JPH0473973A - Organic solar cell - Google Patents

Organic solar cell

Info

Publication number
JPH0473973A
JPH0473973A JP2188795A JP18879590A JPH0473973A JP H0473973 A JPH0473973 A JP H0473973A JP 2188795 A JP2188795 A JP 2188795A JP 18879590 A JP18879590 A JP 18879590A JP H0473973 A JPH0473973 A JP H0473973A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
solar cell
cadmium sulfide
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2188795A
Other languages
Japanese (ja)
Inventor
Norishige Shichiri
徳重 七里
Takeshi Inoue
健 井上
Minoru Suezaki
穣 末崎
Shinji Minami
信次 南
Michihiko Asai
道彦 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sekisui Chemical Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sekisui Chemical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2188795A priority Critical patent/JPH0473973A/en
Publication of JPH0473973A publication Critical patent/JPH0473973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain an organic solar cell having high energy conversion efficiency and small aging deteriorating by sequentially laminating an n-type semiconductor layer of cadmium sulfide, an intermediate layer of perylene dye, and a P-type semiconductor layer of quinacridon dye between two electrodes capable of transmitting a visible light in this order from the side of the electrode capable of transmitting the light. CONSTITUTION:After tin indium oxide is deposited, a transparent conductive glass board 2 is set in a vacuum vessel and evacuated, argon gas is introduced, an n-type semiconductor layer 3 of cadmium sulfide is formed by a high frequency sputtering method, perylene tetracarboxylate bisbenzoimidazole and 2,9-dimethylquiacridon are sequentially laminated on the cadmium sulfide thin film by a vacuum depositing method, and an intermediate layer 4 and a p-type semiconductor layer 5 are formed. Then, Au is deposited in vacuum to form an opposite electrode 6. An AM2 light of this solar cell is emitted from a transparent electrode side.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体層として有機物を用い、エネルギー変
換効率の高い有機太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an organic solar cell that uses an organic material as a semiconductor layer and has high energy conversion efficiency.

(従来の技術) 半導体層として有機物を用いた太陽電池は、コスト、大
面積化、製造工程の容易さなどの点で、無機半導体を用
いた太陽電池に比べ多くの利点があり、従来より乾式有
機太陽電池としてクロロフィルの単分子膜やポルフィリ
ン、メロシアニン、フタロシアニン類、キナクリドンな
どの天然あるいは合成の色素を真空蒸着やキャスト法に
より薄膜化した素子やポリアセチレン、ポリピロール等
の導電性高分子を用いた光起電力素子が公知である。特
に有機太陽電池の中でも銅フタロシアニンとペリレン系
色素を積層したものは比較的高い変換効率を持つことが
報告されている( C,W、 Tang、 Appl、
 Phys、 Lett、、48巻、 No2. P1
83 (1986)) o このような素子は通常、真
空蒸着法により作製されるが、色素を真空蒸着により薄
膜化した場合、均一な薄膜が得難いことからピンホール
が生じ易く、再現性に乏しい。
(Prior technology) Solar cells using organic materials as the semiconductor layer have many advantages over solar cells using inorganic semiconductors in terms of cost, large area, and ease of manufacturing process, Organic solar cells that use monolayers of chlorophyll, elements made of natural or synthetic pigments such as porphyrins, merocyanines, phthalocyanines, and quinacridones made into thin films by vacuum evaporation or casting, and conductive polymers such as polyacetylene and polypyrrole. Electromotive force elements are known. In particular, it has been reported that among organic solar cells, those in which copper phthalocyanine and perylene dyes are stacked have relatively high conversion efficiency (C, W, Tang, Appl.
Phys, Lett, vol. 48, No. 2. P1
83 (1986)) o Such elements are usually produced by vacuum evaporation, but when a dye is made into a thin film by vacuum evaporation, it is difficult to obtain a uniform thin film, so pinholes are likely to occur and reproducibility is poor.

