JPH0475820A - Water quality control device for wire cut electric discharge machine - Google Patents

Water quality control device for wire cut electric discharge machine

Info

Publication number
JPH0475820A
JPH0475820A JP18427590A JP18427590A JPH0475820A JP H0475820 A JPH0475820 A JP H0475820A JP 18427590 A JP18427590 A JP 18427590A JP 18427590 A JP18427590 A JP 18427590A JP H0475820 A JPH0475820 A JP H0475820A
Authority
JP
Japan
Prior art keywords
resistivity
tank
liquid
machining
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18427590A
Other languages
Japanese (ja)
Inventor
Toshio Tsutsumi
堤 都志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP18427590A priority Critical patent/JPH0475820A/en
Publication of JPH0475820A publication Critical patent/JPH0475820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To rapidly increase the resistivity value of machining liquid by detecting the resistivity value of machining liquid fed to a wire cut electric discharge machine by a resistivity detector and introducing high resistivity liquid from a high resistivity liquid tank to a machining liquid feed tank. CONSTITUTION:A water quality control device 1 is formed through combination of a machining liquid feed unit 2 with which a wire cut electric discharge machine is provided and a high resistivity liquid feed unit 3. A high resistivity liquid tank 24 is located in juxtaposition with a machining liquid feed tank 4, the tanks 4 and 24 are interconnected through a feed route 27 running from the high resistivity liquid tank 24 side, and a solenoid valve 37 is located in the route 27. Further, a resistivity detector A to output a detecting output when resistivity of machining liquid is below a set value is arranged. Thus, when resistivity of machining liquid is decreased to a value lower than a set value, it is detected by the resistivity detector A to generate a detecting output. A drive means receives the detecting output to open the solenoid valve 37. As a result, high resistivity liquid in the tank 24 is introduced to the tank 4, and resistivity of machining liquid is rapidly increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ワイヤカット放電加工機の加工液の比抵抗を
一定に保持する水質制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a water quality control device for maintaining a constant resistivity of machining fluid for a wire-cut electrical discharge machine.

従来の技術 ワイヤ放電加工機においては、加工液は通常水が使用さ
れ、該加工液の電導率を所定の電導率に維持するため、
加工液の比抵抗を検出し、該比抵抗値が一定になるよう
にイオン交換器を使って制御している。
In conventional wire electrical discharge machines, water is usually used as the machining fluid, and in order to maintain the electrical conductivity of the machining fluid at a predetermined level,
The specific resistance of the machining fluid is detected and controlled using an ion exchanger so that the specific resistance value remains constant.

放電加工が進行するにつれて、加工液の比抵抗は低下し
ていく。そのため、加工液の比抵抗を比抵抗検出器で検
出し、設定比抵抗値以下になったことを検出すると加工
液をイオン交換器に通し、加工液の比抵抗を高め、所定
の比抵抗値に維持されるよう制御している。
As electrical discharge machining progresses, the specific resistance of the machining fluid decreases. Therefore, the resistivity of the machining fluid is detected by a resistivity detector, and when it is detected that the resistivity is below the set resistivity value, the machining fluid is passed through an ion exchanger to increase the resistivity of the machining fluid and reach the predetermined resistivity value. It is controlled so that it is maintained.

一方、被加工物の材質によっては、加工液の比抵抗を大
幅に上げて加工した方が良い。すなわち、金型製作に使
用されることが多いSKDやSKS鋼材の場合、加工液
の比抵抗は1〜2X10’Ω・cm程度がよいとされ、
鋼材や超鋼材等の被加工物を加工する場合には、加工液
の比抵抗は3〜10×1.04Ω・Cmと大幅に高い値
で加工する方かよいとされている。
On the other hand, depending on the material of the workpiece, it is better to significantly increase the specific resistance of the machining fluid. In other words, in the case of SKD and SKS steel materials, which are often used in mold manufacturing, the specific resistance of the machining fluid is said to be approximately 1 to 2 x 10'Ωcm.
When machining workpieces such as steel materials and super steel materials, it is said that it is better to perform machining with a significantly higher specific resistance of the machining fluid, such as 3 to 10×1.04 Ω·Cm.

j7たがって、例えば5KSE材を加工した後、続いて
銅材を加工しようとすると加工液の比抵抗を大幅に上昇
させる必要がある。
Therefore, for example, if a copper material is to be processed after processing a 5KSE material, it is necessary to significantly increase the specific resistance of the processing fluid.

しかし5、これまで、加工液の比抵抗をあげる方法はイ
オン交換器に加工液を循環させるだけなので能率が悪く
、前記のように大幅に上昇させようとすると相当の時間
(1=2時間)を要することがあった なお、比抵抗を下げるには、水道水(比抵抗は通常0.
5×10’Ω・cm程度)を加工液に混入する方法が一
般的に採用されている。
However, 5. Until now, the method of increasing the resistivity of the machining fluid was to simply circulate the machining fluid through an ion exchanger, which was inefficient, and it took a considerable amount of time (1 = 2 hours) to increase the resistivity significantly as described above. In addition, to lower the resistivity, tap water (resistivity is usually 0.
Generally, a method is adopted in which a material of about 5×10'Ω·cm) is mixed into the machining fluid.

