JPH0476307A - Method of burner control - Google Patents

Method of burner control

Info

Publication number
JPH0476307A
JPH0476307A JP2189742A JP18974290A JPH0476307A JP H0476307 A JPH0476307 A JP H0476307A JP 2189742 A JP2189742 A JP 2189742A JP 18974290 A JP18974290 A JP 18974290A JP H0476307 A JPH0476307 A JP H0476307A
Authority
JP
Japan
Prior art keywords
control
combustion
gain
correction value
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2189742A
Other languages
Japanese (ja)
Other versions
JPH0814364B2 (en
Inventor
Kenji Kaketa
健二 掛田
Takao Kashiyouji
嘉祥寺 隆夫
Makoto Fujiyoshi
誠 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2189742A priority Critical patent/JPH0814364B2/en
Publication of JPH0476307A publication Critical patent/JPH0476307A/en
Publication of JPH0814364B2 publication Critical patent/JPH0814364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/12Integration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/52Fuzzy logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To conduct auto-tuning of the control gain according to the conditions of combustion and improve the stability of control and stabilize the combustion by seeking repeatedly a correction value according to the conditions of combustion for the gain of feedback control of various conditions in equipment operation from fuzzy calculation which uses sensor outputs and adjusting variably the gain from the newest correction value. CONSTITUTION:A calculation section 29a grasps, based on sensor outputs of various sensors, various indexes for the current state of operation such as the thickness of refuse which shows the refuse supply volume, qualities of refuse, the ratio of primary air and secondary air volumes deviation in generated steam volumes, etc. and at the same time a plurality of fuzzy calculations are repeatedly conducted which uses selectively varies indexes. And, by the fuzzy calculation the most suitable control gain is estimated for the combustion air volume from the state of the generated steam at present, and correction values for the proportional gain and integral constant based on this estimation are sought. And as for the proportional gain, integral constants of the feedback control for various conditions of equipment operation such as the water volume of a boiler 10, pressure in the furnace, etc. the signal of correction value is supplied to a setting section 28c from an output section 29b based on each fuzzy calculation, and it is variably adjusted and corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、種々の燃料を炉内で燃焼するごみ焼却装置等
の種々の燃焼装置の自動燃焼制御に適用される燃焼装置
の制御方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a combustion device control method applied to automatic combustion control of various combustion devices such as garbage incinerators that burn various fuels in a furnace. .

〔従来の技術〕[Conventional technology]

従来、ごみ焼却装置の炉はほぼ第4図に示すように構成
され、ごみビットからクレーンで搬送された燃料として
のごみは焼却炉(1)の投入ホッパ(2)に投入される
Conventionally, a furnace of a garbage incinerator is constructed approximately as shown in FIG. 4, and garbage as fuel is transported by a crane from a garbage bit and is charged into an input hopper (2) of an incinerator (1).

そして、投入されたごみは図中の斜線に示すように堆積
した状態で下方の乾燥火格子(3)に送られ、この火格
子(3)により、下方の風箱(4)からの熱風で乾燥さ
れる。
The thrown garbage is then sent to the lower drying grate (3) in a piled state as shown by the diagonal lines in the figure, and through this grate (3), the hot air from the lower air box (4) dried.

さらに、火格子(3)の乾燥されたごみは、燃焼火格子
(5)に送られて燃焼される。
Furthermore, the dried waste on the grate (3) is sent to the combustion grate (5) to be burned.

なお、火格子(5)は前段格子(5a)と後段格子(5
b)とからなり、両路子(5a) 、 (5b)にそれ
ぞれの下方の風箱(6a) 、 (6b)からの燃焼用
の熱風が送られる。
In addition, the grate (5) is a front-stage grate (5a) and a rear-stage grate (5).
b), and hot air for combustion is sent from the lower wind boxes (6a) and (6b) to the two terminals (5a) and (5b), respectively.

そして、火格子(5)で燃焼されたごみは、完全に燃焼
するため、後燃焼火格子(7)で送られてさらに燃焼さ
れる。
Then, in order to completely burn the garbage burned in the grate (5), it is sent to the post-combustion grate (7) for further combustion.

