JPH0480324A - Method for cooling steel plate - Google Patents

Method for cooling steel plate

Info

Publication number
JPH0480324A
JPH0480324A JP19512690A JP19512690A JPH0480324A JP H0480324 A JPH0480324 A JP H0480324A JP 19512690 A JP19512690 A JP 19512690A JP 19512690 A JP19512690 A JP 19512690A JP H0480324 A JPH0480324 A JP H0480324A
Authority
JP
Japan
Prior art keywords
cooling
steel plate
temp
determined
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19512690A
Other languages
Japanese (ja)
Inventor
Tai Tamaki
耐 田巻
Hidenori Gomi
五味 秀式
Fumio Niwa
文雄 丹羽
Kiyoshi Muranaka
村中 清志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19512690A priority Critical patent/JPH0480324A/en
Publication of JPH0480324A publication Critical patent/JPH0480324A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To allow the desired cooling-out temp. to be reached with high precision, to improve productivity, and to obtain a steel plate having uniform quality by determining cooling conditions while considering the influence of transformation on thermal conductivity and specific heat which are the basic values of physical properties of the steel plate to be cooled. CONSTITUTION:A refrigerant is sprayed on a high temp. steel plate surface to apply controlled cooling to the steel plate. At this time, the transformation intermediate temp. is determined from the thickness and components of the steel plate, the current density of the refrigerant, cooling-in temp., and cooling-out temp. Subsequently, a ferrite fraction is determined from this transformation intermediate temp. and the temp. of the steel plate during cooling, and also specific heat is determined from the transformation intermediate temp. and the temp. and components of the steel plate during cooling. Further, thermal conductivity is determined from the resulting ferrite fraction and the temp. and components of the steel plate during cooling. A time when the average temp. in a plate thickness direction becomes identical with the desired cooling-out temp. is determined by performing the computing of heat transfer by the use of these physical values, and the application length of a refrigerant supply nozzle and the conveyance velocity of the steel plate are determined on the basis of the above determined values, by which the cooling-out temp. is allowed to approach the prescribed desired value. By this method, the desired cooling-out temp. can be reached with high precision even if the component system and the cooling velocity are changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱間圧延鋼板その他の金属板などを高温状態
から冷媒を噴射して制御冷却を行う鋼板の冷却方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of cooling a hot-rolled steel plate or other metal plate by injecting a refrigerant from a high temperature state to controlled cooling.

〔従来の技術〕[Conventional technology]

制御冷却を行う際の冷却計算において、変態の考慮の方
法として、特開昭57−7312号公報や特開昭58−
199613号公報には、熱伝達方程式の1項として変
態発熱量のみを考慮したホットストリップの巻取り温度
制御方法の例が示されている。
As a method for considering transformation in cooling calculations when performing controlled cooling, Japanese Patent Laid-Open Nos. 57-7312 and 1982-
No. 199613 discloses an example of a hot strip winding temperature control method in which only the transformation calorific value is considered as one term of the heat transfer equation.

また厚鋼板の制御冷却に関しては、特開昭60−171
18311号公報に、冷媒と鋼板表面との間の熱伝達係
数を、鋼板の表面温度、冷媒温度、冷奴流量の関数とし
て表した熱伝達方程式を解くことによって、冷却停止温
度を所定の目標値に近づける制御方法はあるが、変態を
考慮した制御方法は見られない。
Regarding controlled cooling of thick steel plates, JP-A-60-171
Publication No. 18311 describes how to set the cooling stop temperature to a predetermined target value by solving a heat transfer equation in which the heat transfer coefficient between the refrigerant and the steel plate surface is expressed as a function of the steel plate surface temperature, the refrigerant temperature, and the cold rack flow rate. There are control methods that can bring it closer, but there are no control methods that take metamorphosis into consideration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記特開昭57−7312号公報や特開昭58−199
613号公報の技術は、いずれも熱伝達基本方程式の中
に、変態発熱量を独立した1項として取り入れたもので
、基本物性値である熱伝導率や比熱に関しては変態の影
響を考慮していないために、広範囲に成分系や冷却速度
が変化する場合は、計算の精度が低くなる場合がある。
The above-mentioned Japanese Patent Application Publication No. 57-7312 and Japanese Patent Application Publication No. 58-199
The technology in Publication No. 613 incorporates the transformation calorific value as an independent term in the basic heat transfer equation, and does not take into account the effects of transformation on the basic physical property values such as thermal conductivity and specific heat. Therefore, if the component system or cooling rate changes over a wide range, the calculation accuracy may decrease.