発明が解決しようとする課題 本発明は、ワイヤカット放電加工機に供給する加工液の
比抵抗を、現在値より高い値に設定し7て制御する場合
に、加工液の比抵抗値を速やかに」1昇させることがで
きる水質制御装置の提供を課題とする。
Problems to be Solved by the Invention The present invention provides a method for quickly increasing the specific resistance value of the machining fluid when controlling the resistivity of the machining fluid supplied to a wire-cut electrical discharge machine by setting it to a value higher than the current value. Our goal is to provide a water quality control device that can raise water quality by 1.

課題を解決するための手段 ワイヤカット放電加工機の加工液供給タンクに高比抵抗
液タンクを併設する。
Means to solve the problem: A high resistivity liquid tank is attached to the machining liquid supply tank of the wire-cut electric discharge machine.

前記の両タンクを高比抵抗液タンク側からの供給経路で
接続(7、該経路に電磁弁を設ける。
Both of the above tanks are connected by a supply route from the high resistivity liquid tank side (7, a solenoid valve is provided in the route.

加工液供給タンクに加]二液の比抵抗が設定値以下の場
合に検出出力を出ず比抵抗検出器を配置する。
If the resistivity of the two liquids added to the machining fluid supply tank is below the set value, no detection output is output and a resistivity detector is placed.

比抵抗検出器からの検出出力が存在(−でいる間、前記
電磁弁を開駆動する駆動手段を設ける。
Driving means is provided for driving the solenoid valve to open while the detection output from the resistivity detector is present (-).

前記の比抵抗検出器は、設定値に対して設定した幅量上
に低い比抵抗値のときに検出出力を出すものとすること
がある。
The resistivity detector described above may output a detection output when the resistivity value is lower than a predetermined range with respect to a set value.

作用 加工液の比抵抗が設定値以下になると、比抵抗検出器が
これを検出(−1検出出力を生じる。駆動手段はこれを
受番」て高比抵抗液タンクからの供給経路における電磁
弁を開き駆動する。これによって高比抵抗液タンクに貯
留された高比抵抗液が加工液供給タンクに導入され、加
工液の比抵抗を速やかに上昇させる。
When the resistivity of the working fluid becomes less than the set value, the resistivity detector detects this (-1 detection output is generated. As a result, the high specific resistance liquid stored in the high specific resistance liquid tank is introduced into the machining liquid supply tank, and the specific resistance of the machining liquid is rapidly increased.

実施例 第1図に示すように水質制御装置1はワイヤカット放電
加工機が備えた加工液供給ユニット2と高比抵抗液供給
ユニット3との組み合わせからなる。
Embodiment As shown in FIG. 1, a water quality control device 1 consists of a combination of a machining fluid supply unit 2 and a high resistivity fluid supply unit 3 provided in a wire-cut electrical discharge machine.

〔加工液供給ユニット2〕 加工液供給タンク4、第1のイオン交換経路5、フィル
ター経路6および第1の水道水供給経路7を備える。符
号8はワイヤカット放電加工機への加工液供給経路であ
る。
[Machining fluid supply unit 2] It includes a machining fluid supply tank 4, a first ion exchange path 5, a filter path 6, and a first tap water supply path 7. Reference numeral 8 is a machining fluid supply path to the wire-cut electrical discharge machine.

加工液供給タンク4は清タンク9と濁タンク10からな
り、両タンク9,10はフィルター経路6で接続されて
いる。
The processing liquid supply tank 4 consists of a clear tank 9 and a turbid tank 10, and both tanks 9 and 10 are connected by a filter path 6.

フィルター経路6は濁タンク1−0側に濾過用ポンプ1
1を、清タンク9側にフィルター12を備える。
The filter path 6 has a filtration pump 1 on the turbidity tank 1-0 side.
1 is equipped with a filter 12 on the clean tank 9 side.

清タンク9には第1のイオン交換経路5が接続され、こ
の経路5は清タンク9を出てからイオン交換器用ポンプ
13、メータリレー14の検出電極15、電磁弁16(
2方向切り替え弁)およびイオン交換器17を介して再
び清タンク9に接続され、前記電磁弁1,6からは清タ
ンク9へ直接に還流経路18が接続されている。
A first ion exchange path 5 is connected to the clean tank 9, and after leaving the clean tank 9, this path 5 passes through the ion exchanger pump 13, the detection electrode 15 of the meter relay 14, and the solenoid valve 16 (
It is again connected to the clean tank 9 via a two-way switching valve) and an ion exchanger 17, and a reflux path 18 is connected directly from the electromagnetic valves 1 and 6 to the clean tank 9.

第1の水道水供給経路7は水道蛇口から電磁弁19(開
閉弁)を介して清タンク9に接続されている。
The first tap water supply path 7 is connected from the tap to the fresh water tank 9 via a solenoid valve 19 (on/off valve).