なお、火格子(7)にも下方の風箱(8)からの燃焼用
の熱風が送られる。
Incidentally, hot air for combustion is also sent to the fire grate (7) from the lower air box (8).

また、火格子(7)の燃焼により生じた灰は、炉内の灰
ピット(9)に堆積する。
Also, the ash produced by the combustion of the grate (7) is deposited in the ash pit (9) in the furnace.

そして、炉内の熱によりボイラ00)で蒸気か発生し、
この蒸気が蒸気管路αDを介して外部に送られ、利用さ
れる。
Then, due to the heat inside the furnace, steam is generated in the boiler 00),
This steam is sent to the outside via the steam pipe αD and used.

ところで、各風箱f4) 、 (6a) 、 (6b)
 、 (8)に適当な熱風を供給するため、空気管路■
の1次空気がエアヒータα(至)により加熱され、エア
ヒータダンパQ4)及び風箱(41、(6a) 、 (
6b) 、 (81の下部の乾m火P−子!ンハa9.
燃焼空気ダンパ(16a) 、燃焼火格子ダンパ(16
b) 。
By the way, each wind box f4), (6a), (6b)
In order to supply suitable hot air to (8), air pipe ■
The primary air of
6b), (81 bottom dry m fire P-ko! Nha a9.
Combustion air damper (16a), combustion grate damper (16)
b).

0刀により分配調整されて風箱(4) 、 (6a) 
、 (6b) 、 (81それぞれに送られる。
Wind box (4), (6a) with distribution adjusted by 0 sword
, (6b), (81), respectively.

また、炉内には空気管路側の2次空気が送風ダンパOg
Jを介して直接供給される。
In addition, secondary air on the air pipe side is supplied to the furnace by a blow damper Og.
Supplied directly via J.

一方、火格子(5)へのごみ供給及び空気量の供給等を
制御するため、炉内の温度、圧力が温度センサ(20)
、圧力センサ(21)により検出され、風箱(4)。
On the other hand, in order to control the supply of waste and air to the grate (5), a temperature sensor (20) measures the temperature and pressure inside the furnace.
, detected by the pressure sensor (21) and the wind box (4).

(6a)の圧力が圧力センサ(22) 、 (23)そ
れぞれにより検出される。
The pressure in (6a) is detected by pressure sensors (22) and (23), respectively.

また、ボイラaωの発生蒸気量が流量センサ(24)に
より検出され、1次空気、2次空気の量が流量センサ(
25a) 、 (25b)により検出される。
In addition, the amount of steam generated by the boiler aω is detected by the flow sensor (24), and the amounts of primary air and secondary air are detected by the flow sensor (24).
25a) and (25b).

なお、第4図において、(1)゛は炉内の仕切壁、(2
6)はボイラ00)に接続された水管群を示す。
In Fig. 4, (1) is the partition wall inside the furnace, and (2 is
6) shows a group of water pipes connected to boiler 00).

そして、焼却炉(1)の各センサ(20)〜(25b)
等の検出信号(センサ出力)は、図外の自動燃焼の制御
装置に供給される。
And each sensor (20) to (25b) of the incinerator (1)
These detection signals (sensor outputs) are supplied to an automatic combustion control device (not shown).

この制御装置は前記ごみ供給、空気量供給及び発生蒸気
量等の装置運転の諸条件をフィードバック制御するため
、通常、各センサ出力に基づくPID処理により、ダン
パaa、αω・・・等の種々のアクチュエータの帰還制
御の信号を形成する。
This control device performs feedback control of the various operating conditions of the device, such as the dust supply, air volume supply, and amount of steam generated, so it usually performs PID processing based on each sensor output to control various dampers aa, αω, etc. Forms a signal for feedback control of the actuator.

そして、各アクチュエータの制御により各火格子(3)
、 (5)、 (7)のごみ送りの火格子速度及び風箱
(4)。
Then, each grate (3) is controlled by each actuator.
, (5), (7) Garbage feeding grate speed and wind box (4).