一方特開昭60−1711834号公報には、変態を考
慮しないで板厚12〜I 00mm鋼板を制御冷却した
場合の冷却停止温度に関する計算値と実績値の対比が示
されており、それを第6図に示す。同図から判るように
500°C以下ではその値のばらつきが大きくなってお
り、しかも成分系の違いによって傾向が異なるという問
題点を有している。
On the other hand, JP-A-60-1711834 discloses a comparison between calculated values and actual values regarding the cooling stop temperature when a steel plate with a thickness of 12 to 100 mm is cooled in a controlled manner without considering transformation. It is shown in Figure 6. As can be seen from the figure, there is a problem in that the variations in the values become large below 500°C, and the trends differ depending on the component system.

本発明は上記課題を解決し、成分系や冷却速度が変化し
ても目標とする冷却停止温度にM度よく到達させる鋼板
の冷却方法を提供する。
The present invention solves the above-mentioned problems and provides a method for cooling a steel plate that allows the target cooling stop temperature to be easily reached by M degrees even if the component system or cooling rate changes.

〔課題を解決するだめのf段〕[F stage to solve the problem]

本発明の要旨とするところは、高温の鋼板表面に冷媒を
噴射して冷却する鋼板の制御冷却方法において、鋼板の
板厚、成分、冷媒の流量密度、冷却開始温度、冷却終了
温度より変態中間温度を決定し、該変態中間温度と冷却
中の鋼板温度よりフェライト分率を求めるとともに変態
中間温度と冷却中の鋼板温度、成分から比熱を求め、更
に…f記求めたフェライト分率と冷却中の鋼板温度、成
分より熱伝導率を求め、これらの物性値を用い熱伝達計
算を行って板厚方向平均温度が目標冷却停止温度に等し
くなる時間を求め、これら求めた値に基づいて冷媒供給
ノズルの使用長さ、鋼板搬送速度を決定して冷却停止温
度を所定の目標値に近づけることを特徴とする鋼板の冷
却方法である。
The gist of the present invention is to provide a control method for cooling a steel plate by injecting a refrigerant onto the surface of a high-temperature steel plate. Determine the temperature, determine the ferrite fraction from the transformation intermediate temperature and the steel sheet temperature during cooling, and determine the specific heat from the transformation intermediate temperature, the steel sheet temperature during cooling, and the components, and further... Thermal conductivity is determined from the steel sheet temperature and components, and these physical property values are used to calculate heat transfer to determine the time until the average temperature in the thickness direction becomes equal to the target cooling stop temperature, and the refrigerant supply is determined based on these determined values. This method of cooling a steel plate is characterized by determining the length of the nozzle used and the conveyance speed of the steel plate to bring the cooling stop temperature close to a predetermined target value.

〔作 用) 制御冷却を行う鋼板の冷却中の温度は、下記(1a)式
に示す板厚方向−次元熱伝達方程式を解くことによって
計算される。
[Function] The temperature during cooling of a steel plate subjected to controlled cooling is calculated by solving the plate thickness direction-dimensional heat transfer equation shown in equation (1a) below.

(1b)式は鋼板表面の境界条件である。Equation (1b) is the boundary condition on the surface of the steel plate.

