JPH0474375B2 - - Google Patents

Info

Publication number
JPH0474375B2
JPH0474375B2 JP17114285A JP17114285A JPH0474375B2 JP H0474375 B2 JPH0474375 B2 JP H0474375B2 JP 17114285 A JP17114285 A JP 17114285A JP 17114285 A JP17114285 A JP 17114285A JP H0474375 B2 JPH0474375 B2 JP H0474375B2
Authority
JP
Japan
Prior art keywords
weight
amount
crosslinking
parts
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17114285A
Other languages
Japanese (ja)
Other versions
JPS6232129A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17114285A priority Critical patent/JPS6232129A/en
Publication of JPS6232129A publication Critical patent/JPS6232129A/en
Publication of JPH0474375B2 publication Critical patent/JPH0474375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

「産業䞊の利甚分野」 本発明は有機過酞化物ず発泡剀を甚いた゚チレ
ン−酢酞ビニル共重合䜓系の架橋発泡䜓甚組成物
に関するものであり、䜎比重高発泡、高硬床、
高匕裂匷床、耐衝撃性、匟性に優れた゚チレン−
酢酞ビニル共重合䜓系架橋発泡䜓を短時間に補造
できるものである。 「埓来の技術」 ゎム匟性を有する架橋発泡䜓ずしお゚チレン−
酢酞ビニル共重合䜓EVA、倩然ゎム、合成ゎ
ムなどを䜿甚した架橋発泡䜓が知られおいる。こ
のうち倩然ゎム及び合成ゎムを䜿甚した架橋発泡
䜓では高発泡倍率が埗難くたた架橋埌の収瞮が倧
きいため寞法粟床が悪い。曎に型流れ性が悪いず
いう欠点を有しおいる。 これに察しEVAを䜿甚したEVA架橋発泡䜓は
䞀般に䞀段架橋のみで収瞮の問題がない高発泡倍
率の発泡䜓が埗られるこずが知られおおり、䟋え
ばスポヌツシナヌズのミツド゜ヌル、アりタヌ゜
ヌル、むンナヌ゜ヌルなど軜量化の必芁な甚途に
広く䜿甚されおいる。 しかしEVA架橋発泡䜓を軜量化するためには、
倍以䞊の発泡倍率にするこずが䞍可欠であるが
反面埗られる発泡䜓の硬床、匕裂匷床、匕匵匷床
は䜎䞋し成圢品倉圢、裂け、割れ等が発珟する。
又、軜量化するためには、発泡剀を倚く費し架橋
時間も長くなり生産性にも問題を有する。 ずころが近幎さらに軜量化の指向が匷た぀おお
り倍以䞊の高発泡倍率の芁求が匷くな぀おいる
こずより䞊蚘問題解決が曎に望たれるようにな぀
た。 発泡䜓の硬床、匕裂匷床、耐衝撃性に぀いおは
接着匷床ず共にスポヌツシナヌズの底材ずしおは
特に重芁な特性であり、硬床、耐衝撃性の䜎い発
泡䜓を底材に甚いるず䜿甚時にぞたり倉圢な
どの異垞珟象をおこし、匕裂匷床の䜎い発泡䜓は
生産時、実䜿甚ランニング時に割れなどの砎
壊珟象を起すので䜿甚にあた぀お倧きな問題ずな
り商品䟡倀を䜎䞋させる。たた、高発泡、高機胜
を远求するず埓来のEVA架橋発泡䜓の補法では
架橋剀、発泡剀を倚く費し架橋時間も長くなり補
品のコストが高いものずな぀おしたう。 「発明が解決しようずする問題点」 発明者らは前蚘問題を解決すべく皮々怜蚎を重
ねた結果EVAに特定量の−ポリブタゞ゚
ン以䞋2PBDず略すを添加するこずによ
り、䞀段架橋のみで匟性に富み著しく軜量比重
0.2以䞋で優れた硬床、耐衝撃性、匕裂匷床を
有する発泡䜓を少量の架橋剀䞋に短時間で埗るこ
ずのできる高生産性のEVA系架橋発泡䜓を補造
できる組成物を芋出し、この知芋に基いおこの発
明を完成させるにいた぀た。 「問題点を解決するための手段」 すなわち、本発明は(A)゚チレン−酢酞ビニル共
重合䜓98〜60重量、(B)ビニル結合含有量が70
以䞊、結晶化床が以䞊で固有粘床〔η〕ト
ル゚ン䞭30℃で枬定が0.5dl以䞊の
−ポリブタゞ゚ン〜30重量および(C)倩然ゎム
又はゞ゚ン系合成ゎム〜30重量からなる混合
物100重量郚に(D)有機過酞化物0.05〜重量郚お
よび(E)発泡剀0.5〜30重量郚を配合しおなるこず
を特城ずする゚チレン−酢酞ビニル共重合䜓系架
橋発泡䜓甚組成物である。 以䞋に、本発明を曎に詳しく説明する。 本発明に䜿甚する(A)のEVAは高発泡、高硬床、
高匕裂匷床、耐衝撃性、匟性に優れた架橋発泡䜓
を埗るために酢酞ビニル結合含有量〜45奜た
しくは10〜30メルトフロヌむンデツクス190
℃、21600.2〜5010min奜たしくは0.5〜
2010minのものが奜たしい。なお酢酞ビニル
結合含有量が未満であるずスポンゞの柔軟
性、耐匕裂性が損なわれるず共に架橋剀の消費が
倚くコストアツプの芁因になるので奜たしくな
い。酢酞ビニル結合含有量が46以䞊であるず架
橋発泡䜓硬床が䜎䞋するので奜たしくない。メル
トフロヌむンデツクス以䞋MIず略すが0.2
10min未満であるず流動性䞍足により加工
性、発泡性が損なわれ奜たしくない。51
10min以䞊であるず匕裂匷床が䜎䞋するずずもに
流動性過剰による混緎加工トラブルが発珟するの
で奜たしくない。 本発明の組成物においお、(A)のEVAの含有量
は、98〜60重量、奜たしくは97〜65重量、曎
に奜たしくは95〜70重量である。(A)が98重量
を越えるず匟性、耐ぞたりが損われ、たた充分に
架橋させるためには架橋剀量を著しく増す必芁が
あり奜たしくない。たた65重量未満では、成圢
品の硬さ、比重、倖芳割れが目的ずする範囲
をはずれ奜たしくない。 本発明でEVAにブレンドされる(B)の
2PBDは高発泡化、硬床保持、架橋掻性すなわち
架橋剀枛量、架橋時間短瞮の効果をもたらし、顕
著なコスト䜎䞋に結び぀く等のきわめお重芁な圹
割をはたす。2PBDはビニル結合含有量が70
以䞊奜たしくは85以䞊、結晶化床が以
䞊、奜たしくは10〜40の2PBである。な
お、ビニル結合含有量が70より小さくなるず、
発泡䜓の匷床に悪圱響を及がし、結晶化床が
未満になるず発泡䜓の硬床を損なう。たた分子量
は広い範囲にわた぀お遞択可胜であるが本発明の
目的である架橋ゎム組成物を埗るためには固有粘
床〔η〕トル゚ン䞭30℃で枬定が0.5dl以
䞊であるこずが必芁である。〔η〕は曎に奜たし
くは1.0〜3.0dlである。 (B)の2PBDの配合量は〜30重量である
が奜たしくは〜25重量、曎に奜たしくは〜
20重量である。の2PBDの量が重量
未満では架橋掻性すなわち架橋剀枛量、架橋時間
短瞮がはかれない。たた匟性、耐ぞたりが損われ
奜たしくない。たた30重量郚を越えるず架橋発泡
䜓に亀裂が入぀たり、比重、硬床ず匕裂匷床のバ
ランスがくずれ、目的ずする架橋発泡䜓が埗られ
ず奜たしくない。 (C)の倩然ゎム、又はゞ゚ン系合成ゎムは䞻に高
発泡時の割れ防止、発泡セルの均䞀化のために甚
いる。代衚的なゎムは䞊蚘の倩然ゎムNR、
シスポリむ゜プレンゎムIR、スチレンブタゞ
゚ン共重合ゎムSBR、ポリブタゞ゚ンゎム
BR、アクリロニトリル−ブタゞ゚ンゎム
NBR及びクロロプレンゎムCR等のゞ゚
ン系合成ゎムなどが挙げられる。この内奜たしい
ゎムはNR、IRである。(C)の配合量は、〜30重
量であるが奜たしくは〜25重量、曎に奜た
しくは〜20重量である。(C)の量が30重量を
越えるず架橋発泡䜓の硬床が䜎䞋し目的物が埗ら
れず奜たしくない。 本発明で䜿甚する(D)の有機過酞化物ずは分子内
に−−−結合を有しおいるもので具䜓的に
は、ケトンパヌオキサむド、パヌオキシケタヌ
ル、ハむドロパヌオキサむド、ゞアルキルパヌオ
キサむド、ゞアシルパヌオキサむド、パヌオキシ
カヌボネヌト、パヌオキシ゚ステル等である。こ
のうち䜜業性加工分解枩床からゞアルキルパヌオ
キサむドが奜たしい。 本発明の効果を埗るために必芁な有機過酞化物
の配合量は〔(A)(B)(C)〕100重量郚に察しお
0.05〜重量郚であり奜たしくは0.1〜重量郚
である。有機過酞化物の配合量が0.05重量郚未満
では架橋床が䜎すぎ圧瞮倉圢、機械匷床が損なわ
れ奜たしくない。たた重量郚を越えるず架橋床
が高くなりすぎ匟性の乏しい脆い材料ずなる。こ
れらは発泡性が悪くたずえ発泡しおも材料砎壊を
䌎う異垞発泡の圢態を呈する。有機過酞化物を甚
いた架橋は、硫黄による架橋に比べEVAに察す
る架橋性に優れ、色調の鮮明床が優れおいるずい
う利点を有する。 本発明で䜿甚する(E)の発泡剀には公知の無機た
たは有機の発泡剀を䜿甚するこずができる。発泡
剀の具䜓䟋ずしおは、重炭酞ナトリりム、重炭酞
アンモニりム、炭酞ナトリりム、炭酞アンモニり
ム、アゟゞカルボンアミド、ゞニトロ゜ペンタメ
チレンテトラミン、ゞニトロ゜テレフタルアミ
ド、アゟビスむ゜ブチロニトリル、アゟゞカルボ
ン酞バリりム、スルホニルヒドラゞド、トル゚ン