(6a) 、 (6b) 、 (8)の1次空気量、炉
内の2次空気量で決まる燃焼空気量等が調整される。
The amount of combustion air determined by the amount of primary air in (6a), (6b), and (8) and the amount of secondary air in the furnace are adjusted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来のごみ焼却装置の制御方法の場合、比例ゲイン
と積分定数とからなる諸条件のフィードバンク制御の制
御利得は、例えば試運転時に決定された値に固定されて
運転中に変更されることがない。
In the case of the conventional waste incinerator control method, the control gain of the feedbank control of various conditions consisting of a proportional gain and an integral constant is fixed to a value determined at the time of trial operation, for example, and may not be changed during operation. do not have.

そして、ごみの投入量、質等の何らかの変化によって燃
焼状態が変動しても前記制御利得が変わらず、フィード
バック制御の比例ゲイン、積分定数が常に一定に保持さ
れるため、例えば燃焼空気量の調整に基づく発生蒸気量
の制御において、燃焼状態の変動に基づき、制御利得の
過大によるハンチング運転、過小による制御遅れ等の不
安定な状態が発生する。
Even if the combustion state fluctuates due to some change in the input amount, quality, etc., the control gain does not change, and the proportional gain and integral constant of feedback control are always kept constant, so for example, the amount of combustion air can be adjusted. In the control of the amount of steam generated based on this, unstable conditions such as hunting operation due to excessive control gain and control delay due to insufficient control gain occur based on fluctuations in the combustion state.

したがって、制御の安定性が悪く、装置運転の安定化が
図れない問題点がある。
Therefore, there is a problem that the stability of the control is poor and the operation of the device cannot be stabilized.

そして、フィードバック制御又はフィードフォワード制
御の帰還制御により、固体、液体、気体等の種々の燃料
の燃焼を制御するときは、前記と同様の問題点が生じる
When the combustion of various fuels such as solid, liquid, and gas is controlled by feedback control or feedforward control, problems similar to those described above occur.

本発明は、燃焼状態の変動に応じて諸条件の制御利得を
可変し、最適量にオートチューニングするようにした燃
焼装置の制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for controlling a combustion apparatus in which control gains for various conditions are varied in accordance with fluctuations in combustion conditions and auto-tuned to an optimum amount.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明の固形燃焼装置の制
御方法においては、センサ出力を用いたファジィ演算に
より、諸条件の制御利得の燃焼状態に応した補正値をく
り返し求め、 最新の前記補正値により諸条件の帰還制御の利得を可変
して調整する。
In order to achieve the above object, in the solid combustion device control method of the present invention, a correction value corresponding to the combustion state of the control gain of various conditions is repeatedly determined by fuzzy calculation using sensor output, and the latest correction value is obtained. The gain of the feedback control of various conditions is varied and adjusted according to the value.

〔作 用〕[For production]

前記のように構成された本発明の燃焼装置の串繋制御方
法の場合、ファジィ演算により、燃焼の諸条件の制御利
得を各時点の燃焼状態に応じた最適値に調整する補正値
がくり返し求められる。
In the case of the skew control method for a combustion device of the present invention configured as described above, a correction value for adjusting the control gain of various combustion conditions to an optimal value according to the combustion state at each time point is repeatedly determined by fuzzy calculation. It will be done.

さらに、求められた最新の補正値に基づき、諸条件の制
御利得が自動的に可変調整されて最適燃焼状態の利得に
オートチューニングされ、燃焼の安定化が図られる。
Further, based on the latest correction value obtained, the control gain of various conditions is automatically and variably adjusted to auto-tune to the gain for the optimum combustion state, thereby stabilizing combustion.

〔実施例〕〔Example〕

1実施例について、第1図ないし第3図を参照して説明
する。
One embodiment will be described with reference to FIGS. 1 to 3.

第1図は第4図のごみ焼却装置に適用した場合の制御構
成を示し、コンピュータ等で形成された自動燃焼の制御
装置(27)はPID演算部(28)、  ファジィ制
御部(29L加算部(30)からなる。
Fig. 1 shows the control configuration when applied to the waste incineration device shown in Fig. 4, and the automatic combustion control device (27) formed by a computer etc. has a PID calculation section (28), a fuzzy control section (29L addition section (30).

