JPH0480578A - Efficiency diagnosing device for heat source apparatus - Google Patents

Efficiency diagnosing device for heat source apparatus

Info

Publication number
JPH0480578A
JPH0480578A JP19407590A JP19407590A JPH0480578A JP H0480578 A JPH0480578 A JP H0480578A JP 19407590 A JP19407590 A JP 19407590A JP 19407590 A JP19407590 A JP 19407590A JP H0480578 A JPH0480578 A JP H0480578A
Authority
JP
Japan
Prior art keywords
efficiency
heat source
instantaneous
data
operated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19407590A
Other languages
Japanese (ja)
Inventor
Tomoo Kumamaru
熊丸 智雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19407590A priority Critical patent/JPH0480578A/en
Publication of JPH0480578A publication Critical patent/JPH0480578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To diagnose the efficiency of heat source apparatuses with a required accuracy by a method wherein an instantaneous efficiency is operated by an efficiency operating formula based on the data (input power, cooling capacity, amount of heat of cooling water, pressure of a condenser, pressure of an evaporator and the like) at respective parts of the heat source apparatuses which are the objects of diagnosis while a time average efficiency of the instantaneous efficiencies is operated to compare the time average efficiency with a reference efficiency and diagnose whether efficiency deterioration exists or not. CONSTITUTION:When data, such as an input power (w), a room cooling capacity (q), the amount of heat of cooling water (e), a condenser pressure (pc), an evaporator pressure (pt) and the like are inputted into an efficiency diagnosing device 2, an efficiency operating unit 4 operates the ratio of an actual performance coefficient to the performance coefficient in a reverse Carnot's cycle at each time steps and an instantaneous efficiency as a time series data is operated. Next, an average processing unit 5 averages the instantaneous efficiencies, operated by the efficiency operating unit 4, in a predetermined step section to operate a time average efficiency while an efficiency deterioration diagnosing unit 6 inputs the time average efficiency, operated by the average processing unit 5, to compare it with a reference efficiency, stored in a reference efficiency data file 7, whereby the efficiencies are diagnosed whether the deterioration of the same exists or not.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は例えば冷凍機等の熱源機器の効率診断を行なう
装置に係り、特に効率診断を所要の精度で行ない得るよ
うにした熱源機器の効率診断装置に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a device for diagnosing the efficiency of heat source equipment such as a refrigerator, and in particular to a device for diagnosing the efficiency of heat source equipment such as a refrigerator. The present invention relates to an efficiency diagnostic device for heat source equipment.

(従来の技術) 従来から、熱源機器、例えば冷凍機の効率評価を行なう
方法としては、生成した冷水の熱量で表わされる冷房能
力と、冷媒圧縮機用電動機への入力電力との比である成
績係数が用いられている。
(Prior Art) Traditionally, as a method for evaluating the efficiency of heat source equipment, such as refrigerators, the efficiency is evaluated as the ratio of the cooling capacity expressed by the calorific value of generated chilled water to the input power to the motor for the refrigerant compressor. coefficients are used.

しかし、このような方法では、冷媒を凝縮させる凝縮器
への冷却水人口温度の変動の影響を受けて、成績係数か
大幅に変動するため、経済的な指標としての意味しか持
ち得なかった。
However, in this method, the coefficient of performance fluctuates significantly due to the influence of fluctuations in the temperature of the cooling water flowing into the condenser that condenses the refrigerant, so it could only be used as an economic indicator.

一方、最近では、かかる成績係数を基準化して、変動を
減らすための理論的手段として、以下に示すようなサイ
クル効率が知られている。すなわち、ある定まった蒸発
温度、凝縮温度で冷凍機を運転した場合、最大、の成績
係数を示すのは、逆カルノーサイクルであり、その時の
成績係数はTo / (Tc  To ) にて与えられる。ここで、To、Tcはそれぞれ蒸発、
凝縮圧力に相当する冷媒の飽和温度を絶対温度で表わし
たものである。そして、サイクル効率は、実際の成績係
数と逆カルノーサイクルの成績係数との比で定義される
On the other hand, recently, cycle efficiency as shown below has been known as a theoretical means for standardizing the coefficient of performance and reducing fluctuations. That is, when the refrigerator is operated at a certain fixed evaporation temperature and condensation temperature, it is the reverse Carnot cycle that shows the maximum coefficient of performance, and the coefficient of performance at that time is given by To / (Tc To ). Here, To and Tc are evaporated and
The saturation temperature of the refrigerant, which corresponds to the condensation pressure, is expressed as an absolute temperature. Cycle efficiency is defined as the ratio between the actual coefficient of performance and the coefficient of performance of the reverse Carnot cycle.