スルホニルヒドラゞド等を挙げるこずができる。
これら発泡剀は、尿玠、尿玠誘導䜓などの公知の
発泡剀ず䜵甚しおもよい。発泡剀の䜿甚量は混合
物〔(A)(B)(C)〕100重量郚に察しお0.5〜30重量
郚、奜たしくは〜10重量郚である。発泡剀が30
重量郚より倚いず発泡剀の分解によ぀お発生する
ガス量が倚くなりガス圧が異垞にあがり過ぎお埗
られる発泡䜓に亀裂が生ずるこずがある。発泡剀
が0.5重量郚未満であるず目的ずする高発泡䜓は
埗られ難い。 本発明の架橋発泡䜓には前蚘(A)〜(E)のほかに䞀
般のゎム組成物に配合される他の配合剀、すなわ
ち補匷剀、充填材、掻性剀、老化防止剀、加工助
剀、軟化剀、調色剀などを適宜添加しおも差支え
ない。前蚘(A)〜(E)及び他の配合剀を混合する方法
に特に制限はなくバンバリヌ型ミキサヌ、加圧ニ
ヌダヌ、オヌプンロヌルなど䞀般のゎム配合物に
䜿甚される混合法でよく70〜140℃の範囲の枩床
で混合するのが奜たしい。こうしお埗られる混合
物を金型䞭に䟛絊し加圧䞋に奜たしくは130〜200
℃、曎に奜たしくは140〜180℃の枩床範囲でか぀
有機過酞化物、発泡剀の分解枩床以䞊の枩床に加
熱しお配合物の架橋ならびに発泡剀の分解をおこ
なう。金型の型締圧は発泡剀の分解によ぀お発生
するガスの膚匵を実質的に抑制する圧力が必芁で
あり80Kgcm2以䞊でおこなうのが奜たしい。 埓来EVA発泡䜓は、架橋剀0.6PHR以䞊ず倚く
費さないず目的ずする架橋䜓は埗られず、なおか
぀架橋時間は17mm厚モヌルドで30分以䞊を芁する
䞍経枈な材料である。たた、物性は匟性に欠け、
耐ぞたりに乏しく、匕裂匷床も匱いもので、これ
らを総合するずEVA発泡䜓材料は決しお満足で
きる発泡䜓材料ではない。 本発明は䜎比重高発泡、高硬床、高匕裂匷
床、耐衝撃性、匟性に優れた架橋組成物を少量の
架橋剀の存圚䞋短時間に補造するこずのできる組
成物に関するものでEVA発泡䜓材料ずの差は明
確である。 本発明により補造される架橋発泡䜓は工業甚
品、自動車郚品、履物玠材アりト゜ヌル、ミツ
ド゜ヌル、むンナヌ゜ヌル、サンダル緩衝材
料、自動車や建築物の吞音材料、包装材料などに
奜適に䜿甚される。これらのうちでは、履物玠材
に特に奜適であり、䞭でもそのミツド゜ヌルに最
適である。 たた本発明により補造される架橋発泡䜓は寞法
粟床が優れ耐久性、クツシペン性も優れおおり熱
成圢スポンゞにも応甚できる。 「実斜䟋」 ぀ぎに実斜䟋及び比范䟋を挙げおこの発明を具
䜓的に説明する。実斜䟋及び比范䟋においお匕匵
匷床、䌞びはJISK−6301に準拠した方法でスポ
ンゞ局間匕裂匷床はASTMD1564に準拠した方
法で、たた硬さはラバテスタヌタむプ高分子
蚈噚補スポンゞ硬床蚈により、比重は浮力法に
より枬定した。耐衝撃性ぞたりは重さ20Kgの
重錘詊料より倧きい面積を有する円板をcm
の高さから80回分の頻床で60φmm×20mmのスポ
ンゞ詊料に10䞇回繰返し衝撃を䞎えた埌の氞久ひ
ずみを枬定した。 ぞたりT0−T1T0×100 T0詊隓前の詊料厚みmm T1詊料埌の 〃 〃 実斜䟋 〜 酢酞ビニル含量、メルトフロヌむンデツクスの
異なるEVA((東掋曹達(æ ª)補540、631、633))、
2PBD日本合成ゎム(æ ª)補JSR820ビニル結合
含有率92、結晶化床24.5〔η〕トル゚ン30℃
1.25、発泡剀AC ((氞和化成(æ ª)アゟゞカル
ボンアミド分解枩床205℃、発生ガス量220c.c.
))、架橋剀((日本油脂(æ ª)補パヌクミル98、
ゞクミルパヌオキサむド))ず炭酞マグネシりム((
埳山曹達(æ ª)補MgCO3−TT))、酞化チタン((石
原産業(æ ª)補アナタヌれ))、透明亜鉛華((堺化孊工
業(æ ª)補ZnCO3を第衚に瀺す配合凊方に埓぀お
加圧ニヌダヌにより混合し第衚に瀺した条件䞋
に架橋をおこな぀た。その結果を第衚に瀺す。 実斜䟋 〜 実斜䟋〜の系にIR((日本合成ゎム(æ ª)補
JSR IR2200))を加えた以倖は実斜䟋〜ず同
様にしお埗た。 その結果を第衚に瀺した。実斜䟋〜の結
果は比范䟋に察しお 架橋剀量DCP2500〜3000円Kgで高䟡で
ありコスト面より重量郚以䞋を○、重量郚
を越える堎合を×ず刀定した 架橋時間生産数ひいおはコストに倧きく圱
響を䞎えるものであり30分未満を○、30分以䞊
を×ず刀定した 成圢品割れ架橋発泡䜓をモヌルドより取り
出した時に成圢品に割れが入らないものを○、
割れが入るものを×ず刀定した 比重倧手スポヌツシナヌズメヌカヌの芏栌
を基準に0.1〜0.2を○、この倖を×ず刀定し
た 硬さ倧手スポヌツシナヌズメヌカヌの芏栌
を基準に50〜60を○、この倖を×ず刀定した 衝撃ぞたりスポヌツシナヌズの耐久性をは
かる重芁な指暙で15未満を○、15以䞊を×
ず刀定した 匕匵匷床20Kgcm2以䞊を○、20Kgcm2未満
を×ず刀定した 䌞び200以䞊を○、200未満を×ず刀定
した 総合刀定〜の刀定が党お○のものを◎、
×印が以内のものを×、×印がを越えるもの
を××ず刀定した 以䞊の〜及び総合の刀定の結果から優れお
いるこずが刀る。特に2PBDをEVAに加え
るず架橋掻性が著しく向䞊し架橋剀量、架橋時間
の短瞮が図れる。さらに䜎比重でも硬さを含む物
性が満足されるこずによりスポヌツシナヌズ底材
の念願である軜量化ずずもに生産メヌカヌずしお
はスポンゞより補靎する際の取り数が向䞊するの
いう倧きなメリツトがある。 比范䟋 〜 第衚に蚘した配合に埓い、実斜䟋ず同様にし
お架橋発泡䜓を埗た。その結果を第衚に瀺す。
比范䟋は特蚱請求の範囲倖の系でその性胜は、総
合刀定に衚珟されおいるように満足できるもので
はない。 具䜓的には比范䟋、は架橋剀量が、比范䟋
、、は2PBDが、比范䟋、は発泡
剀量が、比范䟋はIRが特蚱請求の範囲をはず
れおおり、これらは実斜䟋に比范しおいずれも劣
぀おいるこずが刀る。比范䟋は、硫黄加硫によ
る結果を瀺す。EVAは硫黄加硫ができず、所定
加硫時間埌の取出し時発泡砎壊溶融物飛散ずいう
危険な状態を呈し本発明の範囲である実斜䟋に比
し劣るものである。 比范䟋−、−、−は2PBD量
及び架橋剀量、架橋時間のいずれか皮又は皮
が本発明の範囲をはずれおおり実斜䟋に比范し劣
぀おいるこずが刀る。
"Field of Industrial Application" The present invention relates to a crosslinked foam composition of ethylene-vinyl acetate copolymer using an organic peroxide and a blowing agent, which has low specific gravity (high foaming), high hardness,
Ethylene with high tear strength, impact resistance, and elasticity
It is possible to produce crosslinked vinyl acetate copolymer foams in a short time. ``Prior art'' Ethylene is used as a crosslinked foam with rubber elasticity.
Crosslinked foams using vinyl acetate copolymer (EVA), natural rubber, synthetic rubber, etc. are known. Among these, crosslinked foams using natural rubber and synthetic rubber have difficulty achieving a high expansion ratio, and also suffer from large shrinkage after crosslinking, resulting in poor dimensional accuracy. Furthermore, it has the disadvantage of poor mold flowability. On the other hand, EVA cross-linked foams using EVA are generally known to be able to obtain foams with a high expansion ratio without shrinkage problems with only one step of cross-linking, such as the midsole, outer sole, and inner sole of sports shoe It is widely used in applications that require weight reduction. However, in order to reduce the weight of EVA cross-linked foam,