そして、第4図の各センサ(20)〜(25b)等が形
成するセンサ部(31)の各センサの検出信号は演算部
(28)の入力処理H(28a)で収集処理され、検出
量演算部(28b)によりフィードバック制御の信号の
生成及び補正値決定のファジィ演算等に必要な各検出値
に加工されて制御量算出部(28c)及びファジィ制御
部(29)に供給される。
Then, the detection signals of each sensor of the sensor section (31) formed by the sensors (20) to (25b), etc. in FIG. The arithmetic unit (28b) processes the detection values into various detection values necessary for generating a feedback control signal, performing fuzzy calculations for determining correction values, etc., and supplies the detected values to the control amount calculation unit (28c) and the fuzzy control unit (29).

このとき、制御量算出部(28,c )は各検出値と算
出部(28c)内の利得設定部(28c) ’に設定さ
れた諸条件の制御利得とに基づ(フィードバック制御の
演算により、従来と同様のPID処理で諸条件のフィー
ドバック制御の信号を形成する。
At this time, the control amount calculation section (28,c) is based on each detected value and the control gain of various conditions set in the gain setting section (28c)' in the calculation section (28c) (based on the calculation of feedback control). , a signal for feedback control of various conditions is formed by PID processing similar to the conventional one.

そして、制御量算出部(28c)の各信号は加算部(3
0)を介して第4図の各ダンパ(9)、叫、・・・等が
形成するアクチュエータ部(32)に供給され、この供
給に基づき、各ダンパ圓、・・・の調整量等が制御され
てごみ供給量、燃焼状態等が調整され、焼却炉(1)の
燃焼がフィードバック制御される。
Each signal of the control amount calculation section (28c) is
0) to the actuator section (32) formed by each damper (9), etc. in Fig. 4, and based on this supply, the adjustment amount, etc. of each damper circle, etc. The amount of garbage supplied, the combustion state, etc. are adjusted, and the combustion in the incinerator (1) is feedback-controlled.

一方、ファジィ制御部(29)は演算部(29a)及び
補正値出力部(29b)を有し、装置運転の各制御利得
の補正値及び各制御量の補正値をくり返し求めて出力す
る。
On the other hand, the fuzzy control section (29) has a calculation section (29a) and a correction value output section (29b), and repeatedly calculates and outputs correction values for each control gain and each control amount for device operation.

すなわち、演算部(29a) は各センサ出力に基づき
、ごみ供給を示すごみ層厚、ごみ質及び1次。
That is, the calculation unit (29a) calculates the garbage layer thickness, garbage quality, and primary level, which indicate the garbage supply, based on the outputs of each sensor.

2次空気量比1発生蒸気量偏差等の現在の運転状態の種
々の指標を把握するとともに、各指標を選択的に用いた
複数のファジィ演算をくり返し実行する。
Various indicators of the current operating state, such as the secondary air amount ratio 1 generated steam amount deviation, are grasped, and a plurality of fuzzy calculations using each indicator selectively are repeatedly executed.

この各ファジィ演算により、各制御利得の補正値及び各
制御量の補正値が求められる。
Through these fuzzy calculations, correction values for each control gain and correction values for each control amount are determined.

つぎに、各制御利得の補正値の1例として、発生蒸気量
制御用の燃焼空気量のダンパ制御の補正値について説明
する。
Next, as an example of the correction value for each control gain, a correction value for damper control of the amount of combustion air for controlling the amount of generated steam will be described.

まず、発生蒸気量制御用の燃焼空気量のダンパ制御にお
いては、つぎ03種の不安定な状態が住じる。
First, in the damper control of the amount of combustion air for controlling the amount of steam generated, the following three types of unstable conditions exist.

(a)ハンチング状態: 蒸気量偏差が大きく、その変動周期が短い状態。(a) Hunting state: A state where the steam amount deviation is large and its fluctuation cycle is short.

fb)制御遅れ状態: 蒸気量偏差が太き(、その変動周期が長い状態。fb) Control delay state: A state where the steam amount deviation is large (and its fluctuation period is long).