但し、 :冷却中の鋼板温度 じC) :密度      (Kg/m’ ) Cp:比熱    (Cal/g、 ”C)ρ λ 2熱伝導率(Kcal/m、hr、 ’C)X :
板厚方向座標    (m) Tw、冷媒温度      じC) t  冷却時間     (see )上記式において
、従来方法では比熱(Cp)や熱伝導率(λ)は冷却中
の鋼板温度(T)のみの関数であった。本発明では、第
1図に一例を示すように所定の大きさに切り出したサン
プルを任意の加熱・冷却速度が得られる装置を用いて加
熱・冷却を行ない、この時サンプルの長さを測定するこ
とにより、冷却時に変態によって生ずる膨張の開始およ
び終了温度を31測して、両者の中央の温度を変態中間
温度と定義づけた。
However, : Steel plate temperature during cooling C) : Density (Kg/m') Cp: Specific heat (Cal/g, "C) ρ λ 2 Thermal conductivity (Kcal/m, hr, 'C)
Plate thickness direction coordinate (m) Tw, coolant temperature C) t Cooling time (see) In the above formula, in the conventional method, specific heat (Cp) and thermal conductivity (λ) are functions only of the steel plate temperature (T) during cooling. Met. In the present invention, as shown in FIG. 1, a sample cut into a predetermined size is heated and cooled using a device capable of achieving arbitrary heating and cooling rates, and the length of the sample is measured at this time. As a result, the start and end temperatures of expansion caused by transformation during cooling were measured, and the temperature in the middle of the two was defined as the mid-transformation temperature.

この変態中間温度は成分および冷却速度に依存すること
が判り、これらの関係を重回帰分析により定量化して変
態中間温度モデル式(2a)、(2b)を開発し、比熱
Cp、熱伝導率λにとりいれた。
It was found that this transformation intermediate temperature depends on the components and the cooling rate, and these relationships were quantified by multiple regression analysis to develop transformation intermediate temperature model equations (2a) and (2b), and the specific heat Cp, thermal conductivity λ It was taken into account.

TM=(、((!、(VC)、成分)    ・(2a
)l・(V、、)−g・(H・q・・T・・・T。、1
)・・・(2b)但し、TM :変態中間温度   (
°C)vC:冷却速度   (”C/5ec)H:板厚
        (mm) q、:冷媒流量密度(m’/m2.c++1n)T、、
:冷却vnn湿温度  (”C)TIIVI’冷却停止
温度   (°C)まず熱伝導率λは、第2図に示すよ
うにフェライト熱伝導率λ、とオーステナイト熱伝導率
λ6とに分けて考え、両者の比率に相当するフェライト
分率α、を変態中間温度T@を用いた下記(3)式によ
り決定し、熱伝導率λを(lla)式で表わす。
TM=(, ((!, (VC), component) ・(2a
)l・(V,,)-g・(H・q・・T...T., 1
)...(2b) However, TM: Transformation intermediate temperature (
°C) vC: Cooling rate ("C/5ec) H: Plate thickness (mm) q,: Refrigerant flow density (m'/m2.c++1n) T,,
: Cooling vnn Humidity Temperature (C) TIIVI' Cooling Stop Temperature (°C) First, consider thermal conductivity λ by dividing it into ferrite thermal conductivity λ and austenite thermal conductivity λ6 as shown in Figure 2. The ferrite fraction α corresponding to the ratio of both is determined by the following equation (3) using the transformation intermediate temperature T@, and the thermal conductivity λ is expressed by the equation (lla).

