JPH0473815A - Refrigerant resistant insulated wire - Google Patents

Refrigerant resistant insulated wire

Info

Publication number
JPH0473815A
JPH0473815A JP27693690A JP27693690A JPH0473815A JP H0473815 A JPH0473815 A JP H0473815A JP 27693690 A JP27693690 A JP 27693690A JP 27693690 A JP27693690 A JP 27693690A JP H0473815 A JPH0473815 A JP H0473815A
Authority
JP
Japan
Prior art keywords
refrigerant
insulated wire
polyol
polyurethane resin
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27693690A
Other languages
Japanese (ja)
Inventor
Hidemi Nishiyama
秀美 西山
Hiroshi Uchida
寛 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to EP91108820A priority Critical patent/EP0459459A1/en
Publication of JPH0473815A publication Critical patent/JPH0473815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Abstract

PURPOSE:To improve terminal treatment and workability while reducing manufacturing cost by extrusion-coating the outside periphery of a conductor with the specific thermoplastic polyurethane resin in a state of thin thickness. CONSTITUTION:An insulating coated layer B formed into a coating thickness of 1.5mm or less by extrusion coating, and consisting of thermoplastic polyurethane resin, having specific polyol as a component and adjusted to Shore hardness D of 53 to 83, is provided on an outside periphery of a conductor A. This thermoplastic polyurethane resin is synthesized of poly-epsilon-caprolactam polyol and/or poly (hexamethylene carbonate) polyol, an elongation-suppressing agent and a diisocyanate compound. Thereby, the insulating coated layer B is excellent in refrigerant-resistant property and oil-proofness, and it is extrusion-coated so that terminal treatment workability is improved thus to reduce manufacturing cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の耐冷媒性絶縁電線は、例えば電気冷凍庫、冷蔵
庫、ルームクーラー等のコンプレッサ内の配線に使用さ
れるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The refrigerant-resistant insulated wire of the present invention is used, for example, for wiring in compressors of electric freezers, refrigerators, room coolers, and the like.

(従来の技術) エアコン、冷蔵庫、冷凍庫等のコンプレッサー内の配線
に使用される絶縁電線は一般に、絶縁電線としての電気
的、機械的性能はもとより、冷媒として使用されている
フレオンや潤滑油と接触するため十分な耐冷媒性、耐油
性が要求される。
(Prior art) Insulated wires used for wiring in compressors of air conditioners, refrigerators, freezers, etc., not only have electrical and mechanical performance as insulated wires, but also come into contact with Freon and lubricating oil used as refrigerants. Therefore, sufficient refrigerant resistance and oil resistance are required.

従来のこの種の絶縁電線(以下耐冷媒性絶縁電線と記す
)としては、第3図に示すように導体Aの外周に絶縁体
として耐冷媒性に優れたポルエステル繊維の編組Cが設
けられ、その外周にポリエステルフィルムDが一重又は
二重に巻かれ、さらにその外周にポリエステル繊維の編
組Eが設けられたものが使用されている。
A conventional insulated wire of this type (hereinafter referred to as a refrigerant-resistant insulated wire) has a braid C of polyester fibers having excellent refrigerant resistance as an insulator provided around the outer periphery of a conductor A, as shown in FIG. A polyester film D is wound around the outer periphery in a single or double layer, and a braid E of polyester fibers is further provided on the outer periphery.

(発明が解決しようとする課題) しかしながら従来の耐冷媒性絶縁電線はその外周にプラ
スチックフィルムDが巻かれたり、プラスチック繊維に
よる編組C,E層が設けられたりしているため、同電線
を切断したり皮剥きしたりする、いわゆる端末処理時に
それらがばらけ易い、そのため、端末処理作業は人手に
頼らざるを得す、市場からの要求として端末処理を自動
端末処理機で作業できるものが強く望まれている。
(Problem to be solved by the invention) However, since conventional refrigerant-resistant insulated wires have plastic film D wrapped around them or braided layers C and E made of plastic fibers, it is difficult to cut the wires. They tend to come apart during so-called terminal processing, such as peeling or peeling, so terminal processing must be done manually.There is a strong demand from the market for terminal processing that can be carried out using automatic terminal processing machines. desired.

