JPH0474784B2 - - Google Patents

Info

Publication number
JPH0474784B2
JPH0474784B2 JP61220833A JP22083386A JPH0474784B2 JP H0474784 B2 JPH0474784 B2 JP H0474784B2 JP 61220833 A JP61220833 A JP 61220833A JP 22083386 A JP22083386 A JP 22083386A JP H0474784 B2 JPH0474784 B2 JP H0474784B2
Authority
JP
Japan
Prior art keywords
layer
recording medium
optical recording
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61220833A
Other languages
Japanese (ja)
Other versions
JPS6374139A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61220833A priority Critical patent/JPS6374139A/en
Priority to EP87301046A priority patent/EP0242942B1/en
Priority to CA000529093A priority patent/CA1258974A/en
Priority to KR1019870000966A priority patent/KR910009072B1/en
Priority to DE8787301046T priority patent/DE3776386D1/en
Publication of JPS6374139A publication Critical patent/JPS6374139A/en
Publication of JPH0474784B2 publication Critical patent/JPH0474784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度・高速記録が可能な光学的記
録用媒体に関する。詳しくは、基板上に形成した
記録用薄膜にレーザービームを照射して発生した
熱により、該薄膜が蒸発あるいは溶融除去される
ことを利用した光学的記録用媒体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical recording medium capable of high-density and high-speed recording. Specifically, the present invention relates to an optical recording medium that utilizes the fact that a thin recording film formed on a substrate is evaporated or melted away by heat generated by irradiating the thin film with a laser beam.

(従来の技術) 基板上に形成された薄膜にレーザービームを照
射して穴(ビツト)を形成するようにした光学的
記録用媒体として、従来より、Te,Biなどの金
属薄膜が利用されている。さらに、経時安定性を
増すためにTe及びSeなどからなるTe系合金薄膜
や、これらの金属を含有するプラズマ重合膜が利
用されている。これらの材料は低融点であるため
記録に要するレーザー光のパワーが小さくて済
み、記録感度の点で有利である。
(Prior art) Metal thin films such as Te and Bi have traditionally been used as optical recording media in which holes (bits) are formed by irradiating a thin film formed on a substrate with a laser beam. There is. Furthermore, in order to increase stability over time, Te-based alloy thin films made of Te, Se, etc., and plasma polymerized films containing these metals are used. Since these materials have a low melting point, the power of the laser beam required for recording is small, which is advantageous in terms of recording sensitivity.

一方、これらの記録媒体に用いる基板として
は、プラスチツク、ガラス、金属あるいは、これ
らの基板上に光硬化性樹脂膜等を形成したものが
挙げられる。
On the other hand, substrates used in these recording media include plastic, glass, metal, and those with photocurable resin films formed on these substrates.

上記基板と薄膜記録媒体とからなる系において
レーザー光による薄膜の穿孔には、レーザー加熱
によつて溶融した膜物質が基板との付着力にうち
かつて分離することが必要である。このような目
的のために記録層と基板との間にフルオロカーボ
ン薄膜からなる下引き層を設けることが検討され
ている(特開昭59−90246号公報)。基板と膜物質
との間の付着力を決める要因は、記録層と接する
基板表面及び記録層を形成する物質の溶融時にお
ける表面張力や、基板表面層の分子量、架橋度等
である。記録層と基板との関係は、この両者の付
着力が小さければ、より小さなレーザー光パワー
で短時間にピツトを形成することができる。これ
は記録感度の向上を意味し、高速処理のフアイル
記録及び安価な低出力半導体レーザーの使用が可
能となる。しかしながら、さらに高品質の記録を
行うためには感度の向上だけではなく、形成され
たピツト形状が明確な輪郭を有し、かつ、一様で
あることが要求される。
In order to perforate a thin film using a laser beam in a system consisting of the substrate and a thin film recording medium, it is necessary that the film material melted by laser heating be separated by the adhesive force with the substrate. For this purpose, it has been considered to provide an undercoat layer made of a fluorocarbon thin film between the recording layer and the substrate (Japanese Patent Laid-Open No. 59-90246). Factors that determine the adhesion between the substrate and the film material include the surface tension of the substrate surface in contact with the recording layer and the material forming the recording layer during melting, the molecular weight of the substrate surface layer, the degree of crosslinking, and the like. Regarding the relationship between the recording layer and the substrate, if the adhesion force between the two is small, pits can be formed in a short time with a smaller laser beam power. This means improved recording sensitivity, and enables high-speed file recording and the use of inexpensive low-power semiconductor lasers. However, in order to perform even higher quality recording, it is required not only to improve the sensitivity but also that the formed pit shape have a clear outline and be uniform.