なお、加工液供給経路8は清タンク9から吐出用ポンプ
20を介してワイヤカット放電加工機の上・下ノズル2
1に接続され、また、液受はパン22を介して濁タンク
10に接続されるものである。
The machining fluid supply path 8 is connected to the upper and lower nozzles 2 of the wire-cut electric discharge machine via a discharge pump 20 from the clean tank 9.
1, and the liquid receiver is connected to the turbidity tank 10 via a pan 22.

符号23はオーバフロー防止孔を示す。Reference numeral 23 indicates an overflow prevention hole.

〔高比抵抗液供給ユニット〕[High specific resistance liquid supply unit]

高比抵抗液タンク24、第2のイオン交換経路25、第
2の水道水供給経路26および高比抵抗液供給経路27
を備える。
High resistivity liquid tank 24, second ion exchange route 25, second tap water supply route 26, and high resistivity liquid supply route 27
Equipped with

高比抵抗液供給タンク24は比抵抗が高い加工液(高比
抵抗液)を貯留しておくタンクで、フロー)スイッチ2
8を備えると共に第2のイオン交換経路25が接続され
ている。
The high resistivity liquid supply tank 24 is a tank that stores machining fluid with high resistivity (high resistivity liquid), and the flow switch 2
8 and a second ion exchange path 25 is connected thereto.

第2のイオン交換経路25は、高比抵抗液タンク24か
ら出されて、第1のイオン交換経路5と同様にイオン交
換器用ポンプ29、メーターリレー30の検出電極31
、電磁弁32(2方向切り替え弁)およびイオン交換器
33を備えて再び高比抵抗液タンク24に接続され、前
記の電磁弁32からは還流経路34が直接高比抵抗液タ
ンク24に接続されている。
The second ion exchange path 25 is taken out from the high specific resistance liquid tank 24, and, similarly to the first ion exchange path 5, the ion exchanger pump 29 and the detection electrode 31 of the meter relay 30 are connected to the second ion exchange path 25.
, a solenoid valve 32 (two-way switching valve) and an ion exchanger 33 are connected again to the high-resistivity liquid tank 24, and a reflux path 34 is directly connected to the high-resistivity liquid tank 24 from the solenoid valve 32. ing.

第2の水道水供給経路26は水道蛇口から電磁弁35(
開閉弁)を介して高比抵抗液供給タンク24に接続され
ている。
The second tap water supply path 26 is connected from the water faucet to the solenoid valve 35 (
It is connected to the high specific resistance liquid supply tank 24 via an on-off valve).

高比抵抗液供給経路27は、高比抵抗液タンク24から
加工液供給タンク4に高比抵抗液を供給する経路で、高
比抵抗液供給ポンプ36とその加工液供給タンク4側に
電磁弁37(2方向切り替え弁)を備えると共に該電磁
弁37から還流経路38が前記のタンク24に接続され
ている。
The high-resistivity liquid supply route 27 is a route for supplying high-resistivity liquid from the high-resistivity liquid tank 24 to the machining liquid supply tank 4, and includes a high-resistivity liquid supply pump 36 and a solenoid valve on the side of the machining liquid supply tank 4. 37 (two-way switching valve), and a recirculation path 38 is connected from the electromagnetic valve 37 to the tank 24.

以上において、検出電極15を備えたメータリレ=14
(第1のイオン交換経路)、検出電極31を備えたメー
タリレー30(第2のイオン交換経路)は加工液の比抵
抗を検出する比抵抗検出器A、  Bを構成している。
In the above, the meter relay equipped with the detection electrode 15 = 14
(first ion exchange path) and a meter relay 30 (second ion exchange path) equipped with a detection electrode 31 constitute resistivity detectors A and B that detect the resistivity of the machining fluid.

第2図は、比抵抗検出器A関し検出電極15゜メータリ
レー14.電磁弁16と37および19のコイル16’
、37− 19’ との結合関係を示す回路図で、M+
はメータリレー14のメータ、H,Lはリレーで、かつ
その接点を示し、メータM1の両端子には検出電極15
が接続され、該検出電極15で検出した比抵抗値に応じ
て前記メータM1の針が振れ、その針の位置に応じて前
記リレーが動作または非動作となり、その接点をオン。
FIG. 2 shows resistivity detector A with detection electrode 15° meter relay 14. Coils 16' of solenoid valves 16, 37 and 19
, 37-19' is a circuit diagram showing the coupling relationship with M+
is the meter of the meter relay 14, H and L are the relays and their contacts, and the detection electrodes 15 are connected to both terminals of the meter M1.
is connected, the needle of the meter M1 swings according to the specific resistance value detected by the detection electrode 15, and the relay is activated or deactivated depending on the position of the needle, turning on its contacts.

オフさせ、電磁弁16,37.19を駆動、非駆動させ
るようになっている。リレーLの非作動側接点は符号■
で示すようにリレーF(第4図)と直列に接続されてい
る。
It is turned off, and the solenoid valves 16, 37, and 19 are driven or deactivated. The non-operating contact of relay L is marked ■
As shown, it is connected in series with relay F (Fig. 4).