また、配線した後にも前記編組C,E層が毛羽立って抜
けてしまうため、その1aNkが冷媒循環系のバルブに
詰ってしまうという問題も生じている。
Further, even after wiring, the braided C and E layers become fluffy and fall out, resulting in the problem that the 1aNk clogs the valve of the refrigerant circulation system.

また、製造の面においても編組工程やフィルム巻き工程
は生産性が低く、コスト高の一因ともなっていた。
Furthermore, in terms of manufacturing, the braiding process and film winding process have low productivity, contributing to high costs.

そこで、導体A上に耐冷媒性に優れた樹脂Bを押出し被
覆した絶縁型M(第1図)が開発されれば、前記端末処
理や製造上のコスト低減等の諸問題を一挙に解決できる
可能性がある。そのため、これまで種々の検討が試みら
れたが、すべてを満足するものは未だ開発されていない
Therefore, if an insulated type M (Fig. 1) is developed in which the conductor A is extruded and coated with a resin B having excellent refrigerant resistance, various problems such as terminal treatment and manufacturing cost reduction can be solved at once. there is a possibility. For this reason, various studies have been attempted so far, but nothing that satisfies all of them has yet been developed.

(発明の目的) 本発明の目的は、耐冷媒性に優れた樹脂を押出し被覆し
てなる耐冷媒性絶縁電線を提供して、前記諸問題を解決
することにある。
(Objective of the Invention) An object of the present invention is to solve the above problems by providing a refrigerant-resistant insulated wire formed by extrusion coating with a resin having excellent refrigerant resistance.

(課題を解決するための手段) 本件発明者等は前記諸問題を解決すべく鋭意研究を重ね
た結果、導体の外周に、特定の熱可塑性ポリウレタン樹
脂を薄肉状に押出し被覆してなる絶縁M線によって前記
目的を達成できることを見出した。
(Means for Solving the Problem) As a result of intensive research in order to solve the above-mentioned problems, the inventors of the present invention have developed an insulation M made by extruding and coating the outer periphery of a conductor with a specific thermoplastic polyurethane resin in a thin form. It has been found that the above object can be achieved by using lines.

即ち、本発明の耐冷媒性絶縁電線は第1図のように、導
体Aの外周に、ポリ−ε−カプロラクトンポリオール及
び/又はポリ(ヘキサメチレンカーボネート)ポリオー
ルと、鎖延長剤と、ジイソシアネート化合物とから合成
されたショアー硬さD501.’u上83以下の熱可塑
性ポリウレタン樹脂からなる被覆厚1.5mm以下の押
出し被覆による絶縁被覆層Bが形成されていることを特
徴とするものである。
That is, the refrigerant-resistant insulated wire of the present invention, as shown in FIG. Shore hardness synthesized from D501. It is characterized in that an insulating coating layer B is formed by extrusion coating with a coating thickness of 1.5 mm or less and made of a thermoplastic polyurethane resin with a molecular weight of 83 or less.

本発明において、前記特定の熱可塑性ポリウレタン樹脂
としては、次頁に示される化学構造を有するポリ−ε−
カプロラクトンポリオール及び/又はポリCヘキサメチ
レンカーボネート)ポリオ一ルと、例えばエチレン−グ
リコール、l、4ブタンジオール、■、6−ヘキサンジ
オール等の鎖延長剤と、例えば4,4°−ジフェニルメ
タンジイソシアネート等のジイソシアネート化合物とを
混ぜ合わせ反応させて得られる樹脂の硬さがショアー硬
さD50以上83以下になるように前記三者の配合比率
を調整し、更に温度と時間をかけて重付加反応を進行さ
せて得られたものが使用される。
In the present invention, the specific thermoplastic polyurethane resin is poly-ε-
caprolactone polyol and/or poly(C-hexamethylene carbonate) polyol, a chain extender such as ethylene glycol, 1,4-butanediol, 6-hexanediol, and 4,4°-diphenylmethane diisocyanate. The blending ratio of the three components is adjusted so that the hardness of the resin obtained by mixing and reacting with the diisocyanate compound is Shore hardness D50 or more and 83 or less, and the polyaddition reaction is further advanced by applying temperature and time. The obtained product is used.

ポリ−ε−カプロラクトン(no ((coals c
ool、、oH)ポ リ (ヘキサメチレンカーボネー
ト)(HO[+CH,1,0CO1,OH)その理由は
略以下の如くである。
Poly-ε-caprolactone (no ((coals c
ool,,oH) Poly(hexamethylene carbonate) (HO[+CH,1,0CO1,OH) The reason is approximately as follows.