上記要求を満たすものとして、本発明者らは既
に基板と記録層との間にフルオロカーボンの引き
層を設け、かつ、該下引き層の記録層に接する側
の表面から10nm以内の層の炭素とフツ素の原子
数比をESCA(軟X線励起光電子分光法)法によ
る測定値として炭素1に対してフツ素1.4以上と
する光学的記録用媒体を提案した。(特願60−
298197) (発明が解決しようとする問題点) 一方、記録用媒体には、以上のような特性に加
えて、記憶容量が大きいこと、すなわち、高密度
記録が可能なことが要求される。穴あけタイプの
光学的記録用媒体の記憶容量を向上させるために
は、ピツトの大きさをできるだけ小さくすること
が要求される。記録媒体の熱伝導率が大きいため
に、レーザー光照射によつて溶融除去される領域
が大きくなつてしまう場合や、記録層と下引き層
の間の付着力が弱過ぎて除去される物質の量が多
くなつてしまう場合には、ピツトサイズが大きく
なりやすく高密度記録は不可能となる。また、上
記のような媒体では、レーザー光パワーのわずか
な変動によつてもピツトサイズが敏感に変動しや
すい傾向があり、安定で正確なデイジタル信号の
記録が困難となる。
In order to meet the above requirements, the present inventors have already provided a fluorocarbon undercoating layer between the substrate and the recording layer, and a layer of carbon within 10 nm from the surface of the undercoat layer in contact with the recording layer. We proposed an optical recording medium in which the atomic ratio of fluorine to 1 carbon is 1.4 or more, as measured by ESCA (soft X-ray excited photoelectron spectroscopy). (Patent application 60-
298197) (Problems to be Solved by the Invention) On the other hand, in addition to the above characteristics, a recording medium is required to have a large storage capacity, that is, to be capable of high-density recording. In order to improve the storage capacity of a punch-type optical recording medium, it is required to reduce the size of the pits as much as possible. Because the thermal conductivity of the recording medium is high, the area that is melted and removed by laser beam irradiation may be large, or the adhesion between the recording layer and the undercoat layer may be too weak, causing the material to be removed to be removed. If the amount increases, the pit size tends to increase, making high-density recording impossible. Furthermore, in the above-mentioned media, the pit size tends to vary sensitively even with slight variations in laser light power, making it difficult to record stable and accurate digital signals.

さらに、上記ピツト形状に関する問題点に加え
て、短パルス長のレーザー光で記録したり、デイ
スクを高速で回転させる場合、特にデイスクの外
周においては媒体面上の単位面積当りに単位時間
に照射されるレーザー光のエネルギー密度が小さ
くなるために、穴あけに要するレーザー光出力は
より大きくなり、媒体に対する高感度化の要求は
一層厳しいものとなる。
Furthermore, in addition to the problems with the pit shape mentioned above, when recording with short pulse length laser light or rotating the disk at high speed, especially at the outer periphery of the disk, the amount of irradiation per unit time per unit area on the medium surface is Since the energy density of the laser light used for drilling becomes smaller, the laser light output required for drilling becomes larger, and demands for higher sensitivity of the medium become even more severe.

以上のような要求を満たすためには、記録層と
その下地(基板または下引層)との組合せが極め
て重要な要素となる。すなわち、最短ピツト長を
短かくするためには、付着力が大きいことが望ま
しく、一方で高感度化のためには付着力は小さい
ことが望ましいという一見、相矛盾する要求を満
たさねばならない。
In order to meet the above requirements, the combination of the recording layer and its underlayer (substrate or undercoat layer) is an extremely important element. That is, in order to shorten the minimum pit length, it is desirable to have a large adhesive force, while in order to increase sensitivity, it is desirable to have a small adhesive force, which are seemingly contradictory demands that must be met.

(問題点を解決するための手段) 本発明者らは、フルオロカーボン薄膜の炭素と
フツ素の組成比及び構造を制御することにより、
フルオロカーボン薄膜からなる下引き層と各種記
録層との間の付着力を制御し、これにより、最小
ピツトサイズを小さくする一方で、高感度及びピ
ツト形状の改善をもたらす光学的記録用媒体を
得、本発明に到達した。
(Means for solving the problem) The present inventors have solved the problem by controlling the composition ratio and structure of carbon and fluorine in the fluorocarbon thin film.
By controlling the adhesion force between the undercoat layer made of a thin fluorocarbon film and various recording layers, we can obtain an optical recording medium that provides high sensitivity and improved pit shape while reducing the minimum pit size. invention has been achieved.