α、二0.5(TM −T) +50     ・・・
・・・(3)λ ;α、・λ、+(1−α、)λ、・・
・・・・(4a)λF=f、(T、成分)      
 ・・・・・・(4b)λA”g2 (T、成分)  
     ・・・・・・(4c)但し、α、:フエライ
ト分率(%) λ1.フェライト熱伝導率 (Kcal/m、hr、 ”Q ) λA ニオ−ステナイト熱伝導率 (Kcal/m、hr、 ”C) また比熱Cpについては、従来冷却速度や成分に依らず
鋼板温度のみの関数であったが、本発明では第3図およ
び下記(5a)、(5b)式に示すように変態発熱のピ
ーク温度に変態中間温度(T、)を用い、更に変態発熱
量の大きさを成分の関数として、成分の変動による変態
発熱量の変化に対応可能なモデルを作成した。
α, 20.5 (TM - T) +50...
...(3) λ;α,・λ,+(1−α,)λ,...
...(4a) λF=f, (T, component)
・・・・・・(4b)λA”g2 (T, component)
......(4c) However, α: Ferrite fraction (%) λ1. Ferrite thermal conductivity (Kcal/m, hr, ``Q'') λA Niostenite thermal conductivity (Kcal/m, hr, ``C) Also, regarding specific heat Cp, it has conventionally been determined that it is a function only of steel sheet temperature, regardless of cooling rate or composition. However, in the present invention, as shown in FIG. 3 and equations (5a) and (5b) below, the transformation intermediate temperature (T, ) is used as the peak temperature of the transformation exotherm, and the magnitude of the transformation exotherm is further expressed as a component. As a function of

cp =A+B −T+S      =−−(5a)
S  =f、(T、T、、成分) ・・・・・・(5b
)但し、A:比熱を表す定数  (Cal/g、 ”C
)B:比熱を表す定数  (Cal/g、 ”C)S:
変態発熱量    (Cal/g、 ”C)比熱の値は
、変態発熱部分以外は鉄鋼熱J!算用数値を用い、変態
発熱部分では成分系によって異なることに注目し、種々
の成分系の実績冷却結果より(5a)式の変態発熱量(
S)の値を逆算し、これと成分系の重回帰式により(5
b)式を作成した。
cp =A+B -T+S =--(5a)
S = f, (T, T,, component) ...... (5b
) However, A: constant representing specific heat (Cal/g, "C
)B: Constant representing specific heat (Cal/g, “C)S:
Transformation calorific value (Cal/g, ``C) Specific heat values are determined using the Steel Heat J! calculation values for the parts other than the transformation heat-generating part, noting that the transformation heat-generating part differs depending on the component system, and based on actual results for various component systems. From the cooling results, the transformation calorific value of equation (5a) (
S) is calculated backwards, and using this and the multiple regression equation of the component system, (5
b) A formula was created.

このようにして決定した物性値を用いて(la)。Using the physical property values determined in this way (la).

(1b)式による熱伝達計算を行う。そして板厚方向平
均温度が目標冷却停止温度に等しくなる時間を次の(6
)式により求める。
Heat transfer calculation is performed using equation (1b). Then, the time required for the plate thickness direction average temperature to be equal to the target cooling stop temperature is given by the following (6
) is calculated using the formula.

Tdx T、、□ ・・・・・・(6) これに基づいて冷却装置の冷媒供給ノズルの使用長さ、
鋼板搬送速度を次の(7)式により決定する。
Tdx T,, □ ......(6) Based on this, the usage length of the refrigerant supply nozzle of the cooling device,
The steel plate conveyance speed is determined by the following equation (7).

la= I7 ・・・・・・(7) ■ となる時間      (sec) L :冷媒供給ノズルの使用長さ(冷却ゾーン)(m) ■ =鋼板搬送速度    (m/m1n)本発明は以
上の(1)〜(7)式をもとに、名物性値を決定し、冷
却条件を設定して冷却するものであるが、特に基本物性
値である熱伝導率や比熱に変態の影響を考慮したので、
広範囲に成分系や冷却速度が変化しても、精度の高い冷
却が可能である。
la=I7...(7) ■ Time for (sec) L: Length of use of refrigerant supply nozzle (cooling zone) (m) ■ = Steel plate conveyance speed (m/m1n) The present invention Based on formulas (1) to (7), the characteristic property values are determined and the cooling conditions are set for cooling. In particular, the influence of transformation on the basic physical properties such as thermal conductivity and specific heat is taken into consideration. So,
Highly accurate cooling is possible even if the component system and cooling rate vary over a wide range.

