JPH047619B2 - - Google Patents

Info

Publication number
JPH047619B2
JPH047619B2 JP59232710A JP23271084A JPH047619B2 JP H047619 B2 JPH047619 B2 JP H047619B2 JP 59232710 A JP59232710 A JP 59232710A JP 23271084 A JP23271084 A JP 23271084A JP H047619 B2 JPH047619 B2 JP H047619B2
Authority
JP
Japan
Prior art keywords
switching
backup
lines
code processing
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59232710A
Other languages
Japanese (ja)
Other versions
JPS61111036A (en
Inventor
Hikari Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP23271084A priority Critical patent/JPS61111036A/en
Publication of JPS61111036A publication Critical patent/JPS61111036A/en
Publication of JPH047619B2 publication Critical patent/JPH047619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期切替方式に関し、特にN:2(又
は3以上)の現用予備構成を有するデイジタル無
線通信方式で無符号誤りの回線切替を行う同期切
替方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a synchronous switching system, and particularly to a digital wireless communication system having an N:2 (or 3 or more) active and backup configuration for performing uncoded error line switching. Regarding synchronous switching method.

〔従来の技術〕[Conventional technology]

デイジタル無線通信方式では、回線切替に際し
て瞬断があると符号誤りを発生する。このため従
来のアナログ無線回線に用いられている同軸切替
器による回線切替の外に、送信側に設けた電子回
路からなる送信切替回路と受信側に設けた同期切
替回路により、無符号誤りの切替を行う同期切替
方式(特開昭55−143850号公報参照)が採用され
ている。この同期切替方式は予防保全のための回
線切替のみならず、フエージングによる回線断を
救済するためにも効果がある。近年、デイジタル
通信の発達と高い周波数帯の開発により、同一区
間で使用される現用無線回線の数は多くなる傾向
にあり、N:2の現用予備構成のデイジタル無線
通信方式に対する要求も増加すると思われる。従
来はN:1の現用予備構成がほとんどであり、予
備無線回線に対しても各現用無線回線と同様に、
バイポーラ・ユニポーラの符号変換および無線区
間監視用のフレーム同期信号、パリテイ・チエツ
ク・ビツト等を挿入除去して速度変換を行う送信
および受信符号処理回路を無線回線と一対一に対
応させ、現用無線回線の各符号処理回路の機器故
障に対する予備の役割を持たせると同時に、常時
は送信側から搬送端局の信号に該当する試験信号
を送り受信側で検出することによつて予備無線回
線の状態を監視するために使用されている。
In digital wireless communication systems, code errors occur if there is a momentary interruption when switching lines. Therefore, in addition to line switching using a coaxial switch used in conventional analog wireless lines, a transmission switching circuit consisting of an electronic circuit on the transmitting side and a synchronous switching circuit on the receiving side are used to switch over uncoded errors. A synchronous switching method (see Japanese Unexamined Patent Publication No. 143850/1983) is adopted. This synchronous switching method is effective not only for line switching for preventive maintenance, but also for relieving line disconnections due to fading. In recent years, with the development of digital communications and the development of high frequency bands, the number of active wireless lines used in the same section has tended to increase, and the demand for digital wireless communication systems with an N:2 active backup configuration is expected to increase. It will be done. Conventionally, most of the working/backup configurations were N:1, and the protection wireless lines were also configured in the same way as each working wireless line.
The transmission and reception code processing circuits, which perform speed conversion by inserting and removing frame synchronization signals, parity check bits, etc. for bipolar/unipolar code conversion and wireless section monitoring, are made in one-to-one correspondence with the wireless line, and are At the same time, the status of the backup radio line is always checked by detecting on the sending and receiving sides a test signal that corresponds to the signal from the carrier end station from the transmitting side. used for monitoring.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