すなわち、本発明の要旨は、基板上にフルオロ
カーボン膜からなる下引き層を設けて該下引き層
上にTeを含む穴あけタイプの記録層を配置した
光学的記録用媒体において、上記下引き層の表面
を不活性ガスプラズマ処理することなく、下引き
層の記録層に接する側の表面から10nm以内の層
の炭素とフツ素の原子数比をESCA法による測定
値として、炭素1に対して、フツ素0.8以上1.4未
満としたことを特徴とする光学的記録用媒体に存
する。
That is, the gist of the present invention is to provide an optical recording medium in which an undercoat layer made of a fluorocarbon film is provided on a substrate and a perforation type recording layer containing Te is disposed on the undercoat layer. Without inert gas plasma treatment on the surface, the atomic ratio of carbon to fluorine in the layer within 10 nm from the surface of the undercoat layer in contact with the recording layer is measured by the ESCA method, and the ratio is 1 to carbon. An optical recording medium characterized by having a fluorine content of 0.8 or more and less than 1.4.

本発明に言うESCA法とは、軟X線励起光電子
分光法の略称であつて、軟X線の照射によつて試
料化合物中の原子からたたき出された光電子のエ
ネルギースペクトルから試料の表面近傍の元素の
種類及び化学結合状態を分析する方法である。こ
の方法では、上記光電子の透過能が小さいため該
薄膜の分析は、その表面から、10nm以内の極表
層部の情報が相対的に強く得られる特徴を有す
る。
The ESCA method referred to in the present invention is an abbreviation for soft X-ray excitation photoelectron spectroscopy, which uses the energy spectrum of photoelectrons emitted from atoms in a sample compound by soft This is a method to analyze the type of element and the state of chemical bonding. In this method, since the photoelectron transmission ability is small, analysis of the thin film has the characteristic that relatively strong information on the extreme surface layer within 10 nm from the surface can be obtained.

本発明においては、スペクトロス
(SPECTROS)社製のESCAスペクトロメータ
“XSAM−800”型を用い導電性基板上に作成し
たフルオロカーボン薄膜表面のフツ素1S軌道
(F1S)スペクトルと炭素1S(C1S)軌道スペクトル
を測定した。F1Sスペクトルは、結合エネルギー
が688ev付近に中心を有する単一ピークからな
り、C1Sスペクトルは、結合エネルギーが、285か
ら294ev付近に中心を有する複数のピークから構
成される。炭素原子とフツ素原子数比は上記F1S
ピークの積分強度と、C1Sスペクトルの積分強度
との比から導出される。
In the present invention, the fluorine 1S orbital (F 1S ) spectrum and the carbon 1S (C 1S ) The orbital spectrum was measured. The F 1S spectrum consists of a single peak with a binding energy centered around 688 ev, and the C 1S spectrum consists of multiple peaks with binding energies centered around 285 to 294 ev. The ratio of carbon atoms to fluorine atoms is F 1S above.
It is derived from the ratio of the integrated intensity of the peak and the integrated intensity of the C 1S spectrum.

以下図面を参照して、本発明を詳細に説明す
る。第1図は、本発明光学的記録用媒体の具体的
構造の1例を示す模式図であつて、1は基板、2
は基板1上に配置したフルオロカーボンの下引き
膜、3は膜2上に形成した記録層、4はトラツク
サーボ用の溝である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing one example of a specific structure of the optical recording medium of the present invention, in which 1 is a substrate, 2
3 is a recording layer formed on the film 2, and 4 is a track servo groove.

本発明に係る記録媒体の基板1としては、アク
リル樹脂、ポリカーボネート樹脂等のプラスチツ
ク、ガラス又はアルミニウム等に紫外線硬化樹脂
を塗布したもの等が挙げられる。
The substrate 1 of the recording medium according to the present invention may be made of plastic such as acrylic resin or polycarbonate resin, glass, or aluminum coated with an ultraviolet curing resin.