しかしながら、このサイクル効率は、冷却水入口温度や
流量の短時間変動には追随できず、効率評価の精度が不
足がちであることから、理論的検討に用いられているの
みであった。
However, this cycle efficiency cannot follow short-term fluctuations in cooling water inlet temperature or flow rate, and efficiency evaluation tends to lack accuracy, so it has only been used for theoretical studies.

(発明か解決しようとする課題) 以上のように、従来では、冷凍機のような熱源機器の効
率評価を所要の精度で行なうことが困難であるという問
題かあり、この種の効率診断装置は実現されていないの
か実状である。
(Problem to be solved by the invention) As mentioned above, conventionally, there is a problem that it is difficult to evaluate the efficiency of heat source equipment such as refrigerators with the required accuracy, and this type of efficiency diagnostic device is The reality is that it has not been realized.

本発明の目的は、サイクル効率の算出精度を高めて熱源
機器の効率診断を所要の精度で行なうことか可能な極め
て信頼性の高い熱源機器の効率診断装置を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an extremely reliable efficiency diagnosing device for a heat source device that can improve the cycle efficiency calculation accuracy and diagnose the efficiency of the heat source device with the required accuracy.

[発明の構成] (課題を解決するための手段) 上記の目的を達成するために本発明では、冷凍機等の熱
源機器の効率診断を行なう装置を、診断対象となる熱源
機器の各部データ(入力電力、冷房能力、冷却水熱量、
凝縮器圧力、蒸発器圧力等)を入力するデータ入力手段
と、データ入力手段により入力された各部データに基づ
いて、効率計算式より瞬時効率を算出する効率演算手段
と、効率演算手段により算出された瞬時効率の時間平均
効率を算出する平均処理手段と、平均処理手段により算
出された時間平均効率と基準効率とを比較して効率低下
の有無を診断する効率低下診断手段とを備えて構成し、
さらに必要に応じて、効率低下診断手段による診断結果
を表示する表示手段を付加して構成している。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides an apparatus for diagnosing the efficiency of heat source equipment such as a refrigerator, based on data on each part of the heat source equipment to be diagnosed ( Input power, cooling capacity, cooling water heat,
a data input means for inputting condenser pressure, evaporator pressure, etc.); an efficiency calculation means for calculating instantaneous efficiency from an efficiency calculation formula based on the data of each part inputted by the data input means; an average processing means for calculating the time average efficiency of the instantaneous efficiency calculated by the average processing means; and an efficiency reduction diagnosis means for comparing the time average efficiency calculated by the average processing means with a reference efficiency and diagnosing the presence or absence of efficiency reduction. ,
Furthermore, if necessary, a display means for displaying the diagnosis result by the efficiency reduction diagnosis means is added.

(作用) 従って、本発明による熱源機器の効率診断装置において
は、熱源機器の運転中の各部データが、データ入力手段
を介して時系列データとして収集され、まず各時点での
実際の成績係数が算出され、次に逆カルノーサイクルで
の成績係数を算出する際に、所定の時間幅でのデータよ
り冷却水熱量から冷房能力への熱伝達の遅れ時間が算出
され、ある時点の凝縮温度Tcに対し、上記遅れ時間分
だけ遅れた時点での蒸発温度T。を用いて成績係数To
 / (Tc  To ) が算出され、各時点での瞬時効率が算出される。
(Function) Therefore, in the efficiency diagnosis device for heat source equipment according to the present invention, data on each part of the heat source equipment during operation is collected as time series data via the data input means, and first, the actual coefficient of performance at each point in time is calculated. Then, when calculating the coefficient of performance in the reverse Carnot cycle, the delay time of heat transfer from the cooling water heat amount to the cooling capacity is calculated from the data in a predetermined time width, and the condensation temperature Tc at a certain point in time is calculated. On the other hand, the evaporation temperature T is delayed by the above-mentioned delay time. The coefficient of performance To
/ (Tc To ) is calculated, and the instantaneous efficiency at each point in time is calculated.

その後、瞬時効率の時間平均処理が行なわれ、基準値と
比較して効率低下の有無が診断され、必要に応じてこの
診断結果が表示される。この場合、基準値は、定常時の
データや設計値から得られるものである。
Thereafter, time averaging processing of the instantaneous efficiency is performed, and the presence or absence of a decrease in efficiency is diagnosed by comparing it with a reference value, and the diagnosis result is displayed as necessary. In this case, the reference value is obtained from steady state data or design values.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明を熱源機器であるビルや工場の冷暖房
用の冷凍機に適用した場合の構成例を示すブロック図で
ある。第1図において、診断対象となる冷凍機1は、蒸
発器11、圧縮機12、凝縮器13、膨張弁14の基本
要素から構成されている。
FIG. 1 is a block diagram showing a configuration example in which the present invention is applied to a refrigerator for heating and cooling a building or a factory, which is a heat source device. In FIG. 1, a refrigerator 1 to be diagnosed is comprised of basic elements: an evaporator 11, a compressor 12, a condenser 13, and an expansion valve 14.