理想的な太陽電池においては素子の半導体層の厚さは光
照射によって生成するキャリアの分離に必要な空乏層幅
程度であることが望ましく、その厚みは100Å以下で
ある。従って、この様な素子を作製する場合、半導体層
の膜厚は薄いほど良い。
In an ideal solar cell, the thickness of the semiconductor layer of the element is desirably about the width of the depletion layer necessary for separating carriers generated by light irradiation, and the thickness is 100 Å or less. Therefore, when manufacturing such an element, the thinner the semiconductor layer is, the better.

しかし、極(薄い膜を作製するとピンホールが生じ易く
、このようなピンホールの存在は極端な場合は完全な短
絡状態となり、太陽電池の特性を低下させる。また、実
用的な観点からもこのようなピンホールが発生し易い性
質は太陽電池セルの加工性を損ない、大面積化を防げる
要因となる。
However, when producing a thin film (pole), pinholes are likely to occur, and in extreme cases, the presence of such pinholes will result in a complete short circuit, degrading the characteristics of the solar cell.Also, from a practical point of view, this The tendency for pinholes to occur impairs the workability of solar cells and becomes a factor that prevents them from increasing in area.

一方、ピンホールの発生を防ぐためには各色素層の膜厚
を充分に厚くすればよいが、色素層の膜厚を必要以上に
厚くすることは、太陽電池素子全体の内部抵抗を増大さ
せ光電流の損失につながる上、光活性な領域への入射光
に対して、フィルター効果による入射光強度の減少を招
き起電力が小さくなるといった矛盾が生じる。
On the other hand, in order to prevent the occurrence of pinholes, it is sufficient to make each dye layer thick enough, but making the dye layer thicker than necessary increases the internal resistance of the entire solar cell element and increases the This results in a current loss, and also causes a contradiction in that the intensity of the incident light incident on the photoactive region decreases due to a filter effect, resulting in a decrease in electromotive force.

また有機太陽電池としてはショットキー型のものも報告
されている。キナクリドンを用いたショットキー型太陽
電池について2.3の報告(構出ら、高分子学会予稿集
34巻P、 2001(1984)、M、Tomida
 et al、、Chemistry Letters
、pp、l305(19+14))があるが、この場合
色素薄膜上にAI、 Inなどの仕事関数の小さな金属
を蒸着やスパッタリング等の方法により積層することに
よってショットキー接合を形成する手法が取られている
。これらの金属膜は空気中の酸素により接合界面に絶縁
性の酸化膜を形成しやすく、接合が劣化して変換効率が
低下し、さらにAI等の金属電極側から光を入射させな
ければならないため金属の先透過性の低さが変換効率の
低下を招くという欠点があった。
Schottky type organic solar cells have also been reported. Report 2.3 on Schottky solar cells using quinacridone (Kaide et al., Proceedings of the Society of Polymer Science, Volume 34, P, 2001 (1984), Tomida M.
et al,,Chemistry Letters
, pp, l305(19+14)), but in this case, a method is used to form a Schottky junction by layering a metal with a small work function such as AI or In on a thin dye film by a method such as vapor deposition or sputtering. ing. These metal films tend to form an insulating oxide film at the bonding interface due to oxygen in the air, which deteriorates the bond and reduces conversion efficiency. Furthermore, light must enter from the metal electrode side of the AI etc. There is a drawback that the low permeability of metal leads to a decrease in conversion efficiency.

以上のような点から有機太陽電池においては改良すべき
問題点が多い。
From the above points, there are many problems that need to be improved in organic solar cells.

(発明が解決しようとする課題) この発明は上述の如き問題点を解消するものであり、ピ
ンホールが少なく、膜内への入射光の有効な利用により
エネルギー変換効率の高い経時劣化の少ない有機太陽電
池を提供するものである。
(Problems to be Solved by the Invention) This invention solves the above-mentioned problems. It is an organic material that has few pinholes, has high energy conversion efficiency, and has low deterioration over time by effectively utilizing incident light within the film. It provides solar cells.

