般にSCM=SS等のFe
系の鋳物が多く用いられるが、何れの純金属または合金
も使用可能であり前記接合材の銅合金と同一または異な
る組成の銅合金であってもかまわない。
The copper alloy (hereinafter referred to as the bonding material), which is one of the metals to be bonded in the present invention, may be obtained by continuous casting, extrusion, etc., and may be Cu-Zn based, Cu-3n based, Cu-Al It may be a copper alloy having any composition such as Cu-Pb type or Cu-Pb type. The other metal (hereinafter referred to as the material to be joined) is generally Fe such as SCM=SS.
Although castings of the same type are often used, any pure metal or alloy can be used, and a copper alloy with the same or different composition from the copper alloy of the bonding material may be used.

被接合材の接合面に形成されるメッキの種類も銅メッキ
または銅合金メッキであれば何れでもよく銅合金メッキ
の組成としてはCu−Zn等が例示される。このメッキ
は1種類だけでなく複数種類の層重であってもよい。ま
た、メッキの下地としてFe系の被接合材との親和性を
図ってNiメッギを行ったり、銅合金メッキの付着性を
良くするだめの銅メッキを行うことも可能である。
The type of plating formed on the joint surfaces of the materials to be joined may be any copper plating or copper alloy plating, and examples of the composition of the copper alloy plating include Cu-Zn. This plating may be of not only one type but also of multiple types. Furthermore, it is also possible to perform Ni plating as a base for plating to improve compatibility with Fe-based materials to be joined, or to perform copper plating to improve adhesion of copper alloy plating.

[ 被接合材にメッキを施した後、メッキ処理した面におい
て接合材を加熱・加圧することによって接合させる。固
相拡散は接合する銅合金の融点Tm(絶対温度)の0.
7倍付近の温度から活発になり出す。したがって接合温
度は、少なくともTmX0.7(・K)以上であること
が望ましく、また接合材の融点以下の温度範囲である。
[After plating the materials to be joined, the joining material is heated and pressurized on the plated surface to join them. Solid phase diffusion occurs when the melting point Tm (absolute temperature) of the copper alloy to be joined is 0.
It becomes active at temperatures around 7 times higher. Therefore, the bonding temperature is desirably at least TmX0.7 (·K) or higher, and is in a temperature range below the melting point of the bonding material.

また接合の際の雰囲気は真空またはArガスやN2ガス
等の不活性雰囲気であることが望ましいが、加圧が大き
くて接合時間を短縮できる場合には大気中であってもよ
い。加圧力の大きさも通常の加圧装置で可能な範囲であ
ってよいが望ましくは数100Kg/c+t〜数t/c
flの範囲内である。
Further, the atmosphere during bonding is preferably a vacuum or an inert atmosphere such as Ar gas or N2 gas, but air may be used if the pressurization is large and the bonding time can be shortened. The magnitude of the pressurizing force may be within the range possible with a normal pressurizing device, but is preferably from several 100 Kg/c+t to several t/c.
It is within the fl range.

作 用〕 本発明では被接合材の接合面に銅メッキまたば銅合金メ
ッキを施した後に加熱・加圧条件下にて接合材の接合を
行うことにより、接合強度を確保している。すなわち、
接合材は銅合金から成るから、これらの銅系メッキとの
ぬれ性が非常に良く固相拡散によって大きな接合強度が
得られる。一方、これらのメッキは例えばFe系の金属
から成る被接合材とのなじみ性が良いからメッキ強度も
大きくてきる。全体として見れば、銅メッキまたは銅合
金メッキを介して被接合材と接合材とが強固に接合して
一体化した挙動をとる形になっている。
[Function] In the present invention, the bonding strength is ensured by applying copper plating or copper alloy plating to the bonding surfaces of the materials to be bonded, and then bonding the bonding materials under heating and pressurizing conditions. That is,
Since the bonding material is made of a copper alloy, it has very good wettability with these copper-based platings, and high bonding strength can be obtained through solid phase diffusion. On the other hand, since these platings have good compatibility with materials to be joined made of Fe-based metals, for example, the plating strength increases. Viewed as a whole, the material to be joined and the material to be joined are firmly joined through the copper plating or copper alloy plating, and behave as an integrated body.

〔実施例〕〔Example〕

実施例1 鋼材SCM440Hと耐摩耗性黄銅P31C(組成(w
t%) 〜Cu:Ba1. 、Zn:26〜30、Fe
:0.5〜1.3  AI:3.5〜4.5 、Ni:
2.0〜4.0 、Si:0.5〜1.5 、Co:Q
〜1.0)との接合を行った。
Example 1 Steel material SCM440H and wear-resistant brass P31C (composition (w)
t%) ~Cu:Ba1. , Zn:26-30, Fe
:0.5~1.3 AI:3.5~4.5, Ni:
2.0~4.0, Si:0.5~1.5, Co:Q
~1.0) was bonded.