二つの予備無線回線を有するN:2の同期切替
方式を実現するためには、上述した従来の予備無
線回線の構成をそのまま二組備えて構成すること
もできるが、機器故障の確率は無線回線のフエー
ジングの発生による障害に対して著しく小さい。
従つて、送信および受信符号処理回路の予備を予
備無線回線の数に対応して設けることは経済的で
ない。本発明の目的は、この点に着目し、無線回
線のフエージングに対してはN:2の同期切替が
できるが、送信および受信の各符号処理回路の機
器故障に対してはN:1の同軸切替器による予備
切替機能を持つ経済的な同期切替方式を提供する
ことである。
In order to realize the N:2 synchronous switching method with two backup wireless lines, it is possible to configure the conventional backup wireless line configuration described above by providing two sets, but the probability of equipment failure is higher than that of the wireless lines. The damage caused by fading is significantly smaller.
Therefore, it is not economical to provide spare transmission and reception code processing circuits corresponding to the number of spare radio lines. The purpose of the present invention is to focus on this point, and while it is possible to perform N:2 synchronous switching against fading in the wireless line, it is possible to perform N:1 synchronous switching against equipment failures in the transmitting and receiving code processing circuits. It is an object of the present invention to provide an economical synchronous switching system having a preliminary switching function using a coaxial switch.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の同期切替方式は、N個の現用無線回線
に対して少なくとも二つの予備無線回線を有する
デイジタル無線通信方式で現用と予備との切替を
無符号誤りで行う同期切替方式において、送信端
局および受信端局で予備回線用の試験信号の符号
変換および速度変換を行う一組の送信符号処理回
路および受信符号処理回路に対して少なくとも二
つの予備無線回線を対応させ、前記送信符号処理
回路と前記予備無線回線との間に設けられた電子
回路からなる送信切替回路と、前記受信符号処理
回路と前記予備無線回線との間に設けられた分岐
切替回路と、前記各現用無線回線の前記受信端局
側に設けられた同期切替回路とによつて、前記各
現用無線回線と前記予備無線回線とを無符号誤り
で切り替えられるようにして構成される。
The synchronous switching system of the present invention is a digital wireless communication system that has at least two backup wireless lines for N working wireless lines, and in a synchronous switching system that switches between the working and backup lines without code errors, the transmitting terminal At least two backup wireless lines are made to correspond to a set of transmission code processing circuits and reception code processing circuits that perform code conversion and rate conversion of test signals for the protection line at the receiving terminal station, and the transmission code processing circuit and the transmission code processing circuit a transmission switching circuit comprising an electronic circuit provided between the backup radio line, a branch switching circuit provided between the reception code processing circuit and the backup radio line, and the reception switch of each of the working radio lines. A synchronous switching circuit provided on the terminal station side is configured to enable switching between each of the working radio lines and the backup radio line without code errors.

〔実施例〕〔Example〕

次に図面を参照して本発明を詳細に説明する。
第1図aは本発明の一実施例の送信側の切替装置
の構成を示すブロツク図、第1図bは受信側の切
替装置の構成を示すブロツク図である。第1図a
において、多重化搬端装置(図示せず)から送ら
れてくるN個の現用無線回線SYS−i(以下iは
1〜Nを表す)用のバイポーラ入力信号100−
iは、それぞれハイブリツドH1−iにより二分
され、その一方は同軸切替器2−iを経て常時は
終端抵抗器に接続され、他方は送信符号処理回路
3−iに送られる。この信号は送信符号処理回路
3−iにおいてユニポーラ信号に変換され、速度
変換されて無線区間監視用のフレーム同期信号、
パリテイ・チエツク・ビツト等の付加ビツトが挿
入され、スクランブル処理後二分されて一方は変
調入力信号101−iとして各送信機(図示せ
ず)に送り出される。一方、予備無線回線SP−
1,SP−2に対しては、試験符号発生器4で発
生されたバイポーラ信号が各同軸切替器2−iを
通過して送信符号処理回路3−Sに加えられ、こ
こで送信符号処理回路3−iにおけると同様の符
号処理を受けた後送信切替回路5に送られる。こ
の信号は送信切替回路5で二分され、変調入力信
号101−S1及び101−S2として予備無線回線
SP−1及びSP−2の各送信機(図示せず)に並
列に送出される。各現用無線回線の送信符号処理
回路3−iの出力は図に示すようにそれぞれ二分
され、一方は前述したように変調入力信号101
−iとして各送信機に送られるが、他方の分岐信
号102−iは、直接または切替回路6−j(j
は1〜m、図のように各切替回路が4現用無線回
線に対して1個設けられているときはN=18とす
るとm=4である)を経て送信切替回路5に接続
されている。これらの分岐信号102−iは破線
で示す送信切替制御装置7からの制御信号103
及び104−jによりSP−1,SP−2のいずれ
にも接続できるよう構成されている。
Next, the present invention will be explained in detail with reference to the drawings.
FIG. 1a is a block diagram showing the configuration of a switching device on the transmitting side according to an embodiment of the present invention, and FIG. 1b is a block diagram showing the configuration of the switching device on the receiving side. Figure 1a
, bipolar input signals 100- for N working wireless lines SYS-i (hereinafter i represents 1 to N) are sent from a multiplexing carrier end device (not shown).
i is divided into two by each hybrid H1-i, one of which is normally connected to a terminating resistor via a coaxial switch 2-i, and the other is sent to a transmission code processing circuit 3-i. This signal is converted into a unipolar signal in the transmission code processing circuit 3-i, and speed-converted into a frame synchronization signal for wireless section monitoring.
Additional bits such as parity check bits are inserted, and after scrambling, the signal is divided into two and one is sent to each transmitter (not shown) as a modulated input signal 101-i. On the other hand, the backup wireless line SP−
1, SP-2, the bipolar signal generated by the test code generator 4 passes through each coaxial switch 2-i and is applied to the transmission code processing circuit 3-S, where it is applied to the transmission code processing circuit 3-S. After being subjected to the same code processing as in 3-i, it is sent to the transmission switching circuit 5. This signal is divided into two by the transmission switching circuit 5 and sent to the backup radio line as modulated input signals 101-S 1 and 101-S 2.
It is transmitted in parallel to each transmitter of SP-1 and SP-2 (not shown). The output of the transmission code processing circuit 3-i of each working radio line is divided into two as shown in the figure, one of which is the modulated input signal 101 as described above.
-i to each transmitter, but the other branch signal 102-i is sent directly or to the switching circuit 6-j (j
are connected to the transmission switching circuit 5 through 1 to m (as shown in the figure, when one switching circuit is provided for 4 working radio lines, if N = 18, then m = 4). . These branch signals 102-i are control signals 103 from the transmission switching control device 7 indicated by broken lines.
and 104-j so that it can be connected to either SP-1 or SP-2.