ポリウレタンのポリマー構造のうち、ポリオール成分に
ポリオキシテトラメチレングリコール或はポリ(エチレ
ンアジペート)或はポリ(1,4−プチレンアジベート
)、ポリ(1,6−ヘキサンアジペート)等を用いた汎
用のポリウレタン樹脂は、耐冷媒性試験において冷媒と
して使用されるフレオンによる劣化が著しく、耐冷媒性
絶縁電線の被覆材料としては極めて不適である。
Among the polymer structures of polyurethane, general-purpose polyurethane uses polyoxytetramethylene glycol, poly(ethylene adipate), poly(1,4-butylene adipate), poly(1,6-hexane adipate), etc. as the polyol component. The polyurethane resin is significantly degraded by freon used as a refrigerant in a refrigerant resistance test, and is extremely unsuitable as a coating material for refrigerant-resistant insulated wires.

一方、ポリ−ε−カプロラクトン及び/又はポリ (ヘ
キサメチレンカーボネート)を主成分としたポリウレタ
ン樹脂は、前記フレオンによる劣化が比較的少ない。
On the other hand, polyurethane resins containing poly-ε-caprolactone and/or poly(hexamethylene carbonate) as main components are relatively less susceptible to deterioration due to the Freon.

従って、この特定のポリオールを成分とするボッウレタ
ン樹脂をショアー硬さD50以上83以下に調節するこ
とによって、耐冷媒性絶縁電線のmri材料として比較
的好適なものとなり得る。なお、前記特定のポリオール
を成分としたポリウレタン樹脂がショアー硬さD411
下のものでは所望の耐冷媒性が得られない。また、同ポ
リウレタン樹脂がショアー硬さ076以上83以下のも
のでは、巻線を含浸するためのエポキシ系のワニスに触
れるとそれが硬くなって絶縁被覆層Bにクラックが生じ
易くなるが、ポリエステル系のワニスでは触れてもクラ
ックは発生しない、また、同ポリウレタン樹脂がショア
ー硬さD84以上のものでは、エポキシ系のワニ又は勿
論、ポリエステル系のワニスに触れても絶縁被覆層Bに
クラックが発生し易くなる。
Therefore, by adjusting the Shore hardness D of the polyurethane resin containing this specific polyol to be 50 or more and 83 or less, it can be made relatively suitable as an MRI material for refrigerant-resistant insulated wires. In addition, the polyurethane resin containing the specific polyol as a component has a Shore hardness of D411.
The desired refrigerant resistance cannot be obtained with the lower one. In addition, if the same polyurethane resin has a Shore hardness of 076 or more and 83 or less, when it comes into contact with the epoxy varnish for impregnating the winding wire, it will become hard and cracks will easily occur in the insulation coating layer B. In addition, if the same polyurethane resin has a Shore hardness of D84 or higher, cracks will not occur in the insulation coating layer B even if it comes in contact with epoxy-based varnish or, of course, polyester-based varnish. It becomes easier.

このような特定の樹脂、即ち特定のポリオールを成分と
し且つ硬度を調節した熱可塑性ポリウレタン樹脂を導体
Aの外周に押出し被覆して、耐冷媒性に優れた絶縁電線
を得るためには、絶縁被覆層Bの被覆厚が1.5mm以
下であることが好ましい。なぜならば前記熱可塑性ポリ
ウレタン樹脂からなる絶縁被覆層Bの被覆厚が1.5m
mを超えて厚くなると、−旦同被覆層の内部に取り込ま
れたフレオンが外部(大気)へ揮散しにくくなって、結
果的に被覆層の劣化を早めることになるためである。
In order to obtain an insulated wire with excellent refrigerant resistance by extruding and coating the outer periphery of the conductor A with such a specific resin, that is, a thermoplastic polyurethane resin containing a specific polyol and having controlled hardness, an insulating coating is required. Preferably, the coating thickness of layer B is 1.5 mm or less. This is because the thickness of the insulation coating layer B made of the thermoplastic polyurethane resin is 1.5 m.
This is because if the thickness exceeds m, Freon once taken into the coating layer becomes difficult to volatilize to the outside (atmosphere), resulting in accelerated deterioration of the coating layer.