〔実 施 例〕〔Example〕

第4図は本発明の実施に好適な冷却装置の基本構成を示
し、図中1は被冷却材である鋼板、2は鋼板1を搬送す
るテーブルローラ、 3は冷却条件を演算し決定する演
算機、4は冷却装置の入側に配置され冷却直前の鋼板温
度(冷却Onn湿温度を測定する温度計、5は鋼板の板
厚、成分、冷媒の流量、密度、目標冷却停止温度を入力
する入力装置、6は冷媒の流量調整弁、7は冷媒供給ノ
ズルである。
FIG. 4 shows the basic configuration of a cooling device suitable for implementing the present invention, in which 1 is a steel plate as a material to be cooled, 2 is a table roller that conveys the steel plate 1, and 3 is a calculation for calculating and determining cooling conditions. 4 is a thermometer placed on the inlet side of the cooling system to measure the steel plate temperature (cooling ON/humidity temperature) immediately before cooling; 5 is a thermometer for inputting the steel plate thickness, composition, refrigerant flow rate, density, and target cooling stop temperature. The input device includes a refrigerant flow rate adjustment valve 6 and a refrigerant supply nozzle 7.

しかして演算機3は温度計4から入力される冷却直前の
鋼板温度(冷却開始温度)と、入力装置5から入力され
る板厚、成分、冷媒の流量密度。
The calculator 3 receives the steel plate temperature just before cooling (cooling start temperature) input from the thermometer 4, and the plate thickness, components, and refrigerant flow rate input from the input device 5.

目標冷却停止温度をもとに、冷却停止温度を目標値に近
づけるために鋼板搬送速度および冷媒供給ノズルの使用
長さを決定する。
Based on the target cooling stop temperature, the steel plate conveyance speed and the length of use of the refrigerant supply nozzle are determined in order to bring the cooling stop temperature closer to the target value.

この場合il算の処理手順は、入力された板厚。In this case, the processing procedure for il calculation is based on the input plate thickness.

成分、冷奴の流量密度、目標冷却停止温度、冷却開始温
度をもとに(2a)、 (2b)式より変態中間温度を
計算する。つぎに(3)式によりフェライト分率を計算
し、(I4)式より熱伝導率を決定する。また変態中間
温度および成分より(5)式を用いて比熱を決定する。
The transformation intermediate temperature is calculated from equations (2a) and (2b) based on the components, the flow rate density of the cold tofu, the target cooling stop temperature, and the cooling start temperature. Next, the ferrite fraction is calculated using equation (3), and the thermal conductivity is determined using equation (I4). Further, the specific heat is determined from the transformation intermediate temperature and the components using equation (5).

次にこれらの物性値を用いて(Ia)、 (lb)、 
(lc)式に示す熱伝達計算を行い、板厚方向平均温度
が目標冷却停止温度に等しくなる時間を(6)式より求
める。この時間に対応するように冷媒噴射ノズルの使用
長さと鋼板搬送速度を(7)式より決定し冷却する。
Next, using these physical property values, (Ia), (lb),
The heat transfer calculation shown in equation (lc) is performed, and the time required for the plate thickness direction average temperature to become equal to the target cooling stop temperature is determined from equation (6). The working length of the refrigerant injection nozzle and the steel sheet conveyance speed are determined from equation (7) so as to correspond to this time, and cooling is performed.