一方、本実施例による効率診断装置2は、データ入力部
3と、効率演算部4と、平均処理部5と、効率低下診断
部6と、基準効率データファイル7と、表示部8とから
構成している。
On the other hand, the efficiency diagnostic device 2 according to the present embodiment includes a data input section 3, an efficiency calculation section 4, an average processing section 5, an efficiency reduction diagnosis section 6, a reference efficiency data file 7, and a display section 8. are doing.

ここで、データ入力部3は、診断対象となる冷凍機1の
各部データ、すなわち入力電力w1冷房能力q1冷却水
熱量c1凝縮器圧力pc、蒸発器圧力pEを入力するも
のである。また、効率演算部4は、データ入力部3によ
り入力された各部デ−夕に基づいて、効率計算式より瞬
時効率を算出するものである。さらに、平均処理部5は
、効率演算部4により算出された瞬時効率の時間平均効
率を算出するものである。
Here, the data input section 3 inputs data on each part of the refrigerator 1 to be diagnosed, that is, input power w1, cooling capacity q1, cooling water heat amount c1, condenser pressure pc, and evaporator pressure pE. Furthermore, the efficiency calculation section 4 calculates instantaneous efficiency from an efficiency calculation formula based on the data of each section inputted by the data input section 3. Furthermore, the average processing section 5 calculates the time average efficiency of the instantaneous efficiency calculated by the efficiency calculation section 4.

一方、効率低下診断部6は、平均処理部5により算出さ
れた時間平均効率と、基準効率データファイル7に記憶
されている基準効率とを比較して、効率低下の有無を診
断するものである。また、基準効率データファイル7は
、冷凍機1の基準効率をあらかじめファイル化して記憶
しているものである。さらに、表示部8は、効率低下診
断部6による診断結果を表示するものである。
On the other hand, the efficiency reduction diagnosis section 6 compares the time average efficiency calculated by the averaging section 5 with the reference efficiency stored in the reference efficiency data file 7 to diagnose whether there is an efficiency reduction. . Further, the standard efficiency data file 7 stores the standard efficiency of the refrigerator 1 in advance as a file. Furthermore, the display section 8 displays the diagnosis results by the efficiency reduction diagnosis section 6.

次に、以上のように構成した冷凍機1の効率診断装置2
の作用について、第2図に示すフロー図を用いて説明す
る。
Next, the efficiency diagnosis device 2 for the refrigerator 1 configured as described above will be explained.
The operation will be explained using the flow diagram shown in FIG.

第1図において、冷凍機1から、入力電力W、冷房能力
q、冷却水熱量C1凝縮器圧力pCs蒸発器圧力1)E
等のデータが効率診断装置2に入力される。すると、効
率診断装置2では、これらのデータを受けて第2図に示
す処理内容が実行される。
In Fig. 1, from the refrigerator 1, input power W, cooling capacity q, cooling water heat amount C1 condenser pressure pCs evaporator pressure 1) E
etc. are input to the efficiency diagnostic device 2. Then, the efficiency diagnostic device 2 receives these data and executes the processing shown in FIG. 2.

すなわち、データ入力部3に人力された各データは効率
演算部4に入力され、まず実際の成績係数q / wか
算出される。次に、冷却水熱量Cの変動か冷房能力qに
伝わる送れ時間の算出が行なわれるか、その内容を第3
図(a)〜Cd)を用いて述べる。冷却水熱量Cと冷房
能力qは、振動的に変動している。これらのデータは、
同一のサンプリングピッチで、CI   C2+  C
3+ ”°やq+42+Q3+ ・・・のように、時系
列データとして得られる。そこで、遅れ時間を想定して
時間をずらした残差系列か、所定の数たけ生成され(例
えば、第3図のようにC1−Q 11+111  Cn
  qa+2 +C,,q、、+3か生成され)、それ
ぞれの自乗和(p:遅れ時間、N1〜N2 :所定の区
間)がとられ、自乗和が最小となる残差系列(第3図の
場合、Cn  qn+2)でのすらした時間(第3図の
場合、p−2)が、熱伝達の遅れ時間とみなされる。第
3図では、サンプリングを2ステツプずらした残差系列
が、自乗和最小となる。
That is, each data input manually into the data input section 3 is input into the efficiency calculation section 4, and first, the actual coefficient of performance q/w is calculated. Next, whether the change in the cooling water heat amount C or the feeding time transmitted to the cooling capacity q is calculated, the details of which are explained in the third section.
This will be explained using Figures (a) to Cd). The amount of heat C of the cooling water and the cooling capacity q fluctuate in an oscillatory manner. These data are
With the same sampling pitch, CI C2+ C
3+"°, q+42+Q3+... to C1-Q 11+111 Cn
qa+2 +C,,q,,+3), the sum of squares of each (p: delay time, N1-N2: predetermined interval) is taken, and the residual sequence with the minimum sum of squares (in the case of Fig. 3) is calculated. , Cn qn+2) (in the case of FIG. 3, p-2) is considered as the heat transfer delay time. In FIG. 3, the residual sequence obtained by shifting the sampling by two steps has the minimum sum of squares.