Although it is essential to increase the expansion ratio to 3 times or more, the hardness, tear strength, and tensile strength of the resulting foam decrease, resulting in deformation, tearing, cracking, etc. of the molded product.
In addition, in order to reduce the weight, a large amount of blowing agent is used, and the crosslinking time becomes long, which causes problems in productivity. However, in recent years, there has been an increasing trend toward weight reduction, and there has been a growing demand for a high expansion ratio of 5 times or more, making it even more desirable to solve the above problem. The hardness, tear strength, and impact resistance of the foam are particularly important properties for the sole material of sports shoes, along with the adhesive strength, and if a foam with low hardness and impact resistance is used as the sole material, it may sag during use. Foams with low tear strength can cause abnormal phenomena such as deformation (deformation), and breakage phenomena such as cracking during production and actual use (running), which poses a major problem in use and reduces commercial value. In addition, in pursuit of high foaming and high functionality, the conventional manufacturing method for EVA crosslinked foam requires a large amount of crosslinking agent and foaming agent, and takes a long time for crosslinking, resulting in a high product cost. "Problems to be Solved by the Invention" The inventors have conducted various studies to solve the above problems, and as a result, by adding a specific amount of 1,2-polybutadiene (hereinafter abbreviated as 1,2PBD) to EVA, With only one stage of cross-linking, it is highly elastic and extremely lightweight (specific gravity
We have discovered a composition that can produce a highly productive EVA-based crosslinked foam that can be obtained in a short time with a small amount of crosslinking agent, and has excellent hardness, impact resistance, and tear strength (0.2 or less). Based on this knowledge, we were able to complete this invention. "Means for Solving the Problems" That is, the present invention consists of (A) an ethylene-vinyl acetate copolymer of 98 to 60% by weight, and (B) a vinyl bond content of 70%.
1,2 with a crystallinity of 5% or more and an intrinsic viscosity [η] (measured at 30℃ in toluene) of 0.5dl/g or more.
- 100 parts by weight of a mixture consisting of 2 to 30% by weight of polybutadiene and (C) 0 to 30% by weight of natural rubber or diene-based synthetic rubber, (D) 0.05 to 5 parts by weight of organic peroxide, and (E) 0.5 to 0.5 parts by weight of a blowing agent. 30 parts by weight of an ethylene-vinyl acetate copolymer composition for a crosslinked foam. The present invention will be explained in more detail below. The EVA (A) used in the present invention has high foaming, high hardness,
To obtain a crosslinked foam with high tear strength, impact resistance, and elasticity, the vinyl acetate bond content should be 5 to 45%, preferably 10 to 30%, and the melt flow index (190
℃, 2160g) 0.2~50g/10min preferably 0.5~
20g/10min is preferable. It should be noted that if the vinyl acetate bond content is less than 5%, the flexibility and tear resistance of the sponge will be impaired, and the crosslinking agent will be consumed to a large extent, resulting in an increase in cost, which is not preferable. If the vinyl acetate bond content is 46% or more, the hardness of the crosslinked foam decreases, which is not preferable. Melt flow index (hereinafter abbreviated as MI) is 0.2
If it is less than g/10 min, processability and foamability will be impaired due to insufficient fluidity, which is not preferable. 51g/
If it is longer than 10 min, the tear strength decreases and troubles in kneading processing occur due to excessive fluidity, which is not preferable. In the composition of the present invention, the content of EVA (A) is 98 to 60% by weight, preferably 97 to 65% by weight, and more preferably 95 to 70% by weight. (A) is 98% by weight