本実施例に従って冷却したときの板厚12〜+00rn
II+の鋼板について、目標冷却停止温度と実績冷却停
止温度の関係を第5図にテずが、冷却停止温度精度が飛
躍的に向上している。
Plate thickness 12~+00rn when cooled according to this example
Regarding the II+ steel plate, the relationship between the target cooling stop temperature and the actual cooling stop temperature is shown in Fig. 5, and the accuracy of the cooling stop temperature has been dramatically improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明の鋼板の冷却方法は、冷却す
る鋼板の制御冷却において、基本物性値である熱伝導率
や比熱に変態の影響を考慮して冷却条件を決定する方式
であるため、広範囲に成分系や冷却速度が変化しても、
目標の冷却停止温度に精度よく到達させるので、生産性
の向上とともに材質の均一な鋼板を得ることができるな
ど、産業上優れた効果を奏する。
As explained above, the steel plate cooling method of the present invention is a method in which the cooling conditions are determined by taking into account the effects of transformation on the basic physical property values, such as thermal conductivity and specific heat, in the controlled cooling of the steel plate. Even if the component system or cooling rate changes,
Since the target cooling stop temperature is reached with high accuracy, it has excellent industrial effects, such as improved productivity and the ability to obtain steel plates with uniform material quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における膨張長さと変態中Bil温度と
の関係を示す図面、第2図はフェライト熱伝導率、オー
ステナイ゛ト熱伝導率と変態中間温度との関係を示す図
面、第3図は比熱と変態中間温度との関係を説明する図
面、第4図は本発明の実施に好適な冷却装置の基本構成
を示す図面、第5図は本発明例における目標とその実績
の冷却停止LfA度精度を示す図面、第6図は従来例に
おける目標と実績の冷却停止温度精度を示す図面である
。 1・・・鋼板、2・・・鋼板を搬送するテーブルローラ
3・・・演算機、8・・・温度計、5・・・入力装置、
6・・流量調整弁、7・・・冷媒供給用ノズル代理人 
弁理士 秋 沢 敢 光 他  1名 岸 図 71′2図
Fig. 1 is a drawing showing the relationship between the expansion length and Bi temperature during transformation in the present invention, Fig. 2 is a drawing showing the relationship between ferrite thermal conductivity, austenite thermal conductivity, and transformation intermediate temperature, Fig. 3 4 is a diagram showing the basic configuration of a cooling device suitable for carrying out the present invention, and FIG. 5 is a diagram illustrating the target and actual results of cooling stop LfA in an example of the present invention. FIG. 6 is a drawing showing the target and actual cooling stop temperature accuracy in the conventional example. DESCRIPTION OF SYMBOLS 1... Steel plate, 2... Table roller for conveying the steel plate 3... Computing machine, 8... Thermometer, 5... Input device,
6...Flow rate adjustment valve, 7...Refrigerant supply nozzle agent
Patent attorney Ken Mitsu Akizawa et al.

Claims (1)

【特許請求の範囲】[Claims] 高温の鋼板表面に冷媒を噴射して冷却する鋼板の制御冷
却方法において、鋼板の板厚、成分、冷媒の流量密度、
冷却開始温度、冷却終了温度より変態中間温度を決定し
、該変態中間温度と冷却中の鋼板温度よりフェライト分
率を求めるとともに変態中間温度と冷却中の鋼板温度、
成分から比熱を求め、更に前記求めたフェライト分率と
冷却中の鋼板温度、成分より熱伝導率を求め、これらの
物性値を用い熱伝達計算を行って板厚方向平均温度が目
標冷却停止温度に等しくなる時間を求め、これら求めた
値に基づいて冷媒供給ノズルの使用長さ、鋼板搬送速度
を決定して冷却停止温度を所定の目標値に近づけること
を特徴とする鋼板の冷却方法。
In a controlled cooling method for steel plates in which refrigerant is injected onto the surface of a high-temperature steel plate, the steel plate thickness, composition, refrigerant flow density,
The transformation intermediate temperature is determined from the cooling start temperature and the cooling end temperature, the ferrite fraction is determined from the transformation intermediate temperature and the steel plate temperature during cooling, and the transformation intermediate temperature and the steel plate temperature during cooling,
Determine the specific heat from the components, then determine the ferrite fraction determined above, the steel plate temperature during cooling, and the thermal conductivity from the components. Use these physical property values to perform heat transfer calculations to determine the average temperature in the thickness direction of the target cooling stop temperature. A method for cooling a steel plate, characterized in that the length of time for which the refrigerant supply nozzle is used and the steel plate conveyance speed are determined based on these determined values to bring the cooling stop temperature close to a predetermined target value.
JP19512690A 1990-07-24 1990-07-24 Method for cooling steel plate Pending JPH0480324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19512690A JPH0480324A (en) 1990-07-24 1990-07-24 Method for cooling steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19512690A JPH0480324A (en) 1990-07-24 1990-07-24 Method for cooling steel plate