(C)過小運転状態: 燃焼空気の平均値が少ない状態。(C) Under-driving condition: Condition where the average value of combustion air is low.

そして、前記fa) 、 (b) 、 (c)の状態が
発生したときは、燃焼空気量のフィードバック制御の比
例ゲイン、積分定数をつぎの(al ’ 、 (b) 
’ 、 (C1’ それぞれに示すように補正して安定
な状態に戻す。
When the conditions fa), (b), and (c) above occur, the proportional gain and integral constant of the feedback control of the amount of combustion air are expressed as (al', (b))
', (C1') Correct as shown respectively to return to a stable state.

(a)゛ 比例ゲイン、積分定数を共に小さくする。(a) Reduce both the proportional gain and the integral constant.

(b)′比例ゲイン、積分定数を共に大きくする。(b) Increase both the proportional gain and the integral constant.

(C)゛比例ゲイン、@分定数を状況に応じて共に小さ
くしたりする。
(C) Reduce both the proportional gain and the fractional constant depending on the situation.

そのため、発生蒸気量制御用の燃焼空気量のダンパ制御
の補正値については、例えば、蒸気量偏差とこの偏差の
変動周期とに基づ(つぎの表1の比例ゲイン、表2の積
分定数のファジィ演算のマトリックスが演算に用いられ
る。
Therefore, the correction value for the damper control of the amount of combustion air for controlling the amount of steam generated is determined, for example, based on the steam amount deviation and the fluctuation period of this deviation (proportional gain in Table 1 below, integral constant in Table 2). A matrix of fuzzy operations is used for the operations.

なお、同表において、V B (Very Big)は
非常に大きい、  L B (Little Big)
はやや大きい、ME(Medium)は中間、  L 
S (Little 5IIall)はやや小さい、 
 V S (Very Small)は非常に小さいを
示し、()は異常値(通常は使わない値)を示す。
In addition, in the same table, V B (Very Big) is very large, L B (Little Big)
is slightly large, ME (Medium) is medium, L
S (Little 5IIall) is slightly small,
V S (Very Small) indicates very small, and () indicates an abnormal value (a value not normally used).

表1 (比例ゲイン) 表2(積分定数) そして、前記画表のファジィ演算により、現在の発生蒸
気の状態から燃焼空気量の最適制御利得が推定され、こ
の推定に基づく比例ゲイン、積分定数の補正値が求めら
れる。
Table 1 (proportional gain) Table 2 (integral constant) The optimal control gain for the amount of combustion air is estimated from the current state of generated steam by the fuzzy calculation in the above chart, and the proportional gain and integral constant based on this estimation are estimated. A correction value is found.

この両袖正値の信号が補正値出力部(29b)の利得側
出力部(29b) ’ により形成され、この出力部(
29b)’から算出部(28c)の利得設定部(28c
)’に供給される。
This signal with positive values on both sides is formed by the gain side output section (29b)' of the correction value output section (29b), and this output section (
29b)' to the gain setting section (28c) of the calculation section (28c).
)' is supplied.

そして、利得設定部(28c)”の燃焼空気量のフィー
ドバック制御の既設定の比例ゲイン1積分定数が、例え
ば供給された最新の補正値の加算により、可変調整され
て補正される。
Then, the preset proportional gain 1 integral constant of the combustion air amount feedback control of the gain setting section (28c) is variably adjusted and corrected, for example, by adding the latest supplied correction value.

この補正により、前記(a)、 (b)、 (C)の不
安定な状態がファジィ演算の予測制御で防止される。
With this correction, the unstable states (a), (b), and (C) described above are prevented by predictive control using fuzzy calculations.

そして、発生蒸気量だけでなく、ボイラαωの水量、炉
内圧力等の装置運転の諸条件のフィードバック制御の比
例ゲイン、積分定数についても、前記と同様の演算部(
29a)の各ファジィ演算に基づき、出力部(29b)
 ’から設定部(28c) ’に補正値の信号が供給さ
れ、可変調整されて補正される。
The same calculation unit (
Based on each fuzzy operation of 29a), the output section (29b)
A correction value signal is supplied from ' to the setting section (28c)', and is variably adjusted and corrected.