(課題を解決するための手段) この発明の有機太陽電池は、少なくとも一方が可視光を
透過しうる2つの電極の間に、硫化カドミウムよりなる
n型半導体層とペリレン系色素よりなる中間層とキナク
リドン系色素よりなるP型半導体層が、可視光を透過し
うる電極側からこの順で積層されてなり、そのことによ
り上記目的が達成される。
(Means for Solving the Problems) The organic solar cell of the present invention has an n-type semiconductor layer made of cadmium sulfide and an intermediate layer made of perylene dye between two electrodes, at least one of which can transmit visible light. P-type semiconductor layers made of a quinacridone dye are laminated in this order from the electrode side that can transmit visible light, thereby achieving the above object.

本発明の有機太陽電池を第1図を参照して説明する。The organic solar cell of the present invention will be explained with reference to FIG.

有機太陽電池は、透明電極基板1上に形成された透明電
極2と、透明電極2上に順次積層された硫化カドミウム
よりなるn型半導体層3と、ペリレン系色素よりなる中
間層4と、キナクリドン系色素よりなるP型半導体層5
と、対向電極6とから形成されている。図中、7は接続
端子である。
The organic solar cell includes a transparent electrode 2 formed on a transparent electrode substrate 1, an n-type semiconductor layer 3 made of cadmium sulfide that is sequentially laminated on the transparent electrode 2, an intermediate layer 4 made of perylene dye, and a quinacridone layer. P-type semiconductor layer 5 made of pigment
and a counter electrode 6. In the figure, 7 is a connection terminal.

電極基板lは、例えばガラス、プラスチック等の透明な
材質からなる板状の基板であってこの基板1の上面に透
明電極2が形成されている。透明電極2は、ITO(酸
化インジウムすず)、酸化すず、酸化インジウム等から
真空蒸着、スパッタリング等によって形成することがで
きる。
The electrode substrate 1 is a plate-shaped substrate made of a transparent material such as glass or plastic, and a transparent electrode 2 is formed on the upper surface of the substrate 1. The transparent electrode 2 can be formed from ITO (indium tin oxide), tin oxide, indium oxide, or the like by vacuum evaporation, sputtering, or the like.

n型半導体層3は、硫化カドミウムをスパッタリングあ
るいは真空蒸着、電着等の方法により透明電極2の上面
に形成することができ、その膜厚は50〜1000人が
好ましい。n型半導体層3は、上記のように形成された
硫化カドミウム薄膜をそのまま使用してもよいが、n型
半導体層3の光電特性を向上させるため前記のような方
法で作製した硫化カドミウム薄膜に熱処理を施すのが好
ましい。
The n-type semiconductor layer 3 can be formed on the upper surface of the transparent electrode 2 by sputtering cadmium sulfide, vacuum evaporation, electrodeposition, etc., and the thickness thereof is preferably 50 to 1000 layers. For the n-type semiconductor layer 3, the cadmium sulfide thin film formed as described above may be used as is. It is preferable to perform heat treatment.

上記中間層4は、ペリレン系色素を通常の抵抗加熱を用
いて真空蒸着することにより形成することができ、また
上記P型半導体層5はキナクリドン系色素を通常の抵抗
加熱を用いて真空蒸着することにより形成することがで
きる。
The intermediate layer 4 can be formed by vacuum-depositing a perylene-based dye using ordinary resistance heating, and the P-type semiconductor layer 5 can be formed by vacuum-evaporating a quinacridone-based dye using ordinary resistance heating. It can be formed by