次に、効率計算部4では、逆カルノーサイクルでの成績
係数か算出される。第3図に示す蒸発温度T。、凝縮温
度Tcは、冷媒の飽和曲線上の蒸発器圧力pE1凝縮器
圧力pcから換算して算出される。第3図の例では2ス
テツプの遅れ時間があるので、蒸発温度T。に対し、凝
縮温度Tcを2ステツプ前の値を使って成績係数が算出
される。
Next, the efficiency calculation unit 4 calculates the coefficient of performance in the reverse Carnot cycle. Evaporation temperature T shown in FIG. , the condensing temperature Tc is calculated by converting from the evaporator pressure pE1 on the refrigerant saturation curve and the condenser pressure pc. In the example of FIG. 3, there is a delay time of two steps, so the evaporation temperature T. On the other hand, the coefficient of performance is calculated using the value of the condensing temperature Tc two steps earlier.

例えば、N3時刻での成績係数は To(N3)/fTc(t+)  To(ti)1とし
て算出される。
For example, the coefficient of performance at time N3 is calculated as To(N3)/fTc(t+) To(ti)1.

その後、効率計算部4では、以上の算出処理の結果であ
る、実際の成績係数と、逆カルノーサイクルでの成績係
数との比が各時間ステップで演算され、時系列データと
して瞬時効率が算出される。
After that, the efficiency calculation unit 4 calculates the ratio between the actual coefficient of performance and the coefficient of performance in the inverse Carnot cycle, which is the result of the above calculation process, at each time step, and calculates the instantaneous efficiency as time series data. Ru.

次に、平均処理部5では、効率計算部4により算出され
た瞬時効率が所定のステップ区間で平均処理され、時間
平均効率が算出される。この処理は、熱源機器である冷
凍機1の冷房能力qのパラメータである、冷水入口温度
と流量が一定とみなせる区間で有効であり、効率演算の
誤差を小さくするためのものである。
Next, in the averaging section 5, the instantaneous efficiency calculated by the efficiency calculating section 4 is averaged in a predetermined step interval, and the time average efficiency is calculated. This process is effective in an area where the cold water inlet temperature and flow rate, which are parameters of the cooling capacity q of the refrigerator 1, which is a heat source device, can be considered constant, and is intended to reduce errors in efficiency calculation.

次に、効率低下診断部6では、平均処理部5により算出
された時間平均効率を入力し、基準効率データファイル
7に記憶されている基準効率と比較して、効率低下の有
無が診断され、その診断結果かメツセージやグラフ表示
として表示部8に表示される。この場合、比較の方法と
しては、単なるしきい値判定からトレンドの分析まで種
々の方法を利用することができる。
Next, the efficiency reduction diagnosis section 6 inputs the time average efficiency calculated by the average processing section 5 and compares it with the reference efficiency stored in the reference efficiency data file 7 to diagnose whether there is an efficiency reduction. The diagnosis result is displayed on the display section 8 as a message or a graph. In this case, various methods can be used for comparison, from simple threshold determination to trend analysis.

上述したように、本実施例の効率診断装置においては、
サイクル効率の変動の主要因である冷却水熱量Cから冷
房能力qへの熱伝達の時間遅れを補償し、さらに平均処
理を行なうようにしているので、次のような種々の効果
を奏することができるものである。
As mentioned above, in the efficiency diagnosis device of this embodiment,
By compensating for the time delay in heat transfer from the cooling water heat amount C to the cooling capacity q, which is the main cause of fluctuations in cycle efficiency, and further performing averaging processing, the following various effects can be achieved. It is possible.

(a)熱源機器である冷凍機lの効率評価の精度が不足
がちであった点を解消して、時系列的に効率の値を管理
できるため、冷凍機1の効率診断を所要の精度で行なう
ことかでき、冷凍機1の運転計画や保全計画に大きく貢
献することか可能となる。
(a) It solves the problem that the accuracy of efficiency evaluation of refrigerator 1, which is a heat source equipment, tends to be insufficient, and the efficiency value can be managed in chronological order, so efficiency diagnosis of refrigerator 1 can be performed with the required accuracy. This makes it possible to greatly contribute to the operation plan and maintenance plan for the refrigerator 1.