第3図は、このメータM1の針39とリレーの接点H,
Lのオン、オフの関係を説明する説明図で、加工液の比
抵抗の値を上限値40.下限値41の間に設定したとき
、清タンク9内における加工液の比抵抗値が高くメータ
M】の針39が上限値40を超える場合には、接点Hの
リレーが作動し該接点Hをオンにし、上限値40より低
い抵抗の場合は該接点をオフにする。また、設定下限値
41より比抵抗の値が低くなり、針39が下限値41を
超え設定領域を外れると、接点りのリレーが作動し、該
接点りをオンにするようになっている。
Figure 3 shows the needle 39 of this meter M1 and the relay contact H,
This is an explanatory diagram illustrating the relationship between ON and OFF of L, and the value of the specific resistance of the machining fluid is set to the upper limit of 40. When the setting is between the lower limit value 41 and the specific resistance value of the machining fluid in the clean tank 9 is high and the needle 39 of the meter M exceeds the upper limit value 40, the relay of contact H is activated and the contact H is If the resistance is lower than the upper limit value 40, the contact is turned off. Further, when the specific resistance value becomes lower than the set lower limit value 41 and the needle 39 exceeds the lower limit value 41 and leaves the set range, a relay with a contact is activated and the contact is turned on.

なお、リレーHの接点オンでは電磁弁19が開き、リレ
ーLの接点オンでは電磁弁16がイオン交換経路5側に
開となるように切り替わると共に、電磁弁37が供給経
路27側に開となるように切り替わる。リレート1コイ
ル37′は電磁弁37の駆動手段を構成する。
When the contact of relay H is on, the solenoid valve 19 opens, and when the contact of relay L is on, the solenoid valve 16 is switched to open to the ion exchange path 5 side, and the solenoid valve 37 is opened to the supply path 27 side. It will switch like this. The relay 1 coil 37' constitutes driving means for the solenoid valve 37.

第4図は、比抵抗検出器Bに関し検出電極31およびメ
ータリレー30と電磁弁32のコイル32′ との結合
関係およびフロートスイッチ28と電磁弁35のコイル
35′との結合関係を示す回路図であり、M2はメータ
リレー30のメータ、Dは検出電極31に関する接点を
備えたリレーNはフロートスイッチ28の切り替え部、
F、はフロートスイッチ28に関する接点を備えたリレ
ーを示し、メータM2の両端子には検出電極31が接続
され、該検出電極31で検出した比抵抗値に応じて前記
メータM2の針44が振れ、その針44の位置に応じて
前記リレーDが動作または非動作となり、その接点をオ
ン、オフさせ、電磁弁32を駆動、非駆動させるように
なっている。また、切り替え部Nにはフロートスイッチ
28の上限接点42と下限接点43が接続され、フロー
トの上下に応じて前記リレーFが動作または非動作とな
り、その接点をオン、オフさせ、電磁弁35を駆動、非
駆動させるようになっている。なお、リレーFは前記の
ようにリレーLの非作動側と直列に接続されているので
、リレーLが非作動の場合のみ作動する。
FIG. 4 is a circuit diagram showing the coupling relationship between the detection electrode 31 and meter relay 30 and the coil 32' of the solenoid valve 32, and the coupling relationship between the float switch 28 and the coil 35' of the solenoid valve 35 in relation to the resistivity detector B. , M2 is the meter of the meter relay 30, D is the contact point related to the detection electrode 31, and relay N is the switching part of the float switch 28.
F indicates a relay equipped with a contact related to the float switch 28, a detection electrode 31 is connected to both terminals of the meter M2, and the needle 44 of the meter M2 swings according to the specific resistance value detected by the detection electrode 31. According to the position of the needle 44, the relay D is activated or deactivated, turning its contacts on or off, and driving or deactivating the solenoid valve 32. Further, the upper limit contact 42 and the lower limit contact 43 of the float switch 28 are connected to the switching part N, and the relay F is activated or deactivated depending on whether the float is up or down. It is designed to be driven or not driven. Note that since relay F is connected in series with the non-operating side of relay L as described above, it operates only when relay L is non-operating.

第5図は、このメータM2の針44とリレーDのオン、
オフおよびフロートスイッチ28の上下とリレーFのオ
ン、オフの関係を説明する図で、高比抵抗液供給ユニッ
ト3における高比抵抗液の比抵抗値が設定された下限値
45より比抵抗の値が低くなり、()44が下限値45
を低い側に外れると、リレーDの接点をオンに(7、再
び下限値45を高い側に超過するとオフとなるようにな
っている。また、高比抵抗液タンク24の水位が下限水
位46まで低下すると、フロートスイッチ28、切り替
え部Nを介してリレーFがオンとされ、電磁弁35を開
いて水道水を高比抵抗液タンク24に導入I5、上限水
位47に達すると同様にフロートスイッチ28、切り替
え部Nを介17.てリレーFをオフにし、水道水の供給
を停止するようになっている。
FIG. 5 shows the needle 44 of this meter M2 and relay D turned on.
This is a diagram illustrating the relationship between the up and down of the off and float switch 28 and the on and off of the relay F, in which the specific resistance value of the high specific resistance liquid in the high specific resistance liquid supply unit 3 is set from the lower limit value 45. becomes lower, and ()44 becomes the lower limit value 45
When the lower limit value 45 is exceeded to the higher side, the contact of relay D is turned on (7, and turned off when the lower limit value 45 is exceeded again to the higher side. Also, the water level of the high resistivity liquid tank 24 is set to the lower limit water level 46). When the water level reaches the upper limit level 47, the relay F is turned on via the float switch 28 and the switching part N, and the solenoid valve 35 is opened to introduce tap water into the high resistivity liquid tank 24. When the upper limit water level 47 is reached, the float switch is turned on. 28. The relay F is turned off via the switching section N 17. to stop the supply of tap water.

