JPH0475573B2 - - Google Patents

Info

Publication number
JPH0475573B2
JPH0475573B2 JP58218931A JP21893183A JPH0475573B2 JP H0475573 B2 JPH0475573 B2 JP H0475573B2 JP 58218931 A JP58218931 A JP 58218931A JP 21893183 A JP21893183 A JP 21893183A JP H0475573 B2 JPH0475573 B2 JP H0475573B2
Authority
JP
Japan
Prior art keywords
magnetic recording
thin film
metal thin
thickness direction
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58218931A
Other languages
Japanese (ja)
Other versions
JPS60111322A (en
Inventor
Koichi Shinohara
Shigeki Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21893183A priority Critical patent/JPS60111322A/en
Publication of JPS60111322A publication Critical patent/JPS60111322A/en
Publication of JPH0475573B2 publication Critical patent/JPH0475573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高密度磁気記録再生に利用される金属
薄膜型磁気記録媒体に関する。 従来例の構成とその問題点 ビデオ記録、コンピユータデータ記録などに用
いる磁気記録媒体においては記録容量の大容量
化、機器の小型化を達成するため記録密度の向上
が強く望まれていることは良く知られている。 そのため各方面で磁気記録媒体の改良が続けら
れているが、磁気記録再生は媒体と磁気ヘツドの
相互作用に基本があり、原理的に高密度記録に適
した媒体であるものは勿論であるが、実用信頼性
の確保できるものでなければならない。 上記事情に鑑み、現在提案されているCo−Ni
−O系の面内磁化膜、Co−Cr系の垂直磁化膜に
代表される強磁性金属薄膜を磁気記録層とする金
属薄膜型磁気記録媒体は、最短記録波長が0.5μm
までに短波長化可能であることが確かめられ、有
望視されているものの、くり返し使用時、強磁性
金属薄膜に亀裂が入り、信号対雑音化(以下S/
Nで示す)が増加する欠点があり、磁気記録層表
面に滑剤を塗布し、滑性を付与することで、応力
分散により、亀裂の発生を抑える試みがあるが不
十分であるし、強磁性金属薄膜と高分子基板との
間の付着強度が重要な因子となつているとの考え
方に基ずく高分子基板の前処理等も検討されてい
るもののこれも不十分であり、例えば、回転ヘリ
カルスキヤンの磁気ヘツドによる記録再生では、
テープ走行系を工夫し、テープに与える張力の大
きさ、変動を小さくしても、100回以上S/Nを
維持できる構成のものは見出せないのが実状であ
る。 発明の目的 本発明は強磁性金属薄膜を磁気記録層とし、く
り返し使用でS/Nの安定な金属薄膜型磁気記録
媒体を提供することを目的とする。 発明の構成 本発明の金属薄膜型磁気記録媒体は高分子基板
の厚み方向に対する圧縮弾性率が400Kg/mm2以上
であることを特徴とするもので、くり返し記録再
生を行つても亀裂は発生しないか発生しても殆ん
どS/Nの低下なしに使用できる媒体が得られる
ものである。 実施例の説明 以下本発明について図面を参照しながら説明す
る。第1図は本発明の金属薄膜型磁気記録媒体の
拡大断面図で、第1図に於て1は強磁性金属薄膜
からなる磁気記録層で、2は高分子基板で、3は
滑剤塗布層である。ここで強磁性金属薄膜1とし
ては、Co,Fe,Ni,Co−Fe,Co−Ni,Co−
B,Co−Cu,Co−Ge,Co−Mn,Co−Mg,Co
−Mo,Co−Pt,Co−Ru,Co−Rh,Co−Si,
Co−Sm,Co−Gd,Co−Ta,Co−V,Co−W,
Co−Y,Co−Zn,Co−Cr,Co−Ti,Co−Ce,
Co−Ni−Cr,Co−Ni−Mg等及びそれらの部分
酸化膜、部分窒化膜などが挙げられる。 前記薄膜の製法としては、無電解メツキ、イオ
ンビームデポジシヨン、イオンプレーテイング、
スパツタリング、電子ビーム蒸着等公知の薄膜化
技術から適宜選択できる。 高分子基板2としては、ポリエチレンテレフタ
レート等のポリエステル類、ポリプロピレン等の
ポリオレフイン類、セルロースジアセテート、ニ
トロセルロース等のセルロース誘導体、ポリカー
ボネート、ポリ塩化ビニル、ポリアミド、ポリイ
ミド等が挙げられ、下塗り層を有する場合は、そ
れを含めて高分子基板2とみなして考えるものと
する。滑剤塗布層3は、脂肪酸、金属石けん、脂
肪酸アミド、鉱油、動植物油、高級アルコール、
シリコーンオイル、フルオロカーボン類などを溶
剤に溶かして塗布乾燥して得るか、乾式法にて得
たものである。 本発明の要旨とするところは、前記基板の構成
要件が従来全く着目されなかつた基板の厚み方向
の機械特性に制限を加えるもので、具体的には、
厚み方向の圧縮弾性率を400Kg/mm2以上にするこ
とで後述するように、走行系での異常な応力集中
でも亀裂が発生しないか、例え発生してもS/N
が低下する程の永久変形にならないものである。 臨界値が400Kg/mm2にあることについては、必
ずしも明確ではないが、前提となるのは、短波長
記録のために、磁気記録層表面は、平均粗さで
0.05μm以下で好んで使われるため、テープの走
行系に特別の配慮がされ、シリンダ、ポスト、ピ
ンチローラ、ガイドピン等の表面仕上げも1S以
下で用いられることから、これらの組み合せで総
合的に決るもので、定常走行時のテープ張力は
高々40g(テープ幅8mmに対して)までの範囲で
使用することと基板厚みは20μm以下で使われる
ことが前提である。 尚数多くの実験結果が示しているのは、400
Kg/mm2から300Kg/mm2の範囲では、強磁性金属薄
膜の条件によつてS/Nの劣化するものとしない
ものとが現れる遷移領域となるので、400Kg/mm2
以下を使用するのが好ましい。 尚基板の条件で厚み方向に400Kg/mm2以上の圧
縮弾性率を有するものを選択するには、材質を選
ぶか、同一材質でも製膜時の特に熱管理条件を選
ぶことで実施できるものである。 〔実施例 1〕 厚み15μmのポリエーテルケトンスルフオンフ
イルムを厚み方向の圧縮弾性率を3水準選んで、
その基板上にCo−Ni(Ni20重量%)0,12μmを
1×10-6Torrの酸素雰囲気で0.2μm/minの速度
で最小入射角43度で蒸着した。この上にミリスチ
ン酸を180ppm溶解したメチルエチルケトンを乾
燥厚みが55Åになるよう塗布し、8mm幅の磁気テ
ープを得た。 このテープをギヤツプ長0.25μmのアモルフア
スヘツドを塔さいした直径40mmの回転シリンダに
沿わせて移動する走行系をもつた試験用のビデオ
テープレコーダにかけて(張力25gとした)くり
返し使用してS/Nの変化を調べた。S/Nは記
録波長0.66μmの値で第1回目の記録再生時の値