(b)効率低下か診断された場合には、冷凍機1の入力
電力Wか定常よりも大きくなったのか、または冷房能力
qか小さくなったのかにより、異常箇所を推定するため
の貴重なデータも得ることが可能となる。
(b) When a decrease in efficiency is diagnosed, valuable data for estimating the location of the abnormality is obtained based on whether the input power W of the refrigerator 1 has become larger than the steady state, or whether the cooling capacity q has become smaller. It is also possible to obtain

すなわち、入力電力Wの異常は電動機の焼損、冷房能力
qの異常は熱交換器の汚れ等の恐れがあり、解体検査を
伴なうこともあることから、効率低下の診断か正しく行
なわれることは、結果として経済上、安全上での多大な
効果につながるものである。
In other words, an abnormality in the input power W may cause burnout of the motor, and an abnormality in the cooling capacity q may result in contamination of the heat exchanger, etc., and may require a dismantling inspection, so it is important to properly diagnose the decrease in efficiency. As a result, this will lead to significant economic and safety effects.

尚、本発明は上述した実施例に限定されるものではなく
、次のようにしても実施することができるものである。
It should be noted that the present invention is not limited to the embodiments described above, but can also be implemented in the following manner.

(a)上記実施例において、表示部8は本発明に必すし
も不可欠なものではない。
(a) In the above embodiment, the display section 8 is not necessarily essential to the present invention.

(b)上記実施例では、本発明を冷凍機1の効率診断に
適用した場合について述べたか、これに限らす冷凍機以
外の熱源機器の効率診断についても、本発明を同様に適
用することか可能であることは言うまでもない。
(b) In the above embodiment, has the present invention been applied to the efficiency diagnosis of the refrigerator 1, or is the present invention similarly applicable to the efficiency diagnosis of heat source equipment other than the refrigerator? It goes without saying that it is possible.

(C)上記実施例において、現在の状態の診断のみてな
く、保全時期の予測まで行なわせる機能を効率低下診断
部6に持たせることにより、効率の基準値からの単離率
を評価して、保全時期を予測できるように構成すること
も可能である。
(C) In the above embodiment, the isolation rate from the efficiency reference value is evaluated by providing the efficiency reduction diagnosis section 6 with a function of not only diagnosing the current state but also predicting the maintenance time. It is also possible to configure the system so that the maintenance period can be predicted.

第4図は、時間平均効率の基準値からの単離率dのトレ
ンドグラフを示す図、第5図はこのトレンドグラフから
保全時期を予測するための処理内容を示すフローである
。第4図において、単離率dがマイナスに転じた時点t
1からトレンドグラフを延長し、単離率d=mとなる時
点t2を保全時期とみなすことができる。
FIG. 4 is a diagram showing a trend graph of the isolation rate d from the reference value of the time average efficiency, and FIG. 5 is a flowchart showing the processing content for predicting the maintenance time from this trend graph. In Figure 4, the time t when the isolation rate d turns negative
By extending the trend graph from 1, the time point t2 when the isolation rate d=m can be regarded as the maintenance period.

これにより、保全時期の予測が実現できれば、計画的に
保全実施できることになり、熱源機器を所要の効率を維
持しながら長寿命で運用することが可能となる。
As a result, if maintenance timing can be predicted, maintenance can be carried out in a planned manner, and heat source equipment can be operated for a long life while maintaining the required efficiency.

(d)上記実施例では、実際の成績係数と逆カルノーサ
イクルでの成績係数との比を瞬時効率として算出するよ
うにした場合について述べたが、これに限らず例えば実
際の成績係数と設計上の成績係数との比を瞬時効率とし
て算出するようにしてもよい。
(d) In the above embodiment, a case was described in which the instantaneous efficiency was calculated as the ratio of the actual coefficient of performance and the coefficient of performance in the reverse Carnot cycle. The instantaneous efficiency may be calculated as the ratio to the coefficient of performance.

(e)上記実施例において、効率演算部4による瞬時効
率、あるいは効率低下診断部6による診断結果に基づい
て、冷凍機1の運転ポイントを補正する(具体的には、
例えば圧縮機12への媒体の流量を調整するためのベー
ンの開度を補正する)ようにしてもよい。
(e) In the above embodiment, the operating points of the refrigerator 1 are corrected based on the instantaneous efficiency determined by the efficiency calculation unit 4 or the diagnosis result by the efficiency reduction diagnosis unit 6 (specifically,
For example, the opening degree of the vane for adjusting the flow rate of the medium to the compressor 12 may be corrected.