ワイヤカットの加工I程では、加工液供給経路8を介し
て清タンク9から、所定の比抵抗値に制御された加工液
が吐出用ポンプ20によってワイヤカッI・放電加工機
の上・下ノズル21に供給される。そして、放電加丁部
を通った汚濁液は液受はパン22を介して濁タンク10
に回収される。
During the wire cutting process I, the machining fluid controlled to have a predetermined specific resistance value is supplied from the cleaning tank 9 via the machining fluid supply path 8 to the upper and lower nozzles 21 of the wire cut I and the electrical discharge machine by the discharge pump 20. supplied to The turbid liquid that has passed through the discharge cutting section is transferred to the turbidity tank 10 via the pan 22.
will be collected.

濁タンク10の汚濁液はフィルター経路6を介15て濾
過用ポンプ11によって清タンク9に送り込まれるが、
途中フィルタ12でスラッジ等固形の不純物が除去され
る。
The polluted liquid in the turbidity tank 10 is sent to the clear tank 9 by the filtration pump 11 via the filter path 6 15.
On the way, solid impurities such as sludge are removed by a filter 12.

清タンク9の加工液は第1のイオン交換経路5を介17
てイオン交換器用ポンプ13により検出電極1−5(比
抵抗検出器A)を経由し、加工液の比抵抗の高低によっ
て電磁弁1−6でイオン交換器17側、または還流経路
18側に振り分けられて送り出され、再び清タンク9に
戻される。
The processing liquid in the clean tank 9 is passed through the first ion exchange path 5 to 17
The ion exchanger pump 13 passes through the detection electrode 1-5 (resistivity detector A), and the electromagnetic valve 1-6 distributes the machining fluid to the ion exchanger 17 side or the reflux route 18 side depending on the level of resistivity of the machining fluid. It is sent out and returned to the clean tank 9 again.

高比抵抗液タンク24の高比抵抗液は第2のイオン交換
経路25を介してイオン交換器用ポンプ29により検出
電極31 (比抵抗検出器B)を経由し2、高比抵抗液
に関する抵抗値の高低によって電磁弁32でイオン交換
器33側、または還流経路34側に振り分けられて送り
出され、再び高比抵抗液供給タンク24に戻される。
The high specific resistance liquid in the high specific resistance liquid tank 24 is passed through the second ion exchange path 25 by the ion exchanger pump 29 to the detection electrode 31 (specific resistance detector B) 2, and the resistance value related to the high specific resistance liquid is Depending on the height of the liquid, the liquid is distributed to the ion exchanger 33 side or the reflux path 34 side by the electromagnetic valve 32 and sent out, and then returned to the high resistivity liquid supply tank 24 again.

この場合、高比抵抗液供給ユニッl−3の高比抵抗液は
、後述のようにl〜で比抵抗値が加工液供給ユニット2
における加工液の比抵抗値よりかなり高く(約10倍程
度)維持されている。
In this case, the high specific resistance liquid in the high specific resistance liquid supply unit l-3 has a specific resistance value of l~ as described later in the machining liquid supply unit 2.
The specific resistance value of the machining fluid was maintained considerably higher (approximately 10 times) than that of the machining fluid.

加工中、清タンク9内における加工液の比抵抗値が低下
]2、メータMの針39が比抵抗小の方へ移動し7、設
定値のr限値4Iを超えると、接点りのリレーが作動し
、該接点りをオンと(7、電磁弁16.37を駆動し、
これにより、清タンク9からイオン交換器用ポンプi 
3で汲み上げられた加工液は電磁弁I6を通りイオン交
換器17を経由して清タンク9へ戻されると共に、同時
に供給経路27を介して電磁弁37をきおり、高比抵抗
液タンク24の高比抵抗液が清タンク9に注入される。
During machining, the specific resistance value of the machining fluid in the cleaning tank 9 decreases] 2. The needle 39 of the meter M moves toward the lower resistivity 7, and when the set value r limit 4I is exceeded, the contact relay operates, turns on the contact (7, drives the solenoid valve 16.37,
As a result, the ion exchanger pump i is removed from the clean tank 9.
The machining fluid pumped up in step 3 passes through the solenoid valve I6 and returns to the clean tank 9 via the ion exchanger 17, and at the same time passes through the solenoid valve 37 through the supply path 27, and flows into the high resistivity fluid tank 24. A high resistivity liquid is poured into the clear tank 9.