本発明において、この基板上にフルオロカーボ
ンからなる膜を設ける。具体的には、例えば、プ
ラズマ重合法によつてポリフルオロカーボン薄膜
を20〜1000Å、好適には50〜300Å堆積させて下
引き層2を形成し、種々の記録層3に対して下地
との付着力を最適化する。
In the present invention, a film made of fluorocarbon is provided on this substrate. Specifically, for example, a polyfluorocarbon thin film of 20 to 1000 Å, preferably 50 to 300 Å, is deposited by plasma polymerization to form the undercoat layer 2, and the various recording layers 3 are coated with the undercoat. Optimize the application force.

プラズマ重合に用いるフルオロカーボンのモノ
マーとしては、四フツ化エチレン、六フツ化プロ
ピレンなどのパーフロロアルケン、又はパーフロ
ロシクロヘキサン、パーフロロベンゼン等、常温
で気体あるいは液体であつても蒸気圧が十分高
く、真空容器に該フルオロカーボンの蒸気を
10-3Torr以上満たし、グロー放電が可能となる
ものであつて、フツ素の置換度が高いものであれ
ば良い。特に、四フツ化エチレンと六フツ化プロ
ピレンは蒸気圧が高い、重合速度が速い、安価で
取扱い易いなどの点で有利なモノマーガスであ
る。これらフルオロカーボンをモノマとして容量
式あるいは誘導式放電を用いることによりプラズ
マ重合膜を形成することができる。フルオロカー
ボン膜の他の形成方法としては、ポリテトラフル
オロエチレン等のポリフルオロカーボンをスパツ
タリング等により形成する方法がある。
Fluorocarbon monomers used for plasma polymerization include perfluoroalkenes such as tetrafluoroethylene and hexafluoropropylene, or perfluorocyclohexane and perfluorobenzene, which have sufficiently high vapor pressure even if they are gas or liquid at room temperature. The fluorocarbon vapor is placed in a vacuum container.
It is sufficient that it satisfies 10 -3 Torr or more, enables glow discharge, and has a high degree of fluorine substitution. In particular, tetrafluoroethylene and hexafluoropropylene are advantageous monomer gases in terms of high vapor pressure, high polymerization rate, low cost, and easy handling. A plasma polymerized film can be formed by using these fluorocarbons as monomers and using capacitive or inductive discharge. Another method for forming a fluorocarbon film is to form a polyfluorocarbon such as polytetrafluoroethylene by sputtering or the like.

第2図は、フルオロカーボンのプラズマ重合膜
を作製した後、スパツタ法によつて記録層を成膜
する場合の装置の一例を示す。
FIG. 2 shows an example of an apparatus for forming a recording layer by a sputtering method after producing a fluorocarbon plasma polymerized film.

図中5は真空容器であり、その内部は2室に区
切られている。第室でプラズマ重合を行い、そ
の後第室において記録層を成膜する。第2図
中、6,7は高周波を印加する電極であり、基本
的には同一構造であるが、7がスパツタされるべ
き材質からなるターゲツトであるのに対し、6は
スパツタされにくい材質(ステンレス、Taなど)
が用いられる。8は基板9がセツトされたホルダ
ーであり、、室の順に搬送することができ
る。10,11は放電を生ぜしめるためのガス導
入口であり、10からはフルオロカーボンのモノ
マーガス、11からは、ArまたはArとフツ化セ
レンガス等の反応性ガスとの混合ガスを導入す
る。ここで、、室の間には、各室のガスの種
類及び圧力を独立に制御するための差動排気室1
2を設けている。また、13は排気口、14は
RF電源である。
In the figure, 5 is a vacuum container, the interior of which is divided into two chambers. Plasma polymerization is performed in the first chamber, and then a recording layer is formed in the second chamber. In Fig. 2, 6 and 7 are electrodes that apply high frequency waves, and they basically have the same structure, but 7 is a target made of a material to be sputtered, while 6 is a target made of a material that is difficult to sputter ( stainless steel, Ta, etc.)
is used. Reference numeral 8 denotes a holder on which the substrates 9 are set, and can be transported in order from one chamber to another. Reference numerals 10 and 11 are gas inlet ports for generating electric discharge, and from 10, a fluorocarbon monomer gas is introduced, and from 11, Ar or a mixed gas of Ar and a reactive gas such as selenium fluoride gas is introduced. Here, between the chambers is a differential exhaust chamber 1 for independently controlling the type and pressure of gas in each chamber.
2 are provided. Also, 13 is an exhaust port, 14 is
It is an RF power source.