Publications (1)

Publication Number Publication Date
JPH0480324A true JPH0480324A (en) 1992-03-13

Family

ID=16335923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19512690A Pending JPH0480324A (en) 1990-07-24 1990-07-24 Method for cooling steel plate

Country Status (1)

Country Link
JP (1) JPH0480324A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018934A1 (en) * 2000-08-29 2002-03-07 Siemens Aktiengesellschaft Method for determining the thermal material properties of metal shaped parts
WO2006075473A1 (en) * 2005-01-11 2006-07-20 Nippon Steel Corporation Method for control of cooling of steel plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199632A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Control method for cooling of hot-rolled steel plate
JPS62263816A (en) * 1986-05-12 1987-11-16 Kobe Steel Ltd Water amount determining method for high temperature steel plank cooling
JPH0255613A (en) * 1988-08-18 1990-02-26 Kawasaki Steel Corp Controlling method for cooling hot rolled steel sheet of high carbon equivalent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199632A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Control method for cooling of hot-rolled steel plate
JPS62263816A (en) * 1986-05-12 1987-11-16 Kobe Steel Ltd Water amount determining method for high temperature steel plank cooling
JPH0255613A (en) * 1988-08-18 1990-02-26 Kawasaki Steel Corp Controlling method for cooling hot rolled steel sheet of high carbon equivalent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018934A1 (en) * 2000-08-29 2002-03-07 Siemens Aktiengesellschaft Method for determining the thermal material properties of metal shaped parts
US6679626B2 (en) 2000-08-29 2004-01-20 Siemens Aktiengesellschaft Method for determining the thermal materials properties of shaped metal parts
WO2006075473A1 (en) * 2005-01-11 2006-07-20 Nippon Steel Corporation Method for control of cooling of steel plate
JP2006193759A (en) * 2005-01-11 2006-07-27 Nippon Steel Corp Method for controlling cooling for steel sheet
KR100880961B1 (en) * 2005-01-11 2009-02-03 신닛뽄세이테쯔 카부시키카이샤 Method for control of cooling of steel plate
US7938917B2 (en) 2005-01-11 2011-05-10 Nippon Steel Corporation Method for controlling cooling of steel sheet

Similar Documents

Publication Publication Date Title
RU2404000C2 (en) Method of cooling control, cooling control device and cooling water amount calculator
JP4221002B2 (en) Cooling control method, cooling control device, and cooling water amount calculation device
CN107405657A (en) Temperature computation method, temperature computing device, method for heating and controlling and heating control apparatus
JPH0480324A (en) Method for cooling steel plate
CN114126777B (en) Method for controlling a cooling device in a rolling train
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JP2011173153A (en) Cooling controller for thick steel plate, cooling control method, and manufacturing method
JPH0523848B2 (en)
JPH02179827A (en) Controller for cooling hot-rolled steel sheet
JPH0671315A (en) Method for estimating rolling temperature of steel sheet in hot rolling
JPS5818401B2 (en) Continuous heating furnace control method
JPH0525567B2 (en)
JPS59125203A (en) Method for controlling temperature of rough rolling steel sheet
US11779977B2 (en) Method for setting different cooling curves of rolling material over the strip width of a cooling stretch in a hot-strip mill or heavy-plate mill
JPH04354827A (en) Method for estimating temperature distribution in plate thickness direction in stopping cooling
JP3558842B2 (en) Apparatus and method for cooling thick steel plate
JP2001269702A (en) Method for estimating temperature of hot steel
JPS5819435A (en) Controlling method for continuous heating furnace
JPS63118008A (en) Cooling method for high temperature steel plate
JP3518504B2 (en) How to set cooling conditions for steel sheets
JPH0270018A (en) Method for cooling hot steel plate
JPS58110109A (en) Temperature controlling device for material to be rolled
JPS63115610A (en) Cooling method for steel sheet
JP2501467B2 (en) Cooling control device for hot rolled steel sheet
Hadała et al. Validation of the boundary conditions in on-line temperature model for plate rolling mill