まず、SCM440Hに下地としてCuメツキを5p程
度の膜厚に施した後、 CLJ−Zn (真鍮)メッキを約20μmの膜厚に施
した。このメッキ面上にP31Cを重ね、真空中(I 
X 1O−2Torr)で850°Cの温度に5分間保
持し、そのうちの1分間P31C上からIt/CTMの
圧力を加えた。このようにして接合を行った後、超音波
探傷法による非破壊検査、およびせん断テストを行って
接合状態を調べた。その結果を表1に示した。また、同
し材料について接合条件を変えた場合の接合条件および
接合状態についても同しく表1に示した。
First, Cu plating was applied to SCM440H as a base to a thickness of about 5p, and then CLJ-Zn (brass) plating was applied to a thickness of about 20μm. Layer P31C on this plated surface and place it in a vacuum (I
The temperature was maintained at 850° C. for 5 minutes, and a pressure of It/CTM was applied from above the P31C for 1 minute. After the bonding was performed in this manner, a non-destructive inspection using an ultrasonic flaw detection method and a shear test were performed to examine the bonding state. The results are shown in Table 1. In addition, Table 1 also shows the bonding conditions and bonding states when the bonding conditions were changed for the same materials.

接合の際の雰囲気をArガスに変えた場合、および加圧
時間を3分にした場合についても接合状態をしらべたが
結果は同じであった。
The bonding conditions were also examined when the atmosphere during bonding was changed to Ar gas and when the pressurization time was changed to 3 minutes, but the results were the same.

実施例2 鋼材SCM440Hとリン青銅PBC−20(組成(4
%) 〜Cu:87.O〜91.0、Sn:9.0〜1
2.0、P:0.05〜0,5)との接合を行った。
Example 2 Steel material SCM440H and phosphor bronze PBC-20 (composition (4
%) ~Cu: 87. O~91.0, Sn:9.0~1
2.0, P: 0.05 to 0.5).

まず、PBC−2Cに実施例1と同様にCuメッキとC
u−Znメッキを施した後、真空中にて表1に示す条件
で接合を行った。
First, PBC-2C was plated with Cu and C as in Example 1.
After applying u-Zn plating, bonding was performed in vacuum under the conditions shown in Table 1.

接合状態を調べ、その結果についても表1に併せ示した
。接合雰囲気を真空からArガスに変えた場合について
も同様の結果が得られた。
The bonding state was investigated and the results are also shown in Table 1. Similar results were obtained when the bonding atmosphere was changed from vacuum to Ar gas.

表 (発明の効果〕 本発明では銅合金から成る接合材を、やはり銅系のメッ
キが接合面に施された被接合材に固相拡散により接合さ
せる構成としたから、(八〉メッキの成分、厚み等がア
モルファスろう材のように制約されず、接合材および被
接合材との適合性に優れたものに選択でき、加えて形成
されるメッキは不純物の少ない高純度のものにできるか
ら大きな接合強度を得ることができる、 (B)接合材を熔融せずに固相のままで接合を行うから
、接合材に低沸点成分が含まれているか含まれていない
かにかかわらず安定な状態にて接合を行うことができ、
鋳込み法に比べて接合の適用範囲が広がる、 (C)メッキはその技術が確立している上に、アモルフ
ァスろう材の使用よりも作業コストが安価にでき、また
加圧や加熱に特別な措置を要しないから、超高圧法やH
IP法に比べても設備等のコスト面ではるかに有利であ
る、等の効果を奏する。
Table (Effects of the Invention) In the present invention, since the bonding material made of a copper alloy is bonded to the bonded material whose bonding surface is also coated with copper-based plating by solid-phase diffusion, (8) Components of the plating , thickness, etc. are not limited as with amorphous brazing filler metal, and it is possible to select a material with excellent compatibility with the joining material and the material to be joined, and in addition, the plating formed can be of high purity with few impurities, making it a great choice. (B) Since the bonding material is not melted but is bonded in a solid phase, it remains stable regardless of whether the bonding material contains low-boiling components or not. can be joined by
(C) Plating has an established technology, has lower work costs than the use of amorphous brazing filler metal, and requires special measures for pressurization and heating. Ultra-high pressure method and H
Compared to the IP method, it is far more advantageous in terms of equipment costs, etc.