上記のような容量結合式のプラズマ重合装置に
おいて得られるフルオロカーボン膜表面のフツ素
原子と炭素原子の組成比(原子数比)、F/Cは、
原料となるモノマーガス、装置形状、放電条件、
特に放電パワー及びモノマーガス圧力に依存する
が、その値として、0.2から1.5程度の範囲のもの
が容易に得られる。一方、ポリフルオロカーボン
のスパツタ膜では、ターゲツトとして利用しうる
ポリフルオロカーボン樹脂の耐熱性に関する制御
のためF/Cとして1.1から1.7程度のものしか得
られない。F/Cが小さい方がフツ素原子が少な
く、炭素原子どうしの架橋度が高い膜構造となつ
ており、従つて、記録層との間の付着力が増加す
る傾向がある。
The composition ratio (atomic ratio) of fluorine atoms and carbon atoms on the surface of the fluorocarbon film obtained in the capacitively coupled plasma polymerization apparatus as described above, F/C is as follows:
Monomer gas as raw material, equipment shape, discharge conditions,
Although it particularly depends on the discharge power and monomer gas pressure, values in the range of about 0.2 to 1.5 can be easily obtained. On the other hand, with sputtered polyfluorocarbon films, an F/C of only about 1.1 to 1.7 can be obtained due to control over the heat resistance of the polyfluorocarbon resin that can be used as a target. The smaller F/C is, the less fluorine atoms there are and the film structure has a higher degree of cross-linking between carbon atoms, and therefore the adhesive force between the film and the recording layer tends to increase.

付着力の制御という点からは、プラズマ重合膜
の方が幅広い制御が行える。本発明者らは、種々
のTeを含む金属薄膜からなる穴あけタイプの記
録層に対し、上記フルオロカーボンのプラズマ重
合膜からなる下引き層を適用し、感度、ピツト形
状及び最小ピツトサイズのバランスのとれた改善
を達成しうるよう、記録層と下引き層の間の付着
力の最適化を行つた。この結果、該下引き層の記
録層に接する側の表面から10nm以内の層の炭素
とフツ素の原子数比を炭素1に対してフツ素0.8
以上1.4未満、好ましくは0.9以上1.3以下とした場
合に最も良好な特性を有する記録媒体が得られ
た。F/Cが0.8より小さい場合には、ポリカー
ボネート樹脂等に直接記録層を成膜した場合に比
して、感度の改善効果が少なく、F/Cが1.4よ
り大きい場合にはピツトサイズが大きくなりやす
い傾向がある。
In terms of controlling adhesion, plasma polymerized membranes allow for a wider range of control. The present inventors applied an undercoat layer made of the above-mentioned fluorocarbon plasma polymerized film to a perforation-type recording layer made of a metal thin film containing various types of Te, and achieved a well-balanced combination of sensitivity, pit shape, and minimum pit size. Optimization of the adhesion between the recording layer and the subbing layer was carried out to achieve improvements. As a result, the atomic ratio of carbon to fluorine in the layer within 10 nm from the surface of the undercoat layer in contact with the recording layer was set to 1 carbon to 0.8 fluorine.
A recording medium having the best characteristics was obtained when the ratio was 0.9 or more and less than 1.4, preferably 0.9 or more and 1.3 or less. When F/C is smaller than 0.8, the effect of improving sensitivity is less than when the recording layer is directly formed on polycarbonate resin, etc., and when F/C is larger than 1.4, pit size tends to increase. Tend.

(実施例) 実施例 1 真空容器中に六フツ化プロピレンのモノマーガ
スを導入し、圧力を1×10-2Torrとした。直径
8インチのステンレス製の円形陰極と、ほぼ同程
度の大きさを有し、円板状のポリカーボネート樹
脂基板を装着した陽極との間に、13.56MHzの高
周波電圧を印加し、グロー放電を生ぜしめた。放
電電力は50Wで、上記平行平板電極間の間隔は
100mmとした。上記条件のもとで膜厚約200Åのプ
ラズマ重合膜を得、下引き層とした。該六フツ化
プロピレン・プラズマ重合膜のフツ素と炭素の原
子数比F/Cは炭素1に対してフツ素1.2であつ
た。
(Example) Example 1 A monomer gas of propylene hexafluoride was introduced into a vacuum container, and the pressure was set to 1×10 −2 Torr. A high-frequency voltage of 13.56 MHz was applied between a circular cathode made of stainless steel with a diameter of 8 inches and an anode of approximately the same size equipped with a disc-shaped polycarbonate resin substrate to generate a glow discharge. Closed. The discharge power is 50W, and the spacing between the above parallel plate electrodes is
It was set to 100mm. A plasma polymerized film with a thickness of about 200 Å was obtained under the above conditions and used as an undercoat layer. The fluorine to carbon atomic ratio F/C of the hexafluorinated propylene plasma polymerized film was 1.2 fluorine to 1 carbon.