したかって、算出部(28c) のフィートハック制御
の各制御利得が、常時、燃焼状態に応じた最適値にオー
トチューニングされて燃焼の安定化か図られる。
Therefore, each control gain of the foot hack control of the calculating section (28c) is always auto-tuned to the optimum value according to the combustion state, thereby stabilizing the combustion.

なお、この実施例の場合、フィードハック制御による諸
条件の調整とファジィ演算に基づくフィードバック制御
の各制御利得の調整とは、第2図に示すように並列に行
われる。
In the case of this embodiment, the adjustment of various conditions by the feed-hack control and the adjustment of each control gain of the feedback control based on the fuzzy calculation are performed in parallel as shown in FIG.

そして、発生蒸気量等が変動なく規定値に保持される良
好な運転状態のときは、フィードバック制御に基づく諸
条件の変化及びファジィ制御に基づく各制御利得の変化
がほとんど生しない。
In a good operating state in which the amount of generated steam and the like is maintained at a specified value without fluctuation, there are almost no changes in various conditions based on feedback control or changes in each control gain based on fuzzy control.

一方、運転状態が不安定になると、フィードバック制御
によって諸条件が可変調整されるとともに、ファジィ制
御によって各制御利得が自動調整される。
On the other hand, when the operating state becomes unstable, various conditions are variably adjusted by feedback control, and each control gain is automatically adjusted by fuzzy control.

また、運転状態が大きく変動して前記ファジィ制御を施
しても安定にならないときは、設定部(28c) ’の
各制御利得が初期設定時と同様、手動操作で調整される
Further, when the operating state fluctuates greatly and cannot be stabilized even with the fuzzy control, each control gain of the setting section (28c)' is manually adjusted as in the initial setting.

ところで、この実施例においては、制御精度の一層の向
上を図るため、演算部(29a)のファジィ演算部より
、火格子(3)のごみ質からの火格子(5)のごみ質傾
向の推定等も行う。
By the way, in this embodiment, in order to further improve the control accuracy, the fuzzy calculation section of the calculation section (29a) estimates the tendency of the waste quality of the grate (5) from the waste quality of the grate (3). etc. will also be done.

そして、推定されたごみ質傾向等に基づき、補正値出力
部(29b)の信号側出力部(29b)″により、算出
部(28c)のフィードバック制御の各信号に加減算さ
れる制御量補正用の各信号が形成される。
Then, based on the estimated waste quality tendency, etc., the signal side output section (29b)'' of the correction value output section (29b) adds and subtracts control amount correction to each signal of the feedback control of the calculation section (28c). Each signal is formed.

この各信号が出力部(29b) ”から加算部(30)
に供給され、この加算部(30)の加算補正に基づき、
装置運転の諸条件のフィードバック制御にフィードフォ
ワード制御の修正が施され、燃焼状態が一層高精度に制
御される。
These signals are sent from the output section (29b) to the addition section (30).
Based on the addition correction of this addition section (30),
Feedforward control is modified to feed-forward control of the various conditions of device operation, and combustion conditions are controlled with even higher precision.

そして、第1図の制御装置(27)を用いたときは、前
記各制御量のオートチューニングに基づき、第3図(a
)の運転特性が得られた。
When the control device (27) shown in FIG. 1 is used, the control device (27) shown in FIG.
) operating characteristics were obtained.

この運転特性は、同図(b)の従来装置を用いた特性と
の比較からも明らかなように、極めて安定である。
These operating characteristics are extremely stable, as is clear from the comparison with the characteristics using the conventional device shown in FIG. 2(b).

なお、第3図(a)、 (b)において、実線it  
ii、  iiiは炉温じC)、蒸気量偏差(T/H)
 、燃焼空気流量(KN m /H)を示す。
In addition, in FIGS. 3(a) and (b), the solid line it
ii and iii are furnace temperature C) and steam amount deviation (T/H)
, indicates the combustion air flow rate (KN m /H).

そして、前記実施例においては、固体のごみを燃料とす
るごみ焼却装置に適用したが、固体、液体、気体等の種
々の燃料を炉内で燃焼する種々の燃焼装置に通用するこ
とができる。
In the above embodiment, the present invention is applied to a waste incineration device that uses solid waste as fuel, but it can be applied to various combustion devices that burn various fuels such as solid, liquid, and gas in a furnace.