本発明に使用されるペリレン系色素としては、例えば、
ペリレンテトラカルボン酸ビスベンゾイミダゾール、N
、N−ジメチルペリレンテトラカルボン酸ジイミド、N
、N−ジフェニルペリレンテトラカルボン酸ジイミド等
のペリレン誘導体があげられ、これらを単独あるいは混
合して使用することができる。これらの色素よりなる中
間層4の膜厚は厚くなると光が通りにくくなるので50
0Å以下が好ましく、より好ましくは20人〜100人
である。中間層4は必ずしも連続的な膜でなくてよく、
不連続な膜やピンホールのある膜でもよい。
Examples of perylene dyes used in the present invention include:
Perylenetetracarboxylic acid bisbenzimidazole, N
, N-dimethylperylenetetracarboxylic acid diimide, N
, N-diphenylperylenetetracarboxylic acid diimide, and other perylene derivatives, which can be used alone or in combination. The thickness of the intermediate layer 4 made of these dyes is 50% because the thicker it becomes, the more difficult it is for light to pass through.
It is preferably 0 Å or less, more preferably 20 to 100 people. The intermediate layer 4 does not necessarily have to be a continuous film,
A discontinuous film or a film with pinholes may be used.

また、本発明に使用されるキナクリド系色素としては、
例えば、無置換キナクリドン、2.9−ジメチルキナク
リドン、2.9−ジクロロキナクリドン等のキナクリド
ン誘導体があげられ、これらを単独または混合して使用
することができる。キナクリドン系色素よりなるP型半
導体層5の膜厚は200Å以上で、なるべ(薄い方が好
ましいが、ピンホールの発生を防ぐため400〜100
0人が好ましい。
In addition, the quinacrid dyes used in the present invention include:
Examples include quinacridone derivatives such as unsubstituted quinacridone, 2.9-dimethylquinacridone, and 2.9-dichloroquinacridone, and these can be used alone or in combination. The thickness of the P-type semiconductor layer 5 made of quinacridone dye should be 200 Å or more (the thinner the better, but the thickness should be 400 to 100 Å to prevent the formation of pinholes).
Preferably 0 people.

対句電極6は金、銀、白金等の仕事関数の大きな金属を
真空蒸着することによって形成することができ、その膜
厚は150〜500人が好ましい。また、対向電極6は
上記透明電極2と同様な構成にしてもよい。
The couplet electrode 6 can be formed by vacuum deposition of a metal with a large work function such as gold, silver, platinum, etc., and its film thickness is preferably 150 to 500 mm. Further, the counter electrode 6 may have the same structure as the transparent electrode 2 described above.

(実施例) 以下実施例をあげてこの発明をより具体的に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

支皿匠上 ITO(酸化インジウムすず)を蒸着した透明導電ガラ
ス基板を真空容器内に設置しI X 1O−5Torr
に減圧した後、アルゴンガス(ガス圧5 mTorr)
を導入し高周波スパッタリング法により硫化カドミウム
の膜をSow、  1分間の条件で300人の膜厚に形
成シタ。次にこの硫化カドミウム薄膜上に真空蒸着法に
よりI X 10−’Torrの減圧下、ペリレンテト
ラカルボン酸ビスベンゾイミダゾール、および2.9−
ジメチルキナクリドンを順次、膜厚30人、500人の
厚さに積層した。ついでこれにAuを200人の膜厚に
真空蒸着し対向電極を作製した。
A transparent conductive glass substrate coated with ITO (indium tin oxide) was placed in a vacuum container and heated to 10-5 Torr.
After reducing the pressure to , argon gas (gas pressure 5 mTorr)
A cadmium sulfide film was formed to a thickness of 300 mm using high-frequency sputtering for 1 minute. Next, on this cadmium sulfide thin film, perylenetetracarboxylic acid bisbenzimidazole and 2.9-
Dimethylquinacridone was sequentially laminated to a thickness of 30 and 500 layers. Next, Au was vacuum-deposited to a thickness of 200 mm to form a counter electrode.