上記下引き層上に、記録層として、TeをArと
SeF6混合ガス中でスパツタして得られる膜厚約
400ÅのTe−SeF6系媒体(特願60−296520に開示
したと同様の膜)を形成した。また、比較のた
め、F/Cが1.5であるポリテトラフルオロエチ
レンのスパツタ膜(膜厚約200Å)を下引き層と
した場合、及び下引き層の無い場合について、同
様にTe−SeF6系記録層を成膜した。
On the above undercoat layer, as a recording layer, Te is mixed with Ar.
Approximate film thickness obtained by sputtering in SeF 6 mixed gas
A 400 Å Te-SeF 6 based medium (film similar to that disclosed in Japanese Patent Application No. 60-296520) was formed. For comparison, we also examined the case where a polytetrafluoroethylene sputtered film (film thickness approximately 200 Å) with an F/C of 1.5 was used as an undercoat layer, and the case where there was no undercoat layer . A recording layer was formed.

上記3種類の光学的記録用媒体に対し、以下の
ような条件で記録再生特性の評価を行つた。円板
状基板は1800rpmで回転させ、回転軸からの半径
約30mmのトラツクに対し、波長830nmのGaAs半
導体レーザーで記録、再生を行つた。記録は
3.63MHz、デユーテイー30%のパルス光にて行つ
た。
The recording and reproducing characteristics of the above three types of optical recording media were evaluated under the following conditions. The disk-shaped substrate was rotated at 1800 rpm, and a GaAs semiconductor laser with a wavelength of 830 nm was used to record and reproduce tracks with a radius of approximately 30 mm from the rotation axis. The record is
This was done using pulsed light at 3.63MHz and a duty of 30%.

第3図にC/N比(Carrier to noise ratio)
の記録パワー依存性を示す。図中aはF/C=
1.5であるポリテトラフルオロエチレンスパツタ
膜を下引き層とした場合、bはF/C=1.2であ
る六フツ化プロピレンプラズマ重合膜を下引き層
とした場合、cは下引き層無しの場合である。b
はcよりも感度が改善される一方で、aよりも
C/Nが2〜3dB増加し、C/N比の記録パワー
依存性が少ない。これは、SEM観察の結果、a
においては記録パワーを大きくするにつれ、ピツ
トサイズが急激に大きくなるのに対し、bにおい
てはピツトサイズの変動が少ないためであること
がわかつた。さらに、bにおいてはcに比べてピ
ツト内残留物が少なく、均一なリムが形成され
た。
Figure 3 shows the C/N ratio (Carrier to noise ratio).
shows the recording power dependence of In the figure, a is F/C=
When the undercoat layer is a polytetrafluoroethylene sputtered film with F/C = 1.5, b is when the hexafluoropropylene plasma polymerized film with F/C = 1.2 is used as the undercoat layer, and c is when there is no undercoat layer. It is. b
While the sensitivity is improved compared to c, the C/N ratio is increased by 2 to 3 dB compared to a, and the dependence of the C/N ratio on recording power is less. This is the result of SEM observation, a
It was found that this is because the pit size rapidly increases as the recording power is increased in the case of b, whereas the pit size does not fluctuate much in the case of b. Furthermore, in case b, there was less residue in the pit compared to case c, and a uniform rim was formed.

実施例 2 実施例1において、モノマーガスを四フツ化エ
チレンに変えただけで他は全く同様にして、膜厚
約200Åのプラズマ重合膜(F/C=1.1)を形成
し、下引き層とした。上記四フツ化エチレンプラ
ズマ重合膜の他に、やはり実施例1と同様に、ポ
リテトラフルオロエチレンのスパツタ膜(F/C
=1.5)と、下引き無しの場合の3種類の基板及
び下引き層上に、窒素及びArとの混合ガス中で、
Te88%、Se12%(原子比)の合金ターゲツトの
反応性スパツタリングを行い、Te及びSeを含む
膜厚約400Åの膜厚(特願60−151505に開示した
と同様の膜)を形成し、記録層とした。上記3種
類の光学的記録用媒体に対し実施例1と同様にし
て記録、再生特性の評価を行つた。
Example 2 A plasma polymerized film (F/C=1.1) with a film thickness of approximately 200 Å was formed in the same manner as in Example 1 except that the monomer gas was changed to tetrafluoroethylene, and an undercoat layer and did. In addition to the above-mentioned tetrafluoroethylene plasma polymerized film, a polytetrafluoroethylene sputtered film (F/C
= 1.5) and on the three types of substrates and undercoat layer without undercoat, in a mixed gas of nitrogen and Ar,
Reactive sputtering was performed on an alloy target of 88% Te and 12% Se (atomic ratio) to form a film containing Te and Se with a thickness of about 400 Å (similar to the film disclosed in Patent Application No. 60-151505), and record it. layered. The recording and reproducing characteristics of the above three types of optical recording media were evaluated in the same manner as in Example 1.