Exceeding this is not preferable because the elasticity and resistance to set will be impaired and the amount of crosslinking agent will need to be significantly increased in order to achieve sufficient crosslinking. If it is less than 65% by weight, the hardness, specific gravity, and appearance (cracks) of the molded product will be out of the desired range, which is not preferable. 1 of (B) blended with EVA in the present invention,
2PBD plays extremely important roles, such as achieving high foaming, maintaining hardness, crosslinking activity, reducing the amount of crosslinking agent, and shortening crosslinking time, leading to significant cost reductions. 1,2 PBD has a vinyl bond content of 70
% or more, preferably 85% or more, and 1,2PB with a crystallinity of 5% or more, preferably 10 to 40%. Furthermore, when the vinyl bond content is less than 70%,
Adversely affects the strength of the foam, with a crystallinity of 5%
If it is less than that, the hardness of the foam will be impaired. Although the molecular weight can be selected over a wide range, in order to obtain a crosslinked rubber composition, which is the object of the present invention, the intrinsic viscosity [η] (measured in toluene at 30°C) must be 0.5 dl/g or more. is necessary. [η] is more preferably 1.0 to 3.0 dl/g. The blending amount of 1,2PBD in (B) is 2 to 30% by weight, preferably 3 to 25% by weight, more preferably 5 to 25% by weight.
It is 20% by weight. The amount of 1,2PBD in B is 2% by weight
If it is less than that, it is impossible to achieve crosslinking activity, that is, to reduce the amount of crosslinking agent and shorten crosslinking time. In addition, elasticity and resistance to fatigue are impaired, which is undesirable. If the amount exceeds 30 parts by weight, the crosslinked foam may crack or the balance between specific gravity, hardness and tear strength may be lost, making it impossible to obtain the desired crosslinked foam. (C) Natural rubber or diene-based synthetic rubber is mainly used to prevent cracking during high foaming and to make foam cells uniform. Typical rubbers are the natural rubber (NR) mentioned above,
Examples include diene-based synthetic rubbers such as cis-polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), and chloroprene rubber (CR). Among these, preferred rubbers are NR and IR. The blending amount of (C) is 0 to 30% by weight, preferably 0 to 25% by weight, and more preferably 0 to 20% by weight. If the amount of (C) exceeds 30% by weight, the hardness of the crosslinked foam decreases and the desired product cannot be obtained, which is not preferable. The organic peroxides (D) used in the present invention are those having an -O-O- bond in the molecule, and specifically include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide. These include oxide, diacyl peroxide, peroxy carbonate, peroxy ester, etc. Among these, dialkyl peroxide is preferred from the viewpoint of workability and processing decomposition temperature. The amount of organic peroxide required to obtain the effects of the present invention is based on 100 parts by weight of [(A) + (B) + (C)].
The amount is 0.05 to 5 parts by weight, preferably 0.1 to 1 part by weight. If the amount of organic peroxide added is less than 0.05 part by weight, the degree of crosslinking will be too low, resulting in loss of compressive deformation and mechanical strength, which is not preferable. If it exceeds 5 parts by weight, the degree of crosslinking will be too high, resulting in a brittle material with poor elasticity. These have poor foamability and even if they foam, they exhibit abnormal foaming accompanied by material destruction. Crosslinking using an organic peroxide has the advantage of superior crosslinking properties for EVA and excellent color clarity compared to crosslinking using sulfur. As the blowing agent (E) used in the present invention, any known inorganic or organic blowing agent can be used. Specific examples of blowing agents include sodium bicarbonate, ammonium bicarbonate, sodium carbonate, ammonium carbonate, azodicarbonamide, dinitrosopentamethylenetetramine, dinitrosoterephthalamide, azobisisobutyronitrile, barium azodicarboxylate, and sulfonyl. Examples include hydrazide, toluenesulfonyl hydrazide, and the like.