をO〔dB〕とした。その結果を表1に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a metal thin film magnetic recording medium used for high-density magnetic recording and reproduction. Conventional configurations and their problems It is well known that there is a strong desire to improve the recording density of magnetic recording media used for video recording, computer data recording, etc. in order to achieve larger recording capacity and smaller equipment. Are known. For this reason, magnetic recording media continue to be improved in various fields, but magnetic recording and reproduction is based on the interaction between the medium and the magnetic head, and it goes without saying that the medium is suitable in principle for high-density recording. , it must be possible to ensure practical reliability. In view of the above circumstances, Co-Ni is currently being proposed.
A metal thin film magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film, typically a -O-based in-plane magnetized film or a Co-Cr-based perpendicularly magnetized film, has a shortest recording wavelength of 0.5 μm.
Although it has been confirmed that it is possible to shorten the wavelength, and it is seen as promising, the ferromagnetic metal thin film cracks when used repeatedly, resulting in signal-to-noise (hereinafter referred to as S/
However, attempts have been made to suppress the occurrence of cracks by coating the surface of the magnetic recording layer with a lubricant to impart lubricity and dispersion of stress, but this is insufficient, and ferromagnetic Although pretreatment of polymer substrates based on the idea that the adhesion strength between the metal thin film and the polymer substrate is an important factor has been considered, these are also insufficient. In recording and reproducing using scan magnetic heads,
Even if the tape running system is devised to reduce the magnitude and fluctuation of the tension applied to the tape, the reality is that no structure has been found that can maintain S/N over 100 cycles. OBJECTS OF THE INVENTION An object of the present invention is to provide a metal thin film type magnetic recording medium that uses a ferromagnetic metal thin film as a magnetic recording layer and has a stable S/N ratio even after repeated use. Structure of the Invention The metal thin film magnetic recording medium of the present invention is characterized in that the compressive modulus of elasticity in the thickness direction of the polymer substrate is 400 Kg/mm 2 or more, and cracks do not occur even after repeated recording and reproduction. Even if this occurs, a medium that can be used with almost no reduction in S/N can be obtained. DESCRIPTION OF EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is an enlarged sectional view of the metal thin film magnetic recording medium of the present invention. In FIG. 1, 1 is a magnetic recording layer made of a ferromagnetic metal thin film, 2 is a polymer substrate, and 3 is a lubricant coating layer. It is. Here, the ferromagnetic metal thin film 1 includes Co, Fe, Ni, Co-Fe, Co-Ni, Co-
B, Co-Cu, Co-Ge, Co-Mn, Co-Mg, Co
−Mo, Co−Pt, Co−Ru, Co−Rh, Co−Si,
Co-Sm, Co-Gd, Co-Ta, Co-V, Co-W,
Co-Y, Co-Zn, Co-Cr, Co-Ti, Co-Ce,
Examples include Co-Ni-Cr, Co-Ni-Mg, etc., and their partial oxide films and partial nitride films. The thin film manufacturing method includes electroless plating, ion beam deposition, ion plating,