ポリテトラフルオロエチレンのスパツタ膜を下
引き層とした場合、感度は極めて良いものの、付
着力が弱過ぎるために、ピツト形状が不ぞろい
で、大きな穴しか開かない。このため、C/Nの
場所むら、記録パワー依存性が大きく、正確なデ
ジタル信号の記録・再生は不可能であつた。
When a polytetrafluoroethylene sputtered film is used as an undercoat layer, the sensitivity is extremely good, but the adhesion is too weak, resulting in irregular pit shapes and only large holes. For this reason, the C/N ratio is highly dependent on location and recording power, making it impossible to accurately record and reproduce digital signals.

四フツ化エチレンのプラズマ重合膜を下引き層
として用いた場合、及び下引き層無しの場合に
は、それぞれ、第3図b及びcと同様な特性を示
し、該プラズマ重合膜下引き層の場合に最も良好
の特性が得られた。
When a plasma-polymerized film of tetrafluoroethylene was used as an undercoat layer, and when no undercoat layer was used, the characteristics were similar to those shown in FIGS. 3b and c, respectively, and the plasma-polymerized film undercoat layer The best characteristics were obtained when

(発明の効果) 本発明におけるフルオロカーボン膜の下引き層
は、単に記録媒体の感度を向上させるだけでな
く、記録・再生特性のバランスのとれた改善を達
成でき、特に、高密度な光学的記録用媒体を実現
できる。
(Effects of the Invention) The fluorocarbon film undercoat layer of the present invention not only improves the sensitivity of the recording medium, but also achieves a well-balanced improvement in the recording and reproducing characteristics, and is particularly suitable for high-density optical recording. It is possible to realize a medium for use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る記録用媒体の構造の一
例を示し、第2図は、記録層を成膜するためのス
パツター装置の一例を示し、第3図は、実施例で
得られた媒体のC/N比の記録依存性を示す。 図中、1:基板、2:下引き膜、、3:記録層。
FIG. 1 shows an example of the structure of a recording medium according to the present invention, FIG. 2 shows an example of a sputtering apparatus for forming a recording layer, and FIG. 3 shows an example of the structure of a recording medium according to the present invention. The recording dependence of the C/N ratio of the medium is shown. In the figure, 1: substrate, 2: undercoat film, 3: recording layer.

Claims (1)