その結果、ワイヤカット放電加工機に供給される加工液
の比抵抗は急速に増大する。そして、加工液の比抵抗値
が設定領域内に入り、メータMの針39が下限値41−
を超え、設定領域内に入ると接点りのリレーは作動を停
止し、その接点りがオフとなるので電磁弁16.37は
切り替わり、イオン交換器用ポンプi 3で汲み上げら
れた加工液は還流経路18を通ってそのまま清タンク9
に戻り、また、高比抵抗液は還流経路38を通って、そ
のまま高比抵抗液タンク24に戻ることきなる。
As a result, the specific resistance of the machining fluid supplied to the wire-cut electric discharge machine increases rapidly. Then, the specific resistance value of the machining fluid falls within the set range, and the needle 39 of the meter M moves to the lower limit value 41-
When it exceeds the limit and enters the set range, the contact relay stops operating, and the contact turns off, so the solenoid valve 16.37 switches, and the processing fluid pumped up by the ion exchanger pump i 3 goes to the reflux route. Pass through 18 and continue to clear tank 9
The high-resistivity liquid returns to the high-resistivity liquid tank 24 through the reflux path 38.

電磁弁37が開いて、高比抵抗液が清タンク9に注入さ
れている間、高比抵抗液タンク24の水位が下限水位以
下に下がっても、リレーFは遮断されているから、水道
水が高比抵抗液に混入して比抵抗値が低下1.て1.ま
うこさはない。
Even if the water level in the high resistivity liquid tank 24 falls below the lower limit water level while the solenoid valve 37 is open and the high resistivity liquid is injected into the clean tank 9, the relay F is cut off, so the tap water mixed into the high resistivity liquid and the resistivity value decreases 1. 1. It's not funny.

そ1.て、加工液の比抵抗値を高い状態とした加工が終
了j7、次に比抵抗値を下げて加工を行うために、メー
タM1の設定領域を比抵抗が低い方に設定1.たとき、
このときのメータM+の針39は比抵抗値の高い位置に
あり、新L <設定された設定領域の上限値40よりも
比抵抗値が高い側にある。そのため、接点Hのり1ノー
が作動シフ、その接点I4をオン表1−5電磁弁19の
コイル19′に電流を流すから電磁弁]9が開き第1−
の水道水供給経路7から水道水が清タンク9に供給され
る。その結果、清タンク9の加工液は水道水が供給され
ることによってその比抵抗が低下し、それにつれ、メー
タMの針39が比抵抗が低い側に移動12、上限値40
より比抵抗値が小さい側になると、リレーHの接点はオ
フとなり、電磁弁19の動作を停止させ水道水の清タン
ク9への供給を停止させる。
Part 1. Then, machining with the resistivity of the machining fluid at a high state is completedj7, and in order to perform machining with a lower resistivity, the setting range of the meter M1 is set to the lower resistivity1. When
At this time, the needle 39 of the meter M+ is at a position where the resistivity value is high, and the resistivity value is higher than the upper limit value 40 of the setting area where new L<< is set. Therefore, the contact H 1 NO operates and turns on the contact I4.
Tap water is supplied to the fresh tank 9 from the tap water supply route 7 . As a result, the specific resistance of the machining fluid in the clean tank 9 decreases due to the supply of tap water, and accordingly, the needle 39 of the meter M moves to the side where the specific resistance is low 12, and the upper limit value 40
When the specific resistance value becomes smaller, the contact of the relay H is turned off, and the operation of the solenoid valve 19 is stopped to stop the supply of tap water to the clean tank 9.

この場合、清タンク9に水道水が供給されることから清
タンク9の加工液は清・濁タンク9,10間の隔壁を請
えて濁タンク10に溢流するが、増加した濁タンク10
の加工液はオーバーフロー防止穴23から外部に排出さ
れる。
In this case, since tap water is supplied to the clear tank 9, the machining liquid in the clear tank 9 flows through the partition wall between the clear and turbid tanks 9 and 10 and overflows into the turbid tank 10.
The machining fluid is discharged to the outside from the overflow prevention hole 23.

一方、高比抵抗液供給ユニット3では、前記した第1の
イオン交換経路5に関する作動と同様な第2のイオン交
換経路25の作動によって高比抵抗液タンク24内にお
ける高比抵抗液の比抵抗値が常時下限値45(設定値・
・・必要とする高比抵抗値)に維持される。また、前記
タンク24の水位が下限水位46を低い側に超過すると
フロートスイッチ28、切り替え部NによってリレーF
を介して電磁弁35が開かれ、第2の水道水供給経路2
6から水道水が導入され、そして、水位が上限水位47
に到達すると前記の電磁弁35が閉じられ水道水の供給
が停止される。ただし、この作動は前記のように、清タ
ンク9に高比抵抗液の供給が必要とされない、電磁弁3
7が閉じている時にのみ行われる。
On the other hand, in the high specific resistance liquid supply unit 3, the specific resistance of the high specific resistance liquid in the high specific resistance liquid tank 24 is increased by the operation of the second ion exchange path 25 similar to the operation related to the first ion exchange path 5 described above. The value is always lower limit 45 (set value
...maintained at the required high specific resistance value). Further, when the water level of the tank 24 exceeds the lower limit water level 46 to the lower side, the float switch 28 and the switching part N activate the relay F.
The solenoid valve 35 is opened via the second tap water supply path 2.
Tap water was introduced from 6 onwards, and the water level reached the upper limit water level of 47
When the temperature reaches , the electromagnetic valve 35 is closed and the supply of tap water is stopped. However, as described above, this operation is performed by the solenoid valve 3 which does not require the supply of high specific resistance liquid to the clear tank 9.
This is only done when 7 is closed.