It can be appropriately selected from known thin film forming techniques such as sputtering and electron beam evaporation. Examples of the polymer substrate 2 include polyesters such as polyethylene terephthalate, polyolefins such as polypropylene, cellulose derivatives such as cellulose diacetate and nitrocellulose, polycarbonate, polyvinyl chloride, polyamide, polyimide, etc., and when it has an undercoat layer. shall be considered including the polymer substrate 2. The lubricant coating layer 3 contains fatty acids, metal soaps, fatty acid amides, mineral oils, animal and vegetable oils, higher alcohols,
It is obtained by dissolving silicone oil, fluorocarbons, etc. in a solvent and applying and drying it, or by a dry method. The gist of the present invention is to limit the mechanical properties of the substrate in the thickness direction, which have not received any attention in the past.
By setting the compressive modulus of elasticity in the thickness direction to 400 kg/mm2 or more , as will be explained later, even if abnormal stress concentration occurs in the running system, cracks will not occur, and even if they occur, the S/N will be low.
It does not cause permanent deformation to the extent that it decreases. It is not necessarily clear that the critical value is 400Kg/ mm2 , but the premise is that for short wavelength recording, the surface of the magnetic recording layer has an average roughness.
Since it is preferred to use 0.05 μm or less, special consideration is given to the tape running system, and the surface finish of cylinders, posts, pinch rollers, guide pins, etc. is also used at 1S or less, so the combination of these It is assumed that the tape tension during steady running is at most 40 g (for a tape width of 8 mm) and that the substrate thickness is 20 μm or less. Furthermore, numerous experimental results have shown that 400
In the range of Kg/mm 2 to 300Kg/mm 2 , there is a transition region where S/N may or may not deteriorate depending on the conditions of the ferromagnetic metal thin film, so 400Kg/mm 2
Preferably, the following are used: In addition, selecting a substrate with a compressive modulus of elasticity of 400 Kg/mm 2 or more in the thickness direction can be done by selecting the material or, even if the same material is used, by selecting the heat management conditions during film formation. be. [Example 1] A polyetherketone sulfonate film with a thickness of 15 μm was selected from three levels of compressive elastic modulus in the thickness direction.
Co--Ni (Ni 20% by weight) 0.12 .mu.m thick was deposited on the substrate in an oxygen atmosphere of 1.times.10.sup. -6 Torr at a rate of 0.2 .mu.m/min and at a minimum incident angle of 43 degrees. Methyl ethyl ketone containing 180 ppm of myristic acid dissolved therein was coated onto the tape to a dry thickness of 55 Å to obtain a magnetic tape with a width of 8 mm. This tape was passed through a test video tape recorder (tension was 25 g) and used repeatedly to move along a rotating cylinder with a diameter of 40 mm and an amorphous head with a gap length of 0.25 μm. We investigated changes in N. The S/N is a value at a recording wavelength of 0.66 μm, and the value at the first recording/reproducing time is O [dB]. The results are shown in Table 1.