この太陽電池にAM2光(75mw/c+a2)をIT
O透明電極側から照射して電流−電圧特性を測定した。
IT applies AM2 light (75mw/c+a2) to this solar cell.
Current-voltage characteristics were measured by irradiating from the O transparent electrode side.

第2図にこれを示す。この結果、短絡電流密度J 、、
= 0.52mA / am2、開放端電圧V。。=0
.35V。
This is shown in Figure 2. As a result, short circuit current density J ,
= 0.52mA/am2, open circuit voltage V. . =0
.. 35V.

フィルファクターff= 0.41であり、セルへの入
射光に対するエネルギー変換効率η電0.1%を得た。
The fill factor ff was 0.41, and an energy conversion efficiency η of 0.1% for light incident on the cell was obtained.

またこの太陽電池を空気中常温で放置したところ、変換
効率の低下は2力月後約20%であった。
When this solar cell was left in the air at room temperature, the conversion efficiency decreased by about 20% after 2 months.

支1皿主 1TOを蒸着した透明導電ガラス基板上に、実施例1と
同様にスパッタリング法により硫化カドミウム薄膜を膜
厚300人で形成し、真空蒸着により、ペリレンテトラ
カルボン酸ビスベンゾイミダゾール、および2.9−ジ
メチルキナクリドンを順次、それぞれ膜厚300人、5
00人の厚さに積層した。さらにこの上に金電極を20
0人の厚さに積層することにより対向電極を作製した。
On a transparent conductive glass substrate on which 1TO was deposited, a thin film of cadmium sulfide was formed by sputtering in the same manner as in Example 1 to a thickness of 300 mm, and by vacuum evaporation, bisbenzimidazole perylenetetracarboxylate and 2 .9-Dimethylquinacridone was sequentially added to film thicknesses of 300 and 5, respectively.
Laminated to a thickness of 0.00 people. Furthermore, 20 gold electrodes are placed on top of this.
A counter electrode was fabricated by laminating the electrodes to a thickness of 0.05 mm.

この太陽電池の電流−電圧特性を実施例1と同様の条件
で測定した。その結果、短絡電流密度Jsa= 0.3
7mA / c+*2、開放端電圧V oc= 0.4
7V、  フィルファクターff= 0.25であり、
セルへの入射光に対するエネルギー変換効率η=0.0
6%であった。
The current-voltage characteristics of this solar cell were measured under the same conditions as in Example 1. As a result, short circuit current density Jsa=0.3
7mA/c+*2, open circuit voltage V oc = 0.4
7V, fill factor ff=0.25,
Energy conversion efficiency for incident light to the cell η = 0.0
It was 6%.

区Δ匠上 ITOを蒸着した透明導電ガラス基板上に、実施例1と
同様にスパッタリング法により硫化カドミウム薄膜を膜
厚300人で形成し、真空蒸着により2.9−ジメチル
キナクリドンを500人の膜厚に積層した。
On a transparent conductive glass substrate on which ITO was vapor-deposited, a cadmium sulfide thin film was formed by sputtering in the same manner as in Example 1 to a thickness of 300 mm, and 2,9-dimethylquinacridone was formed by vacuum evaporation to a thickness of 500 mm. Laminated thickly.

さらにこの上に金を200人の厚さに積層することによ
り対向電極を作製した。
Further, a counter electrode was fabricated by laminating gold on top of this to a thickness of 200 mm.

この太陽電池の電流−電圧特性を実施例1と同様の条件
で測定した。その結果、短絡電流密度Jso= 0.1
baA / am2、開放端電圧V −o= 0.40
V、  フィルファクターff= 0.36であり、セ
ルへの入射光に対するエネルギー変換効率η=O,02
%であった。
The current-voltage characteristics of this solar cell were measured under the same conditions as in Example 1. As a result, short circuit current density Jso=0.1
baA/am2, open end voltage V-o=0.40
V, the fill factor ff = 0.36, and the energy conversion efficiency η = O,02 for the light incident on the cell.
%Met.