第1図bの受信側切替装置においては、各現用
無線回線SYS−iの受信機(図示せず)で復調
された復調信号105−iは、フレーム同期回路
8−iでフレーム同期信号が検出され、同期切替
回路9−iを経て受信符号処理回路10−iに送
られる。この信号は受信符号処理回路10−iで
デスクランブル及び逆速度変換を受け、フレーム
同期信号およびパリテイ・チエツク・ビツト等の
付加ビツトが除去され、バイポーラ信号に変換さ
れて同軸切替器11−iを経て出力信号106−
iとして受信多重化搬端装置(図示せず)に送出
される。二つの予備無線回線SP−1及びSP−2
の復調信号105−S1及び105−S2は、フレー
ム同期回路8−S1及び8−S2を経て分岐切替回路
14に入り、通常はそのいずれか一方が選択され
受信符号処理回路10−Sに接続されている。こ
こで各現用無線回線におけると同様の符号処理を
受けた信号は、各同軸切替器11−iを通過して
試験符号検出器15に接続されている。パリテイ
検出器P12−i,12−S1,12−S2は各復調
信号のパリテイ・チエツクを行い、その出力は受
信切替制御装置13(破線で示す)に送られる。
分岐切替回路14は受信切替制御装置からの制御
信号107及び108−jにより、予備無線回線
の復調信号を現用無線回線の同期切替回路9−i
のいずれにも、直接または切替回路16−jを経
て接続できるよう構成されている。
In the receiving side switching device shown in FIG. 1b, the demodulated signal 105-i demodulated by the receiver (not shown) of each working wireless line SYS-i is detected as a frame synchronization signal by the frame synchronization circuit 8-i. and is sent to the received code processing circuit 10-i via the synchronous switching circuit 9-i. This signal undergoes descrambling and reverse rate conversion in the reception code processing circuit 10-i, removes the frame synchronization signal and additional bits such as parity check bits, converts it into a bipolar signal, and sends it to the coaxial switch 11-i. output signal 106-
i to a receiving multiplexing carrier end device (not shown). Two backup radio lines SP-1 and SP-2
The demodulated signals 105-S 1 and 105-S 2 enter the branch switching circuit 14 through the frame synchronization circuits 8-S 1 and 8-S 2 , and normally one of them is selected and sent to the received code processing circuit 10-. Connected to S. Here, the signals that have undergone the same code processing as in each working radio line pass through each coaxial switch 11-i and are connected to the test code detector 15. Parity detectors P12-i, 12-S 1 and 12-S 2 perform a parity check on each demodulated signal, and their outputs are sent to reception switching control device 13 (indicated by broken lines).
The branch switching circuit 14 uses control signals 107 and 108-j from the reception switching control device to transfer the demodulated signal of the backup radio channel to the synchronous switching circuit 9-i of the working radio channel.
It is configured so that it can be connected to either directly or via a switching circuit 16-j.