なお、本発明においては本発明の効果を阻害しない範囲
内で、前記熱可塑性ポリウレタン樹脂に老化防止剤、充
填剤、U燃剤、着色剤等を必要に応じて配合して用いる
こともできる。
In addition, in the present invention, anti-aging agents, fillers, U fuel agents, colorants, etc. may be blended with the thermoplastic polyurethane resin as necessary within a range that does not impede the effects of the present invention.

(作用) 本発明の耐冷媒性絶縁電線は、第1図のように導体Aの
外周に、前記特定のポリオールを成分とし且つショアー
硬さD50以上83以下に調整された熱可塑性ポリウレ
タン樹脂からなる被覆厚1.5mm以下で押出し被覆に
よる絶縁被覆層Bを形成したものであり、従来の諸問題
を解決し、冷媒として使用されるフレオンが揮散し易く
、また同冷媒による劣化も少なく、耐冷媒性に優れ、ワ
ニスによる影響を受けることがない。
(Function) As shown in FIG. 1, the refrigerant-resistant insulated wire of the present invention is made of a thermoplastic polyurethane resin containing the specific polyol as a component and having a Shore hardness D of 50 or more and 83 or less, as shown in FIG. The insulating coating layer B is formed by extrusion coating with a coating thickness of 1.5 mm or less, and solves the various problems of the conventional method. Freon, which is used as a refrigerant, is easily volatilized, is less likely to be degraded by the refrigerant, and is resistant to refrigerants. It has excellent properties and is not affected by varnish.

(比較例1) 本発明の比較例1として第1表に示すように、ポリオー
ル成分としてポリオキシテトラメチレングリコールだけ
が用いられ、ショアー硬さD55に調節された熱可塑性
樹脂からなる被覆厚0.5mmの絶縁被覆層を、導体の
外周に押出し成形により形成した絶縁電線を得た。この
絶縁電線について、以下の@〜@の試験を行った。
(Comparative Example 1) As shown in Table 1 as Comparative Example 1 of the present invention, only polyoxytetramethylene glycol was used as the polyol component, and the coating thickness was 0.5 mm, consisting of a thermoplastic resin adjusted to have a Shore hardness of D55. An insulated wire was obtained in which a 5 mm insulating coating layer was formed on the outer periphery of the conductor by extrusion molding. The following tests were conducted on this insulated wire.

■、N油性抽出試験: 前記絶縁被覆層8gに対してソックスレー試験器を用い
、溶媒として特級メチルアルコールを用いてこれを還流
サイクル6〜8回/時で還流冷却させて、6時間抽出試
験を行ない、その抽出率を調べた。なお、目標はこの抽
出率の値が1%以下とした。
■N oil-based extraction test: Using a Soxhlet tester, 8 g of the insulating coating layer was cooled under reflux at a reflux cycle of 6 to 8 times/hour using special grade methyl alcohol as a solvent, and an extraction test was conducted for 6 hours. We investigated the extraction rate. Note that the target value of this extraction rate was set to be 1% or less.

■、破壊電圧試験: 約1mの絶縁電線を150℃の恒温槽で1時間乾燥した
後、同絶縁電線を一60℃で液化させたフロンR−22
とスニソ4GSとを重量比8:2で混合させた混合液中
に入れた状態で、雰囲気温度を30℃として24時間放
置し、然る後、同混合液から取出した絶縁電線を150
℃で10分間乾燥する。乾燥後、この絶縁電線を直ちに
同電線の仕上げ外径と等しい径の金属棒の周囲に電線同
士が密接するように巻きつけ、同金属棒と同絶縁電線の
導体との間に50H2の交流電圧を加え、その破壊電圧
値を調べた。なお、目標はこの破壊電圧値がloKV以
上とした。
■ Breakdown voltage test: After drying approximately 1 m of insulated wire in a constant temperature bath at 150°C for 1 hour, the same insulated wire was liquefied at -60°C using Freon R-22.
and Suniso 4GS at a weight ratio of 8:2 and left for 24 hours at an ambient temperature of 30°C. After that, the insulated wire taken out from the mixed solution was heated to 150°C.
Dry for 10 minutes at °C. After drying, this insulated wire is immediately wrapped around a metal rod with a diameter equal to the finished outer diameter of the wire so that the wires are closely connected, and an AC voltage of 50H2 is applied between the metal rod and the conductor of the insulated wire. was added, and its breakdown voltage value was investigated. Note that the target was for this breakdown voltage value to be loKV or higher.