These blowing agents may be used in combination with known blowing agents such as urea and urea derivatives. The amount of blowing agent used is 0.5 to 30 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the mixture [(A)+(B)+(C)]. Foaming agent is 30
If the amount is more than 1 part by weight, the amount of gas generated by the decomposition of the blowing agent will increase, and the gas pressure will become abnormally high, which may cause cracks in the resulting foam. If the amount of the blowing agent is less than 0.5 part by weight, it will be difficult to obtain the desired highly foamed product. In addition to the above-mentioned (A) to (E), the crosslinked foam of the present invention may also contain other compounding agents that are blended into general rubber compositions, such as reinforcing agents, fillers, activators, anti-aging agents, and processing aids. , a softener, a toning agent, etc. may be added as appropriate. There are no particular restrictions on the method of mixing the above (A) to (E) and other compounding agents, and any mixing method used for general rubber compounds such as a Banbury mixer, pressure kneader, or open roll may be used at 70 to 140°C. Preferably, the mixing is carried out at a temperature in the range of . The mixture thus obtained is fed into a mold and heated under pressure, preferably from 130 to 200
C., more preferably 140 to 180.degree. C., and at a temperature higher than the decomposition temperature of the organic peroxide and the blowing agent to crosslink the compound and decompose the blowing agent. The clamping pressure of the mold needs to be a pressure that substantially suppresses the expansion of gas generated by decomposition of the blowing agent, and is preferably 80 kg/cm 2 or more. Conventional EVA foam is an uneconomical material that requires a large amount of cross-linking agent (0.6 PHR or more) to obtain the desired cross-linked product, and requires cross-linking time of 30 minutes or more in a 17 mm thick mold. In addition, the physical properties lack elasticity,
The EVA foam material has poor fatigue resistance and low tear strength, and when taken together, EVA foam material is by no means a satisfactory foam material. The present invention relates to a crosslinked composition with low specific gravity (high foaming), high hardness, high tear strength, impact resistance, and elasticity that can be produced in a short time in the presence of a small amount of crosslinking agent. The difference with foam materials is clear. The crosslinked foam produced according to the present invention is suitably used for industrial goods, automobile parts, footwear materials (outsoles, midsoles, innersoles, sandals), cushioning materials, sound absorbing materials for automobiles and buildings, packaging materials, and the like. Among these, it is particularly suitable for footwear materials, especially for its midsoles. Furthermore, the crosslinked foam produced by the present invention has excellent dimensional accuracy, durability, and cushioning properties, and can be applied to thermoformed sponges. "Examples" Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. In the Examples and Comparative Examples, tensile strength and elongation were measured according to JISK-6301, sponge interlayer tear strength was measured according to ASTMD1564, and hardness was measured using Lava Tester Type C (Kobunshi Keiki sponge hardness tester). Specific gravity was measured by the buoyancy method. Impact resistance (settling) is measured by applying a 20 kg weight (a disc with a larger area than the sample) to 5 cm.
The permanent strain was measured after impacting a 60φmm x 20mm sponge sample 100,000 times at a frequency of 80 times/minute from a height of . Settling (%) = T 0 - T 1 / T 0 × 100 T 0 : Sample thickness before test (mm) T 1 : After sample 〃 (〃) Examples 1 to 3 Vinyl acetate content, melt flow index different EVA ((Toyo Soda Co., Ltd. 540, 631, 633)),