本実施例の同期切替方式は第1図a及び第1図
bの送信側および受信側切替装置と、図中に破線
で示したこれらを制御する送信および受信切替制
御装置と、N+2の無線回線および制御回線とか
ら構成される。以下、その切替動作について詳細
に説明する。各無線回線が正常に動作していると
きには、送信端局の試験符号発生器4からの試験
信号は、送信符号処理回路3−S、送信切替回路
5を経て予備無線回線SP−1,SP−2に並列に
送信されている。受信端局で復調された復調信号
105−S1,105−S2は、分岐切替回路14で
その一方、例えばSP−1が選択され、受信符号
処理回路10−Sを経た後同軸切替器11−iを
通過して試験符号検出器15に送られ、ここで試
験信号が検出されて予備無線回線SP−1の状態
が確認され、SP−1が待機状態となつている。
この状態で現用無線回線の一つ、例えばSYS−
1にフエージングが発生すると、パリテイ検出器
12−1の出力から受信切替制御装置13が符号
誤り率の低下を検出して予備無線回線SP−1へ
の切替を指令する。この指令は制御回線により送
信側に送られると同時に、分岐切替回路14を制
御して予備無線回線SP−1を受信符号処理回路
10−Sから切り放して代りにSP−2を接続し、
SP−2が待機状態となる。この切替指令を受け
た送信側では、送信切替制御装置7からの制御信
号103によつて送信切替回路5を制御し、
SYS−1の送信符号処理回路3−1からの分岐
信号102−1をSP−1に接続し、多重化搬端
装置からの入力信号100−1をSYS−1とSP
−1に並列に送信する。このとき送信符号処理回
路3−Sの出力はSP−2にのみ送出される。SP
−1の受信側ではこの切替により過渡的に同期が
乱れることもあるが、同期が回復してフレーム同
期回路8−S1及びパリテイ検出器12−S1の出力
が正常になると、分岐切替回路14は制御信号1
07によつてSP−1の出力をSYS−1の同期切
替回路9−1に接続する。同期切替回路9−iは
二組のバツフアメモリを備えた公知の回路(前述
の特開昭55−143850号公報記載の同期切替回路)
であり、SYS−1とSP−1のフレーム同期信号
で両信号の同期をとり、受信切替制御装置13か
らの制御信号109−iによつて受信符号処理回
路10−1に接続する信号をSYS−1からSP−
1に切り替える。こによりSYS−1の復調信号
とSP−1の復調信号とは符号誤りの発生なく切
り替えられる。前述したように、SYS−1の切
替信号が出されるとSP−2の復調信号が受信符
号処理回路10−Sに接続されてSP−2が切替
待機状態となつているので、続いて他の現用無線
回線、例えばSYS−3の符号誤り率がフエージ
ングによつて低下すると、パリテイ検出器12−
3からの情報により受信切替制御装置13から切
替指令が出され、送信側のSYS−3の分岐信号
102−3が切替回路6−1及び送信切替回路5
を経てSP−2に接続され並列送信状態となる。
以下、同様にしてSP−2の受信側の復調信号1
05−S2は分岐切替回路14及び切替回路16−
1を経てSYS−3の同期切替回路9−3に接続
され、同期切替が行われてSYS−3はSP−2に
より救済される。予備無線回線SP−1及びSP−
2に切り替えられた現用無線回線SYS−1及び
SYS−3は、それぞれ予備無線回線SP−1及び
SP−2と並列送信状態にあつて、フエージング
が回復してパリテイ検出器12−1及び12−3
により検出される符号誤り率があらかじめ定めら
れた値(通常切替開始の誤り率よりも一桁良い値
に設定される)以上に回復すると、それぞれ同期
切替回路9−1及び9−3により予備から現用に
戻され、予備無線回線は再び待機状態となる。
The synchronous switching system of this embodiment includes the transmitting side and receiving side switching devices shown in FIG. 1a and FIG. and a control line. The switching operation will be explained in detail below. When each radio line is operating normally, the test signal from the test code generator 4 of the transmitting terminal station passes through the transmission code processing circuit 3-S and the transmission switching circuit 5 to the backup radio lines SP-1, SP- 2 are sent in parallel. The demodulated signals 105-S 1 and 105-S 2 demodulated by the receiving terminal station are sent to the branch switching circuit 14, where one of them, for example, SP-1, is selected, and after passing through the received code processing circuit 10-S, the signals are sent to the coaxial switching device 11. -i, and is sent to the test code detector 15, where the test signal is detected and the state of the backup radio line SP-1 is confirmed, and SP-1 is in a standby state.
In this state, one of the working wireless lines, for example SYS-
When fading occurs in SP-1, the reception switching control device 13 detects a decrease in the bit error rate from the output of the parity detector 12-1 and issues a command to switch to the backup radio line SP-1. This command is sent to the transmitting side via the control line, and at the same time controls the branch switching circuit 14 to disconnect the backup wireless line SP-1 from the received code processing circuit 10-S and connect SP-2 instead.
SP-2 enters the standby state. Upon receiving this switching command, the transmission side controls the transmission switching circuit 5 using the control signal 103 from the transmission switching control device 7,
The branch signal 102-1 from the transmission code processing circuit 3-1 of SYS-1 is connected to SP-1, and the input signal 100-1 from the multiplexing carrier end device is connected to SYS-1 and SP-1.
-1 in parallel. At this time, the output of the transmission code processing circuit 3-S is sent only to SP-2. SP
On the receiving side of -1, synchronization may be disrupted transiently due to this switching, but when synchronization is restored and the outputs of frame synchronization circuit 8-S 1 and parity detector 12-S 1 become normal, the branch switching circuit 14 is control signal 1
07 connects the output of SP-1 to the synchronous switching circuit 9-1 of SYS-1. The synchronous switching circuit 9-i is a known circuit including two sets of buffer memories (the synchronous switching circuit described in Japanese Patent Application Laid-Open No. 55-143850 mentioned above).
The frame synchronization signals of SYS-1 and SP-1 are used to synchronize both signals, and the signal connected to the reception code processing circuit 10-1 is connected to the reception code processing circuit 10-1 by the control signal 109-i from the reception switching control device 13. -1 to SP-
Switch to 1. Thereby, the demodulated signal of SYS-1 and the demodulated signal of SP-1 can be switched without generating a code error. As mentioned above, when the switching signal of SYS-1 is output, the demodulated signal of SP-2 is connected to the reception code processing circuit 10-S, and SP-2 is in the switching standby state, so that other When the bit error rate of the working wireless line, for example SYS-3, decreases due to fading, the parity detector 12-
3, a switching command is issued from the reception switching control device 13, and the branch signal 102-3 of the transmission side SYS-3 is sent to the switching circuit 6-1 and the transmission switching circuit 5.
It is connected to SP-2 via , and enters the parallel transmission state.
Below, in the same way, demodulated signal 1 on the receiving side of SP-2
05-S 2 is the branch switching circuit 14 and the switching circuit 16-
1 to the synchronous switching circuit 9-3 of SYS-3, synchronous switching is performed, and SYS-3 is rescued by SP-2. Backup wireless line SP-1 and SP-
The working wireless line SYS-1 and
SYS-3 is the backup wireless line SP-1 and
In parallel transmission state with SP-2, fading is recovered and parity detectors 12-1 and 12-3
When the code error rate detected by the synchronization switching circuits 9-1 and 9-3 recovers to a predetermined value (usually set to a value one order of magnitude better than the error rate at the start of switching), the synchronization switching circuits 9-1 and 9-3 switch from the standby to It is returned to active use, and the backup radio line is put into a standby state again.