[発明の効果] 以上説明したように本発明によれば、サイクル効率の算
出精度を高めて熱源機器の効率診断を所要の精度で行な
うことが可能な極めて信頼性の高い熱源機器の効率診断
装置が提供できる。
[Effects of the Invention] As explained above, according to the present invention, there is provided an extremely reliable efficiency diagnosis device for heat source equipment that is capable of improving cycle efficiency calculation accuracy and diagnosing the efficiency of heat source equipment with the required accuracy. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による効率診断装置を熱源機器である冷
凍機に適用した場合の一実施例を示すブロック図、 第2図は同実施例における作用を説明するためのフロー
図、 第3図は冷却水熱量の変動が冷房能力に伝わる遅れ時間
の演算内容を説明する図、 第4図は本発明を保全時期の予測に適用した場合の処理
内容を説明するための図、 第5図は第4図における処理内容の作用を説明するため
のフロー図である。 1・・・冷凍機、11・・・蒸発器、12・・・圧縮機
、13・・・凝縮器、14・・・膨脂弁、2・・・効率
診断装置、3・・・データ入力部、4・・・効率演算部
、5・・・平均処理部、6・・・効率低下診断部、7・
・・基準効率データファイル、8・・・表示部。 出願人代理人 弁理士 鈴江武彦
Fig. 1 is a block diagram showing an embodiment in which the efficiency diagnosis device according to the present invention is applied to a refrigerator which is a heat source device, Fig. 2 is a flow diagram for explaining the operation of the embodiment, and Fig. 3 Figure 4 is a diagram explaining the calculation of the delay time when fluctuations in cooling water heat are transmitted to the cooling capacity, Figure 4 is a diagram explaining the processing when the present invention is applied to predicting maintenance time, and Figure 5 is FIG. 5 is a flow diagram for explaining the effect of the processing contents in FIG. 4; 1... Refrigerator, 11... Evaporator, 12... Compressor, 13... Condenser, 14... Fat expansion valve, 2... Efficiency diagnosis device, 3... Data input Part, 4... Efficiency calculation part, 5... Average processing part, 6... Efficiency reduction diagnosis part, 7.
...Reference efficiency data file, 8...Display section. Applicant's agent Patent attorney Takehiko Suzue

Claims (3)

【特許請求の範囲】[Claims] (1)冷凍機等の熱源機器の効率診断を行なう装置にお
いて、 診断対象となる前記熱源機器の各部データを入力するデ
ータ入力手段と、 前記データ入力手段により入力された各部データに基づ
いて、効率計算式より瞬時効率を算出する効率演算手段
と、 前記効率演算手段により算出された瞬時効率の時間平均
効率を算出する平均処理手段と、前記平均処理手段によ
り算出された時間平均効率と基準効率とを比較して効率
低下の有無を診断する効率低下診断手段と、 を備えて成ることを特徴とする熱源機器の効率診断装置
(1) In an apparatus for diagnosing the efficiency of heat source equipment such as a refrigerator, a data input means for inputting data on each part of the heat source equipment to be diagnosed; efficiency calculation means for calculating instantaneous efficiency from a calculation formula; averaging processing means for calculating a time average efficiency of the instantaneous efficiency calculated by the efficiency calculation means; and a time average efficiency and a reference efficiency calculated by the average processing means. An efficiency diagnosing device for heat source equipment, comprising: an efficiency reduction diagnosing means for diagnosing the presence or absence of efficiency reduction by comparing the .
(2)前記効率低下診断手段による診断結果を表示する
表示手段を付加したことを特徴とする請求項(1)項に
記載の熱源機器の効率診断装置。
(2) The efficiency diagnosing device for heat source equipment according to claim 1, further comprising a display means for displaying the diagnosis result by the efficiency reduction diagnosis means.
(3)前記効率演算手段としては、実際の成績係数を算
出すると共に逆カルノーサイクルでの成績係数を算出し
、これら実際の成績係数と逆カルノーサイクルでの成績
係数との比を時系列データとして瞬時効率を算出するよ
うにしたことを特徴とする請求項(1)項に記載の熱源
機器の効率診断装置。
(3) The efficiency calculation means calculates the actual coefficient of performance as well as the coefficient of performance in the reverse Carnot cycle, and calculates the ratio of these actual coefficients of performance and the coefficient of performance in the reverse Carnot cycle as time series data. The efficiency diagnostic device for heat source equipment according to claim (1), characterized in that instantaneous efficiency is calculated.
JP19407590A 1990-07-24 1990-07-24 Efficiency diagnosing device for heat source apparatus Pending JPH0480578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19407590A JPH0480578A (en) 1990-07-24 1990-07-24 Efficiency diagnosing device for heat source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19407590A JPH0480578A (en) 1990-07-24 1990-07-24 Efficiency diagnosing device for heat source apparatus