1,2PBD (JSR820 manufactured by Japan Synthetic Rubber Co., Ltd. Vinyl bond content 92%, crystallinity 24.5% [η] Toluene 30℃
= 1.25), blowing agent AC# 3 ((Eiwa Kasei Co., Ltd.) azodicarbonamide decomposition temperature 205℃, amount of gas generated 220c.c./g
)), crosslinking agent ((Nippon Oil & Fats Corporation) Permil D (98%),
dicumyl peroxide)) and magnesium carbonate ((
Tokuyama Soda Co., Ltd.'s MgCO 3 -TT)), titanium oxide (Ishihara Sangyo Co., Ltd.'s Anatase)), and transparent zinc white (Sakai Chemical Industry Co., Ltd.'s ZnCO 3 ) are listed in Table 1. were mixed in a pressure kneader and crosslinked under the conditions shown in Table 1.The results are shown in Table 1. Examples 4 to 6 The systems of Examples 1 to 3 were mixed by IR (Japanese Made by Synthetic Rubber Co., Ltd.
It was obtained in the same manner as Examples 1 to 3 except that JSR IR2200)) was added. The results are shown in Table 1. The results of Examples 1 to 6 are compared to the comparative examples.Amount of crosslinking agent (DCP is expensive at 2500 to 3000 yen/Kg, and from a cost perspective, less than 5 parts by weight was judged as ○, and more than 5 parts by weight was judged as ×) Crosslinking Time (This has a large impact on production volume and cost, so less than 30 minutes was judged as ○, and 30 minutes or more was judged as ×) Molded product cracking (No cracks appear in the molded product when the crosslinked foam is removed from the mold) ○,
Items with cracks were judged as ×) Specific gravity (0.1 to 0.2 were judged as ○ based on the standards of major sports shoe manufacturers, and those outside this were judged as ×) Hardness (50 based on the standards of major sports shoe manufacturers) ~60 was judged as ○, outside of this was judged as ×) Impact wear (an important indicator for measuring the durability of sports shoes; less than 15% was judged as ○, and 15% or more was judged as ×)
) Tensile strength (20Kg/cm 2 or more was judged as ○, less than 20Kg/cm 2 was judged as ×) Elongation (200% or more was judged as ○, less than 200% was judged as ×) Overall judgment ( was judged as All ○ items ◎,
Those with an x mark of 5 or less were judged as x, and those with an x mark of more than 5 were judged as xx.) It can be seen that the results of the above ~ and overall judgments are excellent. In particular, when 1,2PBD is added to EVA, the crosslinking activity is significantly improved, and the amount of crosslinking agent and crosslinking time can be reduced. Furthermore, since it satisfies physical properties including hardness even with a low specific gravity, it has the great advantage of reducing the weight of the sole material for sports shoes, which is a long-awaited goal, and allowing manufacturers to use more material when making shoes than with sponge. Comparative Examples 1 to 8 Crosslinked foams were obtained in the same manner as in Examples according to the formulations shown in Table 1. The results are shown in Table 1.
The comparative example is a system outside the scope of the claims, and its performance is not satisfactory as expressed in the comprehensive evaluation. Specifically, Comparative Examples 1 and 2 have a crosslinking agent amount, Comparative Examples 3, 4, and 5 have a 1,2 PBD, Comparative Examples 6 and 7 have a blowing agent amount, and Comparative Example 8 has an IR that exceeds the scope of the claims. It can be seen that these are all inferior to the examples. Comparative Example 9 shows the results obtained by sulfur vulcanization. EVA cannot be vulcanized with sulfur, and when taken out after a predetermined vulcanization time, it presents a dangerous situation of foaming and molten material scattering, and is inferior to the examples within the scope of the present invention. Comparative Examples 5-1, 5-2, and 5-3 are inferior to Examples because two or three of the 1,2 PBD amount, crosslinking agent amount, and crosslinking time are outside the scope of the present invention. I understand that.