上述したように、受信端局側で各切替器の前の
各無線回線側にパリテイ検出器を設けて回線の誤
り率を測定し、同期切替器によつて切り替えるこ
とにより、フエージングによる各現用無線回線の
品質低下に対して二つの予備無線回線によりN:
2の救済が行われる。一方、送信および受信符号
処理回路の機器故障に対しては、送受の同軸切替
器2−i及び11−iによりN:1の予備切替が
行われる。同軸切替器による切替が行われた場合
には、送信切替回路5で予備無線回線の一方、例
えばSP−2は送信符号処理回路3−Sから切り
放され、切り放された予備無線回線SP−2は他
の現用無線回線のフエージング救済に使用され
る。
As mentioned above, a parity detector is installed on each wireless line in front of each switching device on the receiving terminal side to measure the error rate of the line, and switching is performed using a synchronous switching device. N: Two backup wireless lines are provided to prevent the quality of the wireless line from deteriorating.
2 relief is carried out. On the other hand, in case of equipment failure in the transmitting and receiving code processing circuits, N:1 preliminary switching is performed by the transmitting and receiving coaxial switchers 2-i and 11-i. When switching is performed by the coaxial switch, one of the backup wireless lines, for example SP-2, is disconnected from the transmission code processing circuit 3-S by the transmission switching circuit 5, and the disconnected backup wireless line SP- 2 is used to relieve fading of other working radio lines.