水道水が供給されると高比抵抗液の比抵抗値は大きく低
下し、これを第2のイオン交換経路25で設定値まで回
復するには時間を要するが、次回に高比抵抗液の供給が
必要となるのは、通常かなりの時間をおいてからなので
、充分に余裕を持って回復させることができる。
When tap water is supplied, the resistivity value of the high resistivity liquid drops significantly, and it takes time to recover it to the set value in the second ion exchange path 25, but the next time the high resistivity liquid is supplied. This is usually required after a considerable period of time, so you have plenty of time to recover.

前記の実施例では、清タンク9の比抵抗が設定幅より低
下した場合、電磁弁16がイオン交換経路5側に切り替
わると同時に電磁弁37も供給経路27側に切り替えら
れて、ただちに高比抵抗液が清タンク9に供給されるよ
うになっているが、比抵抗の低下が軽い場合はイオン交
換経路を開くだけで充分に回復させることができる場合
もあるので、前記の比抵抗検出器Aを設定した設定値に
対し、前記の回復可能な範囲を見越して設定した幅量上
に低い比抵抗値になった時に初めて検出出力を出すもの
とし、電磁弁37の頻繁な作動を抑制することもできる
In the embodiment described above, when the specific resistance of the clearing tank 9 falls below the set range, the solenoid valve 16 is switched to the ion exchange path 5 side and at the same time the solenoid valve 37 is also switched to the supply path 27 side, and the high specific resistance is immediately changed. The liquid is supplied to the clear tank 9, but if the decrease in resistivity is slight, it may be possible to recover sufficiently just by opening the ion exchange path. To suppress frequent operation of the solenoid valve 37, a detection output is output for the first time when the specific resistance value becomes lower than the width set in anticipation of the above-mentioned recoverable range with respect to the set value set. You can also do it.

前記実施例においては、加工液の比抵抗値を検出する検
出電極15とメータリレー14で比抵抗検出器Aを構成
したが、メータリレー14に代え、検出電極15からの
比抵抗検出信号が比抵抗設定領域の上限値より大きくな
った場合又は下限値より小さくなった場合、それぞれ出
力信号を出す回路等によって比抵抗検出器を構成しても
よく、さらに比抵抗検出機構Bに付いても同様であるこ
とはもちろんである。
In the embodiment described above, the resistivity detector A was composed of the detection electrode 15 that detects the resistivity value of the machining fluid and the meter relay 14. However, instead of the meter relay 14, the resistivity detection signal from the detection electrode 15 is The resistivity detector may be configured by a circuit that outputs an output signal when the resistance becomes larger than the upper limit value or smaller than the lower limit value of the resistance setting area, and the same applies to the resistivity detection mechanism B. Of course it is.

発明の効果 加工液の比抵抗値をイオン交換器と高比抵抗液の混入に
よってすばやく高めることができ、加工液に関し低い比
抵抗の加工状態から高い比抵抗の加工状態への変更を能
率よく行える。
Effects of the invention The resistivity value of the machining fluid can be quickly increased by mixing an ion exchanger and a high resistivity fluid, and it is possible to efficiently change the machining state from a low resistivity machining state to a high resistivity machining state regarding the machining fluid. .

加工途中において、加工液の比抵抗が低い側に変位して
も高比抵抗液の供給で速やかに回復させることができる
から面粗さなどワイヤカット製品の品質を低下させるこ
とがない。
Even if the resistivity of the machining fluid shifts to the lower side during machining, it can be quickly recovered by supplying a high resistivity fluid, so the quality of the wire-cut product, such as surface roughness, will not deteriorate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概要図、第2図は検出電極
、メータリレーMl、電磁弁のコイルとの結合関係を示
す回路図、第3図はメータリレーの動作説明図、第4図
は検出電極、メータリレーフロートスイッチ、電磁弁の
コイルとの結合関係を示す回路図、第5図はメータリレ
ーM2、フロートスイッチの動作説明図である。 4・・・加工液供給タンク、5,25・・・イオン交換
経路、7.26・・・水道水供給経路、9・・・清タン
ク、10・・・濁タンク、14.30・・・メータリレ
ー15.31・・・検出電極、16.19.32,35
゜37・・・電磁弁、24・・・高比抵抗液タンク、2
7・・・高比抵抗液供給経路。
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a circuit diagram showing the coupling relationship between the detection electrode, meter relay Ml, and the coil of the electromagnetic valve; Fig. 3 is an explanatory diagram of the operation of the meter relay; FIG. 4 is a circuit diagram showing the coupling relationship between the detection electrode, the meter relay float switch, and the solenoid valve coil, and FIG. 5 is an explanatory diagram of the operation of the meter relay M2 and the float switch. 4... Processing liquid supply tank, 5, 25... Ion exchange route, 7.26... Tap water supply route, 9... Clear tank, 10... Turbid tank, 14.30... Meter relay 15.31...detection electrode, 16.19.32,35
゜37...Solenoid valve, 24...High resistivity liquid tank, 2
7...High resistivity liquid supply route.