このとき、装置運転の諸条件及び諸条件の帰還制御手法
等は、実施例に限定されるものではない。
At this time, the various conditions for operating the apparatus and the feedback control method for the various conditions are not limited to the embodiments.

また、センサ出力を用いたファジィ演算のマトリックス
等も実施例に限定されるものではない。
Furthermore, the matrices of fuzzy calculations using sensor outputs are not limited to the embodiments.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているため、以
下に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

センサ出力を用いたファジィ演算により、装置運転の諸
条件の帰還制御の利得の燃焼状態に応した補正値をくり
返し求め、最新の補正値により前記利得を可変調整した
ため、燃焼状態に応じて制御利得をオートチューニング
し、制御の安定化を向上して燃焼の安定化を図ることが
できる。
By using fuzzy calculations using sensor output, a correction value corresponding to the combustion state of the feedback control gain of various equipment operation conditions is repeatedly determined, and the gain is variably adjusted using the latest correction value, so that the control gain can be adjusted according to the combustion state. can be automatically tuned to improve control stability and stabilize combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1ないし第3図は本発明の燃焼装置の制御方法の1実
施例を示し、第1図はブロック図、第2図はフローチャ
ート、第3図(a)、 (b)は運転特性図、第4図は
ごみ焼却装置のブロック図である。 (1)・・・燃焼炉、(27)・−・制御装置、(28
)・−P I D演算部、(29)・−・ファジィ制御
部、(30)・・・加算部、(31)・・・センサ部、
(32)・・・アクチュエータ部。 代理人  弁理士   藤1)龍太部 第2図 第1 図 1・・・現卿炉 27・・W制御輩■ 28・・・PID糧車岬 2Bo−−λ−ρ交理作 28b・・1吏七1算狐q 28c、制御t l*4 28ピ、千1侵鐘た卸 29・   71ン゛4市1舞ψ17 29G  ・・ 7丁ソ゛4?11濁暉、1−ρ29b
 ・・・ 事枠を已りljζ刀?P30・・pal詐 り−・ τにτ仰 32・  ア7七−L−タ奮7 第3 (a) 図 (b) 旺県鮪間 (令)
1 to 3 show an embodiment of the combustion apparatus control method of the present invention, FIG. 1 is a block diagram, FIG. 2 is a flowchart, and FIGS. 3(a) and 3(b) are operating characteristic diagrams. FIG. 4 is a block diagram of the garbage incinerator. (1)... Combustion furnace, (27)... Control device, (28
)・-PID calculation section, (29)...Fuzzy control section, (30)...Addition section, (31)...Sensor section,
(32)...actuator section. Agent Patent Attorney Fuji 1) Ryutabe Figure 2 Figure 1... Current reactor 27... W controller ■ 28... PID Supply Car Misaki 2Bo--λ-ρ Karisaku 28b... 1吏71 罐q 28c, control t l * 4 28 pi, 1,100 bells 29. 71 in 4 city 1 dance ψ 17 29G... 7 ding so 4?11 turbidity, 1-ρ 29b
... Is it a ljζ sword that goes beyond the scope of things? P30...pal fraud-- τ to τ 32, A77-L-TA 7 3rd (a) Figure (b) Wang Prefecture Maguma (Rei)

Claims (1)

【特許請求の範囲】[Claims] (1)固体、液体、気体等の種々の燃料を炉内で燃焼す
る燃焼装置に適用され、 種々のセンサ出力に基づき、燃料、空気の供給等の装置
運転の諸条件を帰還制御する燃焼装置の制御方法におい
て、 センサ出力を用いたファジィ演算により、前記帰還制御
の利得の燃焼状態に応じた補正値をくり返し求め、 最新の前記補正値により前記帰還制御の利得を可変して
調整する ことを特徴とする燃焼装置の制御方法。
(1) A combustion device that is applied to a combustion device that burns various fuels such as solid, liquid, gas, etc. in a furnace, and that feedback controls various conditions of device operation such as fuel and air supply based on various sensor outputs. In the control method, a correction value of the gain of the feedback control according to the combustion state is repeatedly determined by fuzzy calculation using the sensor output, and the gain of the feedback control is varied and adjusted using the latest correction value. Characteristic combustion device control method.
JP2189742A 1990-07-18 1990-07-18 Control method of garbage incinerator Expired - Lifetime JPH0814364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189742A JPH0814364B2 (en) 1990-07-18 1990-07-18 Control method of garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189742A JPH0814364B2 (en) 1990-07-18 1990-07-18 Control method of garbage incinerator