上述の実施例においては、現用無線回線数Nが
大きく、予備無線回線に挿入される送信切替回路
5及び分岐切替回路14に集中する入出力信号線
の数を制限するため、SYS−3からSYS−Nに
対しては4回線づつを集中して切り替える切替回
路6−j及び16−jを用いているが、これらの
構成は実施例に限定されるものでなく、又、切替
回路は必ずしも使用しなくてもよい。又、上述の
実施例では第1図bに示すようにSP−1とSP−
2との切替は分岐切替回路14で行われ同期切替
でないので、同軸切替が行われて予備運用中の
SP−1にフエージングが発生したとき、これを
SP−2で救済するためには符号誤りが発生する。
機器故障の確率は非常に少ないが、この欠点を救
済するためには分岐切替回路14と受信符号処理
回路10−Sとの間に各現用無線回線と同様な同
期切替回路を設置すればよい。なお、これまでの
説明は予備無線回線が二つの場合について述べた
が、三つ以上の予備無線回線を有する場合にも同
様な構成が可能なことは言うまでもない。
In the embodiment described above, the number N of working radio lines is large, and in order to limit the number of input/output signal lines concentrated on the transmission switching circuit 5 and branch switching circuit 14 inserted into the backup radio line, SYS-3 to SYS -N, switching circuits 6-j and 16-j are used to switch four lines at a time, but these configurations are not limited to the embodiments, and the switching circuits are not necessarily used. You don't have to. In addition, in the above embodiment, as shown in FIG. 1b, SP-1 and SP-
Switching with 2 is performed by the branch switching circuit 14 and is not synchronous switching, so coaxial switching is performed and during standby operation.
When fading occurs in SP-1, this
A code error will occur in order to recover with SP-2.
Although the probability of equipment failure is very low, in order to remedy this drawback, it is sufficient to install a synchronous switching circuit similar to that of each working radio line between the branch switching circuit 14 and the received code processing circuit 10-S. Although the explanation so far has been made regarding the case where there are two backup radio lines, it goes without saying that a similar configuration is possible when there are three or more backup radio lines.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の同期切替
方式によれば、現用無線回線のフエージングに対
しては複数の予備無線回線によつてこれを救済
し、確率の少ない機器故障に対してはN:1の予
備構成とし、余分の予備用機器を設けずに経済的
な回線構成ができる効果がある。
As explained in detail above, according to the synchronous switching method of the present invention, fading of the working radio line can be relieved by using a plurality of backup radio lines, and equipment failure with low probability can be relieved. The N:1 backup configuration has the effect of allowing an economical line configuration without providing extra backup equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の一実施例の送信端局側の切
替装置のブロツク図、第1図bは受信端局側の切
替装置のブロツク図である。 1−i……ハイブリツドH、2−i,11−i
……同軸切替器、3−i,3−S……送信符号処
理回路、4……試験符号発生器、5……送信切替
回路、6−j,16−j……切替回路、7……送
信切替制御装置、8−i,8−S1,8−S2……フ
レーム同期回路、9−i……同期切替回路、10
−i,10−S……受信符号処理回路、12−
i,12−S1,12−S2……パリテイ検出器P、
13……受信切替制御装置、14……分岐切替回
路、15……試験符号検出器。
FIG. 1a is a block diagram of a switching device on the transmitting terminal station side according to an embodiment of the present invention, and FIG. 1b is a block diagram of a switching device on the receiving terminal station side. 1-i...Hybrid H, 2-i, 11-i
...Coaxial switch, 3-i, 3-S... Transmission code processing circuit, 4... Test code generator, 5... Transmission switching circuit, 6-j, 16-j... Switching circuit, 7... Transmission switching control device, 8-i, 8-S 1 , 8-S 2 ... frame synchronization circuit, 9-i ... synchronization switching circuit, 10
-i, 10-S... Reception code processing circuit, 12-
i, 12-S 1 , 12-S 2 ... Parity detector P,
13... Reception switching control device, 14... Branch switching circuit, 15... Test code detector.