Publications (1)

Publication Number Publication Date
JPH0480578A true JPH0480578A (en) 1992-03-13

Family

ID=16318544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19407590A Pending JPH0480578A (en) 1990-07-24 1990-07-24 Efficiency diagnosing device for heat source apparatus

Country Status (1)

Country Link
JP (1) JPH0480578A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272849A (en) * 1991-11-15 1993-10-22 Oki Electric Ind Co Ltd Method and device for predicting deterioration of heat exchanger
KR100466432B1 (en) * 2002-11-15 2005-01-14 삼성에스디에스 주식회사 Method for analysis of efficiency in turbo refrigerator and apparatus thereof
KR100466433B1 (en) * 2002-11-15 2005-01-14 삼성에스디에스 주식회사 Method for analysis of efficiency in turbo refrigerator and apparatus thereof
KR100489560B1 (en) * 2002-11-15 2005-05-16 삼성에스디에스 주식회사 Method and apparatus of in-situ performance test for air-source heat pump
KR100675479B1 (en) * 2005-12-19 2007-01-29 엘에스전선 주식회사 Device for testing heat pipe performance of absorption refrigerating machine
WO2007047886A1 (en) * 2005-10-21 2007-04-26 Emerson Retail Services, Inc. Monitoring refrigeration system performance
JP2010014323A (en) * 2008-07-03 2010-01-21 Hitachi Ltd Deterioration diagnosing device, deterioration diagnosing method, and deterioration diagnosing system for cold supply system
US7752854B2 (en) * 2005-10-21 2010-07-13 Emerson Retail Services, Inc. Monitoring a condenser in a refrigeration system
JP2013061110A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Device and method for evaluating performance of turbo refrigerator
US8812263B2 (en) 2010-07-29 2014-08-19 Mitsubishi Heavy Industries, Ltd. Centrifugal chiller performance evaluation system
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9115921B2 (en) 2009-11-20 2015-08-25 Mitsubishi Heavy Industries, Ltd. Performance evaluation device for variable-speed centrifugal chiller
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9395711B2 (en) 2009-05-29 2016-07-19 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
JP2018169075A (en) * 2017-03-29 2018-11-01 パナソニックIpマネジメント株式会社 Absorption type refrigerating machine
JP2019078432A (en) * 2017-10-23 2019-05-23 栗田工業株式会社 Diagnostic method and diagnostic system of performance deterioration of water cooling type turbo refrigerating machine