Claims (1)

【特許請求の範囲】 2種の金属のうち少なくとも一方が銅合金であるそれぞ
れの金属を接合させる固相拡散接合法において、 (1)前記2種の金属のうち、一方の金属が接合される
べき他方の金属の接合面に銅メッキまたは銅合金メッキ
を施す工程と、 (2)このメッキされた接合面において前記一方の金属
を加熱・加圧条件下にて接合させる工程 とを有することを特徴とする固相拡散接合法。
[Claims] In a solid phase diffusion bonding method for joining two metals, at least one of which is a copper alloy, (1) one of the two metals is joined; (2) applying copper plating or copper alloy plating to the bonding surface of the other metal to be bonded; and (2) bonding the one metal on the plated bonding surface under heating and pressurizing conditions. Characteristic solid-phase diffusion bonding method.
JP19595990A 1990-07-24 1990-07-24 Solid phase diffusion joining method Pending JPH0481283A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19595990A JPH0481283A (en) 1990-07-24 1990-07-24 Solid phase diffusion joining method
DE69104845T DE69104845T2 (en) 1990-07-24 1991-07-23 HOT DIFFUSION WELDING.
US07/966,170 US5330097A (en) 1990-07-24 1991-07-23 Hot diffusion welding method
EP91913089A EP0550749B1 (en) 1990-07-24 1991-07-23 Hot diffusion welding
PCT/JP1991/000976 WO1992001528A1 (en) 1990-07-24 1991-07-23 Hot diffusion welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19595990A JPH0481283A (en) 1990-07-24 1990-07-24 Solid phase diffusion joining method

Publications (1)

Publication Number Publication Date
JPH0481283A true JPH0481283A (en) 1992-03-13

Family

ID=16349830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19595990A Pending JPH0481283A (en) 1990-07-24 1990-07-24 Solid phase diffusion joining method

Country Status (1)

Country Link
JP (1) JPH0481283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272390A (en) * 2005-03-29 2006-10-12 Nippon Steel Corp Composite structure of invar alloy and brass, and its joining method
JP2011206918A (en) * 2010-03-26 2011-10-20 Nisshin Steel Co Ltd Laminated die for resin molding and method of manufacturing the same
CN102592712A (en) * 2012-03-23 2012-07-18 株洲博雅科技股份有限公司 Method for preparing integral type multi-branch structure copper-bus busbar and busbar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272390A (en) * 2005-03-29 2006-10-12 Nippon Steel Corp Composite structure of invar alloy and brass, and its joining method
JP4562569B2 (en) * 2005-03-29 2010-10-13 新日鉄マテリアルズ株式会社 Invar alloy and brass composite structure and method for producing the same
JP2011206918A (en) * 2010-03-26 2011-10-20 Nisshin Steel Co Ltd Laminated die for resin molding and method of manufacturing the same
CN102592712A (en) * 2012-03-23 2012-07-18 株洲博雅科技股份有限公司 Method for preparing integral type multi-branch structure copper-bus busbar and busbar

Similar Documents

Publication Publication Date Title
Wu et al. Wide gap brazing of stainless steel to nickel-based superalloy
JPS62192296A (en) Solder material
Jacobson et al. Diffusion soldering
EP0110418A2 (en) Ductile brazing alloys containing reactive metals
US4715525A (en) Method of bonding columbium to titanium and titanium based alloys using low bonding pressures and temperatures
WO1992001528A1 (en) Hot diffusion welding
US6984358B2 (en) Diffusion bonding process of two-phase metal alloys
Karamış et al. Microstructural analysis and discontinuities in the brazed zone of copper tubes
US4606981A (en) Ductile brazing alloys containing reactive metals
US5664723A (en) Brazing technology
JPH0481283A (en) Solid phase diffusion joining method
Chuang et al. Brazing of Mo and Nb using two active braze alloys
JPS6221465A (en) Double layer padding method to aluminum base metal
EP0357664A1 (en) Plymetal brazing strip
JP2726796B2 (en) Multi-layer sliding member and manufacturing method thereof
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JP2004066324A (en) Brazing method between aluminum-based metal and different metal
CN111151864B (en) Welding material and process for connecting tungsten-based powder alloy and low-expansion high-temperature alloy
JP2592778B2 (en) Copper alloy lining method
Nobeen et al. Transient liquid phase (TLP) bonding using Sn/Ag multilayers for high temperature applications
JPS6163395A (en) Solder composition, flux and usage thereof
JPH1177365A (en) Insert material for joining ti-al series intermetallic compound and ti base alloy and joining method therefor and joined body
Venkateswaran et al. Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties
Xu The influence of Al content from filler metals on tungsten inert gas welding-brazing of Mg-Ti
Choe et al. Fluxless Sn-Bi-Au bonding process using multilayer design