Claims (1)

【特許請求の範囲】[Claims] 1 N個の現用無線回線に対して少なくとも二つ
の予備無線回線を有するデイジタル無線通信方式
で現用と予備との切替を無符号誤りで行う同期切
替方式において、送信端局および受信端局で予備
回線用の試験信号の符号変換および速度変換を行
う一組の送信符号処理回路および受信符号処理回
路に対して少なくとも二つの予備無線回線を対応
させ、前記送信符号処理回路と前記予備無線回線
との間に設けられた電子回路からなる送信切替回
路と、前記受信符号処理回路と前記予備無線回線
との間に設けられた分岐切替回路と、前記各現用
無線回線の前記受信端局側に設けられた同期切替
回路とによつて、前記各現用無線回線と前記予備
無線回線とを無符号誤りで切り替えられるように
構成されたことを特徴とする同期切替方式。
1 In a digital wireless communication system that has at least two backup wireless lines for N working wireless lines, in a synchronous switching system that switches between working and backup without coded errors, the transmitting terminal station and the receiving terminal station At least two backup radio lines are made to correspond to a pair of transmission code processing circuits and reception code processing circuits that perform code conversion and rate conversion of test signals for use, and between the transmission code processing circuit and the backup radio line. a transmission switching circuit consisting of an electronic circuit provided in the above, a branch switching circuit provided between the received code processing circuit and the backup radio line, and a branch switching circuit provided on the receiving terminal station side of each of the working radio lines. 1. A synchronous switching system, characterized in that the synchronous switching circuit is configured to switch each of the working radio lines and the backup radio line without coded errors.
JP23271084A 1984-11-05 1984-11-05 Synchronizing switching system Granted JPS61111036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23271084A JPS61111036A (en) 1984-11-05 1984-11-05 Synchronizing switching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23271084A JPS61111036A (en) 1984-11-05 1984-11-05 Synchronizing switching system

Publications (2)

Publication Number Publication Date
JPS61111036A JPS61111036A (en) 1986-05-29
JPH047619B2 true JPH047619B2 (en) 1992-02-12

Family

ID=16943564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23271084A Granted JPS61111036A (en) 1984-11-05 1984-11-05 Synchronizing switching system

Country Status (1)

Country Link
JP (1) JPS61111036A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084257B2 (en) * 1987-10-02 1996-01-17 日本電気株式会社 (1 + N) Hitless line switching device
AU694620B2 (en) * 1995-02-06 1998-07-23 Adc Telecommunications, Incorporated Method of communication channel monitoring using parity bits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143850A (en) * 1979-04-26 1980-11-10 Nec Corp Pcm line switching system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165440U (en) * 1980-05-13 1981-12-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143850A (en) * 1979-04-26 1980-11-10 Nec Corp Pcm line switching system

Also Published As

Publication number Publication date
JPS61111036A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
US5313456A (en) Data link protecting system
JPH084257B2 (en) (1 + N) Hitless line switching device
EP0225643B1 (en) Channel switching system
JPH047619B2 (en)
JPH0334638A (en) Circuit switching method
JPH0620193B2 (en) Line monitoring method
JPH11215013A (en) Digital microwave radio communication device
JPS58221534A (en) Optical fiber communication system
JP2682514B2 (en) Receive hot standby system
JP2567707B2 (en) Working-Standby line switching method
JPH098706A (en) Hot standby line switching system
JPH05206893A (en) Automatic changeover system for optical transmission system
JPH05291982A (en) Line switching system
JPH05344104A (en) Transmission path switching device
JPS59219030A (en) Sub-signal transmitting system
JPH0683177B2 (en) Polarization sharing digital wireless transmission system
JP2621629B2 (en) Digital wireless transmission system
JPH0779284B2 (en) Dual polarization transmission method and dual polarization transmission device using the same
JP2788840B2 (en) Wireless transmission system
JPH0590995A (en) Line changeover device
JPH03243031A (en) Line switching circuit
JP2616695B2 (en) Line switching device
JP3057187B2 (en) Connection system between heterogeneous satellite systems
JPS59174045A (en) Circuit switching system
JPH10290206A (en) Switching mask circuit for multiplex radio equipment and multiplex communication system using it