【表】【table】

〔実施例 2〕[Example 2]

厚み9μmのポリアミドイミドフイルムを基板
とし、厚み方向の圧縮弾性率の異なるものに、80
%NiのNi−Fe合金を0.3μm、20%CrのCo−Cr合
金を0.1μmをAr分圧1×10-2Torr中で13.56MHz
のグロー放電を利用したスパツタリング法により
積層し、実施例−1と同様に垂直記録用の8mm幅
のテープを作成し、ギヤツプ長0.3μmのフエライ
トヘツドによりS/Nの変化を調べた結果を表2
に示す。
A polyamide-imide film with a thickness of 9 μm was used as a substrate, and the compressive modulus of elasticity in the thickness direction was different.
0.3 μm of Ni-Fe alloy with %Ni and 0.1 μm of Co-Cr alloy with 20% Cr at 13.56MHz in Ar partial pressure of 1×10 -2 Torr.
A tape with a width of 8 mm for perpendicular recording was prepared in the same manner as in Example 1 by laminating the tapes by a sputtering method using glow discharge, and the changes in S/N were investigated using a ferrite head with a gap length of 0.3 μm. The results are shown below. 2
Shown below.

【表】 両実施例に共通して言えることは基板によらず
厚み方向の圧縮弾性率が400Kg/mm2以上であれば
環境によることなく、多数のくり返し使用後も
S/Nは殆んど変化ししない点で、これは第2図
に亀裂の入るメカニズムをを摸式的に示したよう
に、例えばポスト4の異常突起5(又はかみ込ん
だ、硬いゴミ、磁性粉などの場合も同様である。)
に起因した変形が基板の厚み方向に(矢印Aで示
したように)伝幡し、強磁性金属薄膜を破かい
し、亀裂6を生じることが殆んどないか、あつて
も変形量が小さくS/Nに影響しないのである。
この亀裂に特徴的なのは、放射状の亀裂、又は放
射状と同心状に近い亀裂の混在で、この種の亀裂
が著しくノイズを誘発するために、これを防ぐ本
発明の構成はくり返し使用下にS/Nを安定化し
た磁気記録媒体を得る上で極めて有効である。 発明の効果 本発明は、高分子基板の厚み方向の圧縮弾性率
が400Kg/mm2以上の基板上に強磁性金属薄膜を配
することで、テープレコーダでくり返し使用した
時に亀裂が発生してS/Nを低下させることを実
用レベルで防止できるもので、短波長記録用の媒
体として実用価値は大きい。
[Table] What is common to both examples is that regardless of the substrate, if the compressive modulus in the thickness direction is 400 Kg/mm 2 or more, the S/N will be almost constant even after repeated use regardless of the environment. As shown in Figure 2, which shows the mechanism by which cracks occur, this also applies to abnormal protrusions 5 on posts 4 (or in the case of hard dust, magnetic powder, etc. )
The deformation caused by this propagates in the thickness direction of the substrate (as shown by arrow A), rupturing the ferromagnetic metal thin film, and causing cracks 6. This is small and does not affect the S/N.
This type of crack is characterized by radial cracks or a mixture of radial and concentric cracks, and since this type of crack significantly induces noise, the structure of the present invention prevents this from occurring when the S/S is used repeatedly. This is extremely effective in obtaining a magnetic recording medium in which N is stabilized. Effects of the Invention The present invention provides a method of disposing a ferromagnetic metal thin film on a polymer substrate having a compressive modulus of elasticity in the thickness direction of 400 Kg/mm 2 or more. It is possible to prevent a decrease in /N at a practical level, and has great practical value as a medium for short wavelength recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の金属薄膜型磁気記録媒体の拡
大断面図、第2図は本発明の磁気記録媒体の作用
効果を説明するための図である。 1……強磁性金属薄膜、2……高分子基板、6
…亀裂部。
FIG. 1 is an enlarged sectional view of the metal thin film magnetic recording medium of the present invention, and FIG. 2 is a diagram for explaining the effects of the magnetic recording medium of the present invention. 1...Ferromagnetic metal thin film, 2...Polymer substrate, 6
...Crack area.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子基板上に強磁性金属薄膜からなる磁気
記録層を配して成る磁気記録媒体に於て、前記高
分子基板の厚み方向に対する圧縮弾性率が400
Kg/mm2以上であることを特徴とする金属薄膜型磁
気記録媒体。
1. In a magnetic recording medium in which a magnetic recording layer made of a ferromagnetic metal thin film is disposed on a polymer substrate, the compressive elastic modulus of the polymer substrate in the thickness direction is 400.
A metal thin film type magnetic recording medium characterized by having a magnetic recording capacity of Kg/mm 2 or more.
JP21893183A 1983-11-21 1983-11-21 Thin metallic film type magnetic recording medium Granted JPS60111322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21893183A JPS60111322A (en) 1983-11-21 1983-11-21 Thin metallic film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21893183A JPS60111322A (en) 1983-11-21 1983-11-21 Thin metallic film type magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60111322A JPS60111322A (en) 1985-06-17
JPH0475573B2 true JPH0475573B2 (en) 1992-12-01