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272849A (en) * 1991-11-15 1993-10-22 Oki Electric Ind Co Ltd Method and device for predicting deterioration of heat exchanger
KR100466432B1 (en) * 2002-11-15 2005-01-14 삼성에스디에스 주식회사 Method for analysis of efficiency in turbo refrigerator and apparatus thereof
KR100466433B1 (en) * 2002-11-15 2005-01-14 삼성에스디에스 주식회사 Method for analysis of efficiency in turbo refrigerator and apparatus thereof
KR100489560B1 (en) * 2002-11-15 2005-05-16 삼성에스디에스 주식회사 Method and apparatus of in-situ performance test for air-source heat pump
US9669498B2 (en) 2004-04-27 2017-06-06 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US10335906B2 (en) 2004-04-27 2019-07-02 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9304521B2 (en) 2004-08-11 2016-04-05 Emerson Climate Technologies, Inc. Air filter monitoring system
US10558229B2 (en) 2004-08-11 2020-02-11 Emerson Climate Technologies Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9690307B2 (en) 2004-08-11 2017-06-27 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9086704B2 (en) 2004-08-11 2015-07-21 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9081394B2 (en) 2004-08-11 2015-07-14 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9046900B2 (en) 2004-08-11 2015-06-02 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9017461B2 (en) 2004-08-11 2015-04-28 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9023136B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9021819B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
WO2007047886A1 (en) * 2005-10-21 2007-04-26 Emerson Retail Services, Inc. Monitoring refrigeration system performance
EP1938029A4 (en) * 2005-10-21 2014-02-26 Emerson Retail Services Inc Monitoring refrigeration system performance
US7752854B2 (en) * 2005-10-21 2010-07-13 Emerson Retail Services, Inc. Monitoring a condenser in a refrigeration system
EP1938029A1 (en) * 2005-10-21 2008-07-02 Emerson Retail Services INC. Monitoring refrigeration system performance
KR100675479B1 (en) * 2005-12-19 2007-01-29 엘에스전선 주식회사 Device for testing heat pipe performance of absorption refrigerating machine
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US10352602B2 (en) 2007-07-30 2019-07-16 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9194894B2 (en) 2007-11-02 2015-11-24 Emerson Climate Technologies, Inc. Compressor sensor module
US10458404B2 (en) 2007-11-02 2019-10-29 Emerson Climate Technologies, Inc. Compressor sensor module
JP2010014323A (en) * 2008-07-03 2010-01-21 Hitachi Ltd Deterioration diagnosing device, deterioration diagnosing method, and deterioration diagnosing system for cold supply system
US9395711B2 (en) 2009-05-29 2016-07-19 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US9115921B2 (en) 2009-11-20 2015-08-25 Mitsubishi Heavy Industries, Ltd. Performance evaluation device for variable-speed centrifugal chiller
US8812263B2 (en) 2010-07-29 2014-08-19 Mitsubishi Heavy Industries, Ltd. Centrifugal chiller performance evaluation system
US10234854B2 (en) 2011-02-28 2019-03-19 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9703287B2 (en) 2011-02-28 2017-07-11 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US10884403B2 (en) 2011-02-28 2021-01-05 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
JP2013061110A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Device and method for evaluating performance of turbo refrigerator
US9590413B2 (en) 2012-01-11 2017-03-07 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9876346B2 (en) 2012-01-11 2018-01-23 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9762168B2 (en) 2012-09-25 2017-09-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10274945B2 (en) 2013-03-15 2019-04-30 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US10488090B2 (en) 2013-03-15 2019-11-26 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US10775084B2 (en) 2013-03-15 2020-09-15 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10060636B2 (en) 2013-04-05 2018-08-28 Emerson Climate Technologies, Inc. Heat pump system with refrigerant charge diagnostics
US10443863B2 (en) 2013-04-05 2019-10-15 Emerson Climate Technologies, Inc. Method of monitoring charge condition of heat pump system
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
JP2018169075A (en) * 2017-03-29 2018-11-01 パナソニックIpマネジメント株式会社 Absorption type refrigerating machine
JP2019078432A (en) * 2017-10-23 2019-05-23 栗田工業株式会社 Diagnostic method and diagnostic system of performance deterioration of water cooling type turbo refrigerating machine

Similar Documents

Publication Publication Date Title
JPH0480578A (en) Efficiency diagnosing device for heat source apparatus
Kim et al. Design of a steady-state detector for fault detection and diagnosis of a residential air conditioner
US9911147B2 (en) Systems and methods for implementing automated intelligence-based bidding for repair services for environmental control systems in monitored buildings
US6892546B2 (en) System for remote refrigeration monitoring and diagnostics
KR101188079B1 (en) Performance evaluation apparatus of turbo refrigeration device
US9910416B2 (en) Systems and methods for implementing automated confirmation of completion of repair services on environmental control systems in monitored buildings
EP0883047A1 (en) System for monitoring expansion valve
JP2001280770A (en) Method and apparatus for deciding operating state of condenser coil of refrigerating system
KR20120024351A (en) Performance evaluation device of turbo refrigerator
US10139815B2 (en) Chiller control device, chiller, and chiller diagnostic method
US11561019B2 (en) Performance diagnosis device and performance diagnosis method for air conditioner
US20140257575A1 (en) Systems and methods for implementing environmental condition control, monitoring and adjustment in enclosed spaces
CN113654182A (en) Method for detecting refrigerant leakage, computer readable storage medium and air conditioner
US20230243539A1 (en) Monitoring hvac&r performance degradation using relative cop from joint power and temperature relations
CN113272603B (en) Abnormality determination device, refrigeration device provided with abnormality determination device, and abnormality determination method for compressor
JPH0493567A (en) Device for diagnosing performance of freezer
KR100466433B1 (en) Method for analysis of efficiency in turbo refrigerator and apparatus thereof
JP2022044935A (en) Energy plant performance estimation device
EP4317848A1 (en) Air conditioning system, abnormality estimation method for air conditioning system, air conditioner and abnormality estimation method for air conditioner
EP4317820A1 (en) Air-conditioning system, refrigerant amount estimation method for air-conditioning system, air conditioner, and refrigerant amount estimation method for air conditioner
Hrncar et al. Performance monitoring strategies for effective running of commercial refrigeration systems
US20230304713A1 (en) Refrigerant Quantity Diagnosis Device, Refrigerant System, and Refrigerant Quantity Diagnosis Method
JP6948756B1 (en) Performance diagnosis method for absorption chiller-heater
WO2023053673A1 (en) Air conditioner and air conditioning system
EP4328508A1 (en) Control method and control apparatus for air conditioner, and air conditioner and readable storage medium