【特許請求の範囲】 1 基板上にフルオロカーボン膜からなる下引き
層を設け、該下引き層上にTeを含む薄膜からな
る穴あけタイプの記録層を配置した光学的記録用
媒体において、上記下引き層の表面を不活性ガス
プラズマ処理することなく、下引き層の記録層に
接する側の表面から10nm以内の層の炭素とフツ
素の原子数比をESCA法による測定値として、炭
素1に対してフツ素0.8以上1.4未満としたことを
特徴とする光学的記録用媒体。 2 フルオロカーボン膜がフルオロカーボンのプ
ラズマ重合膜であることを特徴とする特許請求の
範囲第1項に記載の光学的記録用媒体。 3 上記フルオロカーボンのモノマーガスが四フ
ツ化エチレンまたは六フツ化プロピレンであるこ
とを特徴とする特許請求の範囲第1項記載の光学
的記録用媒体。 4 上記穴あけタイプの記録層が、Teを含む金
属をターゲツト材として、フツ化セレンガスと
Arガスとの混合ガス中において反応性スパツタ
リングすることにより形成した、Te及びSeを含
む堆積膜であることを特徴とする特許請求の範囲
第1項記載の光学的記録用媒体。 5 上記穴あけタイプの記録層が、Te及びSeを
含む合金をターゲツト材として窒素ガスとArガ
スとの混合ガス中において反応性スパツタリング
をすることにより形成した、Te及びSeを含む堆
積膜であることを特徴とする特許請求の範囲第1
項記載の光学的記録用媒体。
[Scope of Claims] 1. An optical recording medium in which an undercoat layer made of a fluorocarbon film is provided on a substrate, and a perforation type recording layer made of a thin film containing Te is disposed on the undercoat layer, wherein the undercoat layer is Without inert gas plasma treatment on the surface of the layer, the atomic ratio of carbon to fluorine in the layer within 10 nm from the surface of the undercoat layer that is in contact with the recording layer is measured by the ESCA method, and the ratio of carbon to 1 carbon is measured using the ESCA method. An optical recording medium characterized in that the fluorine content is 0.8 or more and less than 1.4. 2. The optical recording medium according to claim 1, wherein the fluorocarbon film is a fluorocarbon plasma polymerized film. 3. The optical recording medium according to claim 1, wherein the fluorocarbon monomer gas is tetrafluoroethylene or hexafluoropropylene. 4 The above-mentioned drilling type recording layer is made of selenium fluoride gas and a metal containing Te as a target material.
2. The optical recording medium according to claim 1, wherein the optical recording medium is a deposited film containing Te and Se formed by reactive sputtering in a mixed gas with Ar gas. 5. The above-mentioned hole-type recording layer is a deposited film containing Te and Se formed by reactive sputtering in a mixed gas of nitrogen gas and Ar gas using an alloy containing Te and Se as a target material. Claim 1 characterized by
Optical recording medium described in Section 1.
JP61220833A 1986-04-24 1986-09-18 Optical recording medium Granted JPS6374139A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61220833A JPS6374139A (en) 1986-09-18 1986-09-18 Optical recording medium
EP87301046A EP0242942B1 (en) 1986-04-24 1987-02-05 Optical recording medium and process for producing the same
CA000529093A CA1258974A (en) 1986-04-24 1987-02-05 Optical recording medium and process for producing the same
KR1019870000966A KR910009072B1 (en) 1986-04-24 1987-02-05 Optical recording carrier and manufacturing process therefor
DE8787301046T DE3776386D1 (en) 1986-04-24 1987-02-05 OPTICAL RECORDING MEDIUM AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220833A JPS6374139A (en) 1986-09-18 1986-09-18 Optical recording medium

Publications (2)

Publication Number Publication Date
JPS6374139A JPS6374139A (en) 1988-04-04
JPH0474784B2 true JPH0474784B2 (en) 1992-11-27

Family

ID=16757258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220833A Granted JPS6374139A (en) 1986-04-24 1986-09-18 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS6374139A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177328A (en) * 1987-01-19 1988-07-21 Nec Corp Optical recording medium and its production
JPS647348A (en) * 1986-10-30 1989-01-11 Hitachi Maxell Optical information recording medium and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142167A (en) * 1984-12-17 1986-06-30 杉山 幹雄 Seasoning shaking-out vessel having mixing function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142167A (en) * 1984-12-17 1986-06-30 杉山 幹雄 Seasoning shaking-out vessel having mixing function

Also Published As

Publication number Publication date
JPS6374139A (en) 1988-04-04

Similar Documents

Publication Publication Date Title
US5462701A (en) Sheet-like polyethylene terephthalate materials having slight surface roughness, their preparation and their use
US5796708A (en) Optical recording medium and recording system
US4839207A (en) Optical recording medium and process for producing the same
US5417896A (en) Preparation of sheet-like polyethylene terephthalate materials having little surface roughness
JPH0474784B2 (en)
JPH0447382B2 (en)
JPH0379772B2 (en)
JPH0511559B2 (en)
EP0242942B1 (en) Optical recording medium and process for producing the same
JPS6211685A (en) Optical recording medium
JP2544776B2 (en) Optical recording medium
US5164290A (en) Optical recording medium
EP0339889A2 (en) Optical recording media and process for preparing same
JPS63155443A (en) Optical recording medium
JPS62154247A (en) Production of recording material
JPH09326139A (en) Production of phase transition type optical disk
JPH0444816B2 (en)
JP2731202B2 (en) Information recording medium
JPH0312839A (en) Film forming method by sputtering and sputtering device used therein
JPS63182188A (en) Optical recording medium
JPH0248990A (en) Optical recording medium and production thereof
JPH02171290A (en) Information recording medium
JPH01173338A (en) Draw type optical information recording medium
JPH06223408A (en) Optical information recording medium
JPH0449175B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term