ルm ITOを蒸着した透明導電ガラス基板上に、真空蒸着に
より、ペリレンテトラカルボン酸ビスベンゾイミダゾー
ル、および2.9−ジメチルキナクリドンを順次、それ
ぞれ膜厚300人、500人の厚さに積層した。さらに
この上に金電極を200人の厚さに積層することにより
対向電極を作製した。
On a transparent conductive glass substrate on which ITO was deposited, bisbenzimidazole perylenetetracarboxylate and 2,9-dimethylquinacridone were sequentially laminated by vacuum evaporation to a thickness of 300 and 500, respectively. Furthermore, a counter electrode was produced by laminating a gold electrode on top of this to a thickness of 200 mm.

この太陽電池の電流−電圧特性を実施何重と同様の条件
で測定した。その結果、短絡電流密度Jso= 0.2
1mA / am”、開放端電圧V oo= 0.17
V、  フィルファクターff= 0.24であり、セ
ルへの入射光に対するエネルギー変換効率η=O,O1
%であった。
The current-voltage characteristics of this solar cell were measured under the same conditions as those used in the experiment. As a result, short circuit current density Jso=0.2
1mA/am”, open circuit voltage Voo=0.17
V, fill factor ff = 0.24, and energy conversion efficiency η = O, O1 for light incident on the cell
%Met.

(発明の効果) この発明の有機太陽電池は、可視光吸収の少ない硫化カ
ドミウムよりなるn型半導体層とキナクリドン系色素よ
りなるP型半導体層の間にペリレン系色素よりなる中間
層が挿入された構成である。硫化カドミウムよりなるn
型半導体層は堅牢性、ち密性に優れているので、ピンホ
ールが発生し難(、電極間の短絡を防ぐことができる。
(Effect of the invention) In the organic solar cell of this invention, an intermediate layer made of perylene dye is inserted between an n-type semiconductor layer made of cadmium sulfide, which absorbs little visible light, and a P-type semiconductor layer made of quinacridone dye. It is the composition. n made of cadmium sulfide
The type semiconductor layer has excellent robustness and tightness, so pinholes are unlikely to occur (and short circuits between electrodes can be prevented).

従って、中間層を空乏層程度のごく薄い膜で形成するこ
とが可能となり、この中間層のフィルター効果による光
減衰を受けることなく中間層とP型半導体層の接合面へ
光を入射させることができて、セルの特性を向上させる
ことができる。
Therefore, it is possible to form the intermediate layer with a film as thin as a depletion layer, and it is possible to allow light to enter the junction surface between the intermediate layer and the P-type semiconductor layer without receiving light attenuation due to the filter effect of this intermediate layer. It is possible to improve the characteristics of the cell.

また、ピンホールの発生率の減少はセルの大面積化を可
能にするとともに、太陽電池の成型加工をきわめて容易
にし、低コストの面からも工業的に有利なものであり、
その利用価値は大きい。さらに、本発明の有機太陽電池
では、各層が空気中の酸素により劣化することが極めて
少な(、耐久性及び信頼性を向上することができる。
In addition, the reduction in the incidence of pinholes not only makes it possible to increase the area of cells, but also makes it extremely easy to mold solar cells, which is industrially advantageous in terms of low cost.
Its utility value is great. Furthermore, in the organic solar cell of the present invention, each layer is extremely unlikely to be degraded by oxygen in the air (and durability and reliability can be improved).

4    の    な  日 第1図はこの発明による有機太陽電池の一例を示す縦断
面図、第2図は実施例1における太陽電池の透明電極側
からの光照射時の電流−電圧特性を示すグラフである。
Figure 1 is a longitudinal cross-sectional view showing an example of an organic solar cell according to the present invention, and Figure 2 is a graph showing current-voltage characteristics when light is irradiated from the transparent electrode side of the solar cell in Example 1. be.