Claims (2)

【特許請求の範囲】[Claims] (1)ワイヤカット放電加工機が備えた加工液供給タン
クに高比抵抗液タンクを電磁弁を介した供給経路で接続
し、加工液供給タンクに加工液の比抵抗が設定値以下の
場合に検出出力を出す比抵抗検出器を配置すると共に、
該比抵抗検出器からの検出出力が存在している間、前記
電磁弁を開駆動する駆動手段を設けたことを特徴とする
ワイヤカット放電加工機の水質制御装置。
(1) Connect a high resistivity liquid tank to the machining fluid supply tank of the wire-cut electric discharge machine through a supply route via a solenoid valve, and when the resistivity of the machining fluid in the machining fluid supply tank is less than the set value. In addition to arranging a resistivity detector that outputs a detection output,
A water quality control device for a wire-cut electric discharge machine, characterized in that a driving means is provided for driving the solenoid valve to open while a detection output from the resistivity detector is present.
(2)比抵抗検出器が、設定値に対して設定した幅以上
に低い比抵抗値のときに検出出力を出すものであること
を特徴とする請求項1に記載したワイヤカット放電加工
機の水質制御装置。
(2) The wire-cut electric discharge machine according to claim 1, wherein the resistivity detector outputs a detection output when the resistivity value is lower than a predetermined width with respect to the preset value. Water quality control device.
JP18427590A 1990-07-13 1990-07-13 Water quality control device for wire cut electric discharge machine Pending JPH0475820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18427590A JPH0475820A (en) 1990-07-13 1990-07-13 Water quality control device for wire cut electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18427590A JPH0475820A (en) 1990-07-13 1990-07-13 Water quality control device for wire cut electric discharge machine

Publications (1)

Publication Number Publication Date
JPH0475820A true JPH0475820A (en) 1992-03-10

Family

ID=16150471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18427590A Pending JPH0475820A (en) 1990-07-13 1990-07-13 Water quality control device for wire cut electric discharge machine

Country Status (1)

Country Link
JP (1) JPH0475820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795558B2 (en) * 2006-04-05 2010-09-14 Mitsubishi Electric Corporation Electric discharge machine and electric discharge machining method
JP2011020185A (en) * 2009-07-13 2011-02-03 Mitsubishi Electric Corp Electric discharge machine and electric discharge machining method
JP2011131361A (en) * 2009-12-25 2011-07-07 Ihi Corp Electrochemical machining device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795558B2 (en) * 2006-04-05 2010-09-14 Mitsubishi Electric Corporation Electric discharge machine and electric discharge machining method
JP2011020185A (en) * 2009-07-13 2011-02-03 Mitsubishi Electric Corp Electric discharge machine and electric discharge machining method
JP2011131361A (en) * 2009-12-25 2011-07-07 Ihi Corp Electrochemical machining device and method

Similar Documents

Publication Publication Date Title
US4917782A (en) Electrolytic liquid purification process and apparatus
US5062940A (en) Electrolytic liquid purification apparatus
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
KR20020097209A (en) Under the counter water treatment system
US20070138096A1 (en) Systems and methods for controlling contaminate levels of processed water and maintaining membranes
EP1713731A1 (en) Wastewater purification method
US5807487A (en) Laundromat wastewater treatment
JPH0475820A (en) Water quality control device for wire cut electric discharge machine
EP3730026A1 (en) A washing device and an operation method of the washing device
US20070084771A1 (en) Apparatus for supplying drinking water
US4211650A (en) Water reclamation process
JPH0241820A (en) Water quality control device for wire-cut electric discharge machine
JP4400068B2 (en) Automatic ice making equipment
KR950005419B1 (en) Water clarifier and comtrol circuit
KR960001379B1 (en) A water purifier apparatus
JPH1110165A (en) Wastewater treatment apparatus
JP2002166271A (en) Scum removing equipment
JP2516054B2 (en) Machining fluid supply device for electrical discharge machining
JPS63306823A (en) Wire electric discharge machine
KR20010106900A (en) A device cleaning water
JPS632621A (en) Dielectric fluid feeding method in wire electric-discharge machine
JP2010142740A (en) Belt-type concentrator and method for operating the same
KR20010113490A (en) System for control drain water
KR0147108B1 (en) Machining water supply device and method of wire-cut electro-discharge machine
KR20240035330A (en) Electric discharge machine and electric discharge machining method