【衚】【table】

【衚】 業(æ ª)補
[Table] Manufactured by Gyo Co., Ltd.

【衚】【table】

【衚】 「発明の効果」 以䞊から明らかな劂く本発明の゚チレン−酢酞
ビニル共重合䜓系架橋発泡䜓甚組成物は、埓来埗
るこずのできなか぀た高発泡倍率䜎比重でか
぀適床な硬さを有し、匕裂匷床、繰返し応力に察
する耐久性、架橋掻性架橋剀量䜎枛、架橋時間
短瞮が優れた架橋発泡䜓が埗られるのでこの優
れた特性を生かしお履物底材アりタヌ゜ヌル、
むンナヌ゜ヌル、ミツド゜ヌル、ビヌチサンダル
など、特にミツド゜ヌル、工業甚品、緩衝材料、
包装材料、シヌル材料、自動車郚品、吞音材料な
どに奜適に䜿甚される。 本発明の組成物から埗られる架橋発泡䜓は寞法
粟床が優れか぀耐久性、クツシペン性そしお流動
性に優れるのでシナヌズのアりト゜ヌルずミツド
゜ヌルを同時に架橋、成圢する劂き䞀䜓成圢スポ
ンゞや熱成圢スポンゞ等に奜適に䜿甚できる。
[Table] "Effects of the Invention" As is clear from the above, the ethylene-vinyl acetate copolymer crosslinked foam composition of the present invention has a high expansion ratio (low specific gravity) and moderate hardness that could not be obtained conventionally. It is possible to obtain a crosslinked foam with excellent tear strength, durability against repeated stress, and crosslinking activity (reduced amount of crosslinking agent, shortened crosslinking time).Using these excellent characteristics, it can be used as a material for footwear soles (outer soles,
Inner soles, midsoles, beach sandals (especially midsoles), industrial supplies, cushioning materials,
Suitable for use in packaging materials, sealing materials, automobile parts, sound absorbing materials, etc. The crosslinked foam obtained from the composition of the present invention has excellent dimensional accuracy, durability, cushioning properties, and fluidity, so it can be used as an integrally molded sponge, thermoformed sponge, etc. in which the outsole and midsole of Shoes are crosslinked and molded at the same time. It can be used suitably.