以上 tP刀[19,圧−V (V)that's all tP sword [19, pressure-V (V)

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一方が可視光を透過しうる2つの電極
の間に、硫化カドミウムよりなるn型半導体層とペリレ
ン系色素よりなる中間層とキナクリドン系色素よりなる
P型半導体層が、可視光を透過しうる電極側からこの順
で積層されてなる有機太陽電池。
(1) Between two electrodes, at least one of which can transmit visible light, there is an n-type semiconductor layer made of cadmium sulfide, an intermediate layer made of perylene dye, and a p-type semiconductor layer made of quinacridone dye. An organic solar cell that is laminated in this order starting from the transparent electrode side.
JP2188795A 1990-07-16 1990-07-16 Organic solar cell Pending JPH0473973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2188795A JPH0473973A (en) 1990-07-16 1990-07-16 Organic solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2188795A JPH0473973A (en) 1990-07-16 1990-07-16 Organic solar cell

Publications (1)

Publication Number Publication Date
JPH0473973A true JPH0473973A (en) 1992-03-09

Family

ID=16229935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2188795A Pending JPH0473973A (en) 1990-07-16 1990-07-16 Organic solar cell

Country Status (1)

Country Link
JP (1) JPH0473973A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539726A (en) * 2007-09-18 2010-12-16 クワンジュ インスティチュート オブ サイエンス アンド テクノロジー Organic-inorganic hybrid junction device using oxidation-reduction reaction and organic solar cell using the same
EP2816625A1 (en) * 2013-06-21 2014-12-24 Inphotech Sp. z o.o. (Ltd) Device capable of transforming infrared radiation into electrical current or electrical voltage, working at room temperature, and a method of fabrication of the said device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539726A (en) * 2007-09-18 2010-12-16 クワンジュ インスティチュート オブ サイエンス アンド テクノロジー Organic-inorganic hybrid junction device using oxidation-reduction reaction and organic solar cell using the same
EP2816625A1 (en) * 2013-06-21 2014-12-24 Inphotech Sp. z o.o. (Ltd) Device capable of transforming infrared radiation into electrical current or electrical voltage, working at room temperature, and a method of fabrication of the said device

Similar Documents

Publication Publication Date Title
JP4440465B2 (en) Multilayer photovoltaic element or photoconductive element and method for producing the same
Li et al. Inorganic p-type contact materials for perovskite-based solar cells
US8012530B2 (en) Organic thin-film photoelectric conversion element and method of manufacturing the same
Peumans et al. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes
US7796320B2 (en) Stacked layer electrode for organic electronic devices
Choi et al. Two-terminal mechanical perovskite/silicon tandem solar cells with transparent conductive adhesives
Gregg Bilayer molecular solar cells on spin-coated TiO2 substrates
US20230335344A1 (en) Perovskite solar cell configurations
JP2003515933A (en) Organic photosensitive optoelectronic devices with exciton blocking layers
KR20080073314A (en) Organic photovoltaic cells utilizing ultrathin sensitizing layer
WO1997021252A1 (en) Method of producing photoelectric conversion device
EP2348556A1 (en) Organic thin-film solar cell
US20150287945A1 (en) Organic photosensitive devices with reflectors
US8110740B2 (en) Photoelectrode substrate of dye sensitizing solar cell, and method for producing same
Shichiri et al. Three-Layer Organic Solar Cell.
JPH0473973A (en) Organic solar cell
JPS5928388A (en) Photoelectric conversion element
JP2947588B2 (en) Organic solar cells
US20120118366A1 (en) Double-sided light-collecting organic solar cell
JPH038375A (en) Electric element
JP2947593B2 (en) Stacked organic solar cells
JPS62290184A (en) Photocell
JPH04337673A (en) Tandem-type organic solar cell
CN107230743A (en) A kind of novel photoelectric position sensitive detector
JP2763619B2 (en) Electrical element