@、ワニス適合性試験A。@, Varnish compatibility test A.

第2図のように約30cmの絶縁電線を二本平行に並べ
て、その上、中、下の3個所を同じ絶縁電線を使ってパ
イーンドして固定し、それにエポキシ系の含浸ワニスを
塗布して150℃で4時間硬化させた後、前記バインド
している絶縁電線を取り外す。そして、ワニスにより接
合されている二本の絶縁電線の端部を持って分離し、そ
れらの絶縁電線の絶縁被覆層に生ずるクラックの有無を
調べた。なお、目標は分離後、絶縁被覆層の外観に異常
のないこととした。
As shown in Figure 2, arrange two insulated wires of about 30 cm in parallel, pin them at the top, middle, and bottom three points using the same insulated wire, and apply epoxy-based impregnated varnish to them. After curing at 150° C. for 4 hours, the bound insulated wires were removed. Then, the ends of two insulated wires joined with varnish were held and separated, and the presence or absence of cracks occurring in the insulation coating layer of the insulated wires was examined. The goal was to have no abnormality in the appearance of the insulating coating layer after separation.

■、フェス適合性試験B: ワニス適合性試験Aにおいて150℃で4時間の硬化を
必要としたエポキシ系の含浸ワニスに代えて、160℃
で2時間の硬化を必要とするポリエステル系の含浸ワニ
スな用いた以外はワニス適合性試験Aと同様に行なった
■, Festival compatibility test B: Instead of the epoxy-based impregnated varnish that required curing at 150°C for 4 hours in varnish compatibility test A, 160°C
The varnish compatibility test was conducted in the same manner as varnish compatibility test A, except that a polyester-based impregnated varnish requiring 2 hours of curing was used.

その結果をまとめて第1表に示す、なお、表中、 フェス適合性二〇は電線外観異常なしくn=3で全てO
K) ×は電線(被覆層)にヒビ、割れ クラックあり(n=3で全て NG) △はn=3で1/3以上OK 総合評価  、○は良 ×は不可 0は優良 を表す。
The results are summarized in Table 1. In the table, FES suitability 20 indicates that there is no abnormality in the appearance of the electric wire and n = 3, all O.
K) ×: There are cracks and cracks in the wire (coating layer) (n=3, all NG) △: n=3, 1/3 or more OK Comprehensive evaluation, ○: Good, ×: Not acceptable, 0: Excellent.

(比較例2〜20) 本発明のその他の比較例2〜20として、第1表に示す
ようなポリオール成分と硬度に調整された熱可塑性ポリ
ウレタン樹脂を用い、第1表のような被覆厚の絶縁被覆
層を有する絶縁電線を得、前記比較例1と同様に@〜■
の試験を行なった。
(Comparative Examples 2 to 20) As other Comparative Examples 2 to 20 of the present invention, polyol components as shown in Table 1 and thermoplastic polyurethane resins adjusted to hardness were used, and coating thicknesses as shown in Table 1 were used. An insulated wire having an insulating coating layer was obtained, and in the same manner as in Comparative Example 1, @~■
A test was conducted.

その結果を第1表に示す。The results are shown in Table 1.

(実施例1〜26) 本発明の実施例1〜26として、第2表に示すようなポ
リオール成分と硬度に調整された熱可塑性ポリウレタン
樹脂を用い、第2表のような被覆厚の絶縁被覆層を有す
る絶縁電線を得、前記比較例1と同様に■〜@の試験を
行なった。その結果を第2表に示す。
(Examples 1 to 26) As Examples 1 to 26 of the present invention, polyol components as shown in Table 2 and thermoplastic polyurethane resins adjusted to hardness were used, and insulation coatings with coating thicknesses as shown in Table 2 were used. An insulated wire having a layer was obtained, and tests from ■ to @ were conducted in the same manner as in Comparative Example 1 above. The results are shown in Table 2.

第1表、第2表から明かなように、ポリオール成分とし
てポリ−ε−カプロラクトン及び/又はポリ(ヘキサメ
チレンカーボネイト)を用い、硬さがショアD50から
83の範