Publications (2)

Publication Number Publication Date
JPH0476307A true JPH0476307A (en) 1992-03-11
JPH0814364B2 JPH0814364B2 (en) 1996-02-14

Family

ID=16246422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189742A Expired - Lifetime JPH0814364B2 (en) 1990-07-18 1990-07-18 Control method of garbage incinerator

Country Status (1)

Country Link
JP (1) JPH0814364B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273733A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
EP1906092A1 (en) 2006-09-30 2008-04-02 Powitec Intelligent Technologies GmbH Method for controlling a combustion process
JP2008089269A (en) * 2006-10-04 2008-04-17 Taisei Denki Seisakusho:Kk Low pollution incineration controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183819A (en) * 1984-09-29 1986-04-28 Mitsubishi Heavy Ind Ltd Burning control of refuse incinerator
JPH02187510A (en) * 1989-01-12 1990-07-23 Ishikawajima Harima Heavy Ind Co Ltd Control of refuse incinerator and control device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183819A (en) * 1984-09-29 1986-04-28 Mitsubishi Heavy Ind Ltd Burning control of refuse incinerator
JPH02187510A (en) * 1989-01-12 1990-07-23 Ishikawajima Harima Heavy Ind Co Ltd Control of refuse incinerator and control device therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273733A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
EP1906092A1 (en) 2006-09-30 2008-04-02 Powitec Intelligent Technologies GmbH Method for controlling a combustion process
US7624082B2 (en) 2006-09-30 2009-11-24 Powitec Intelligent Technologies Gmbh Correlation of plant states for feedback control of combustion
KR101390913B1 (en) * 2006-09-30 2014-04-30 스티그 포위텍 게엠베하 A method for regulating a combustion process
JP2008089269A (en) * 2006-10-04 2008-04-17 Taisei Denki Seisakusho:Kk Low pollution incineration controller
JP4586789B2 (en) * 2006-10-04 2010-11-24 株式会社 大成電機製作所 Low pollution incineration control device

Also Published As

Publication number Publication date
JPH0814364B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
JP5683338B2 (en) Temperature control device for circulating fluidized incinerator and temperature control method thereof
US5261337A (en) Combustion control method of refuse incinerator
US6752093B2 (en) Method for operating a refuse incineration plant
JPH079288B2 (en) Fuel supply control method for solid combustion device
HU212738B (en) Method for operating incinerator with grate and controlling system and incineractor for carrying out that method
JPH0476307A (en) Method of burner control
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JPS6116889B2 (en)
JPH0323806B2 (en)
JPH04208306A (en) Method for controlling combustion in solid item combustion device
JPS61143617A (en) Method of controlling combustion in refuse incinerator
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
JP5277036B2 (en) Temperature control device for sludge incinerator and temperature control method for sludge incinerator
JPS6136611A (en) Combustion control of refuse incinerator
JP4276146B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP2020190364A (en) Combustion control method and refuse incinerator power generating facility
JP3235646B2 (en) Combustion control method for sludge incinerator and apparatus therefor
JP2007139412A (en) Refuse incineration plant regulation method using operation of support burner
JPH035489B2 (en)
JP2790780B2 (en) Incinerator combustion control device
JPH09273731A (en) Control method of combustion in incinerating furnace
JPH04208305A (en) Method for controlling solid product combustion device
JPH11257634A (en) Operation-supporting device for combustion controller in waste incinerating furnace
JPH0533088B2 (en)
JPS6025682B2 (en) Combustion air flow control device in boiler