Family

ID=16727562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21893183A Granted JPS60111322A (en) 1983-11-21 1983-11-21 Thin metallic film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60111322A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526150B2 (en) * 1995-10-31 2004-05-10 矢崎総業株式会社 Plating treatment jig and plating treatment method using plating treatment jig
JPH09298382A (en) 1996-05-07 1997-11-18 Yazaki Corp Shield plating corrugate tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610455A (en) * 1979-07-09 1981-02-02 Toray Industries Polyester film
JPS5868225A (en) * 1981-10-13 1983-04-23 Toray Ind Inc Magnetic recording medium
JPS58168655A (en) * 1982-03-30 1983-10-05 Toray Ind Inc Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610455A (en) * 1979-07-09 1981-02-02 Toray Industries Polyester film
JPS5868225A (en) * 1981-10-13 1983-04-23 Toray Ind Inc Magnetic recording medium
JPS58168655A (en) * 1982-03-30 1983-10-05 Toray Ind Inc Magnetic recording medium

Also Published As

Publication number Publication date
JPS60111322A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
US4333985A (en) Magnetic recording medium
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
US4503119A (en) Magnetic recording media
JPH0475573B2 (en)
US4557948A (en) Process for producing magnetic recording materials
JPH0481268B2 (en)
JP2506813B2 (en) Magnetic recording media
JPH02769B2 (en)
JPS62219321A (en) Magnetic recording medium
JPS60111320A (en) Thin metallic film type magnetic recording medium
JP2532503B2 (en) Magnetic recording media
JPS6037528B2 (en) Manufacturing method for magnetic recording media
KR910000211B1 (en) Magnetic recording carrier
JP2605380B2 (en) Magnetic recording media
JPH04221426A (en) Magnetic recording medium and its manufacture
JPS61239423A (en) Magnetic recording medium
JPS6326824A (en) Magnetic recording medium
JPS6378332A (en) Magnetic recording medium
JPH0758537B2 (en) Magnetic recording medium
JPS60214424A (en) Manufacture of magnetic recording medium
JPS61105730A (en) Production of magnetic recording medium
JPS62219319A (en) Thin metallic film type magnetic recording medium
JPH0475578B2 (en)
JPS60261013A (en) Magnetic recording medium
JPH0481247B2 (en)