Claims (1)

【特蚱請求の範囲】  (A)゚チレン−酢酞ビニル共重合䜓98〜60重量
、(B)ビニル結合含有量が70以䞊、結晶化床が
以䞊で固有粘床〔η〕トル゚ン䞭30℃で枬
定が0.5dl以䞊の−ポリブタゞ゚ン
〜30重量および(C)倩然ゎム又はゞ゚ン系合成
ゎム〜30重量からなる混合物100重量郚に(D)
有機過酞化物0.05〜重量郚および(E)発泡剀0.5
〜30重量郚を配合しおなるこずを特城ずする゚チ
レン−酢酞ビニル共重合䜓系架橋発泡䜓甚組成
物。
[Scope of Claims] 1 (A) ethylene-vinyl acetate copolymer 98 to 60% by weight, (B) vinyl bond content of 70% or more, crystallinity of 5% or more, and intrinsic viscosity [η] (toluene 100 parts by weight of a mixture consisting of 2-30% by weight of 1,2-polybutadiene (measured at 30°C) of 0.5 dl/g or more and (C) 0-30% by weight of natural rubber or diene-based synthetic rubber (D)
0.05 to 5 parts by weight of organic peroxide and (E) 0.5 parts by weight of blowing agent
A composition for a crosslinked foam based on ethylene-vinyl acetate copolymer, characterized in that the composition contains 30 parts by weight of ethylene-vinyl acetate copolymer.
JP17114285A 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam Granted JPS6232129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17114285A JPS6232129A (en) 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17114285A JPS6232129A (en) 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam

Publications (2)

Publication Number Publication Date
JPS6232129A JPS6232129A (en) 1987-02-12
JPH0474375B2 true JPH0474375B2 (en) 1992-11-26

Family

ID=15917763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17114285A Granted JPS6232129A (en) 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam

Country Status (1)

Country Link
JP (1) JPS6232129A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085983B2 (en) * 1987-02-17 1996-01-24 株匏䌚瀟ブリヂストン Shock absorbing foam
JP5568698B1 (en) * 2013-08-09 2014-08-06 株匏䌚瀟アシックス Sole for shoes and shoes
WO2016021023A1 (en) * 2014-08-07 2016-02-11 株匏䌚瀟アシックス Sole for shoes, and shoes
KR102458609B1 (en) * 2017-06-26 2022-10-26 닀우 Ꞁ로벌 테크놀로지슀 엘엘씚 Composite with direct bond between rubber and foam

Also Published As

Publication number Publication date
JPS6232129A (en) 1987-02-12

Similar Documents

Publication Publication Date Title
EP3415027B1 (en) Insert for a sole assembly and article of footwear with lightweight sole assembly
EP1872924A1 (en) Process for producing crosslinked molded foam
KR20020064176A (en) Elastomeric composition for preparing olefinic elastomer crosslinked foam and use thereof
KR101217692B1 (en) Composition for outsole and shoes manufactured by the same
US9179735B2 (en) Climbing shoes outsole having good adhesive and non-slip properties and method for manufacturing thereof
CN109796668A (en) A kind of EVA composition, foam and preparation method thereof
WO2008083451A1 (en) Polymer composition, microporous rubber-like foamed vulcanizate, and microporous rubber-like foamed shoe sole
KR100868885B1 (en) Composition for out sole by using hollow silica
JP2012213615A (en) Shoe-sole foamed body rubber composition and outsole
KR100894516B1 (en) A composition for shoes outsole with slip-resistant and a shoes outsole fabricated thereby
CN114573904A (en) Light high-elastic compression-resistant foaming material for shoes
WO2012026376A1 (en) Foam and foaming composition
KR0154397B1 (en) Out-sole
JPH0474375B2 (en)
US20190092922A1 (en) Thermoplastic vulcanizate composition, method of forming the same and product thereof
JP2006016518A (en) Composition for foam
KR100220077B1 (en) Preparation process of rubberish foam
JPS6155126A (en) Crosslinked foam
JP2929129B2 (en) Thermoplastic elastomer composition
EP2104440B1 (en) Outsole for an article of footwear
JPS60163944A (en) Rubber composition
KR102223789B1 (en) Manufacturing method of midsole with air bubble system
JP2006152058A (en) Rubber composition
JP3335339B2 (en) Foam for midsole or inner sole of shoes
TWI780526B (en) High-functional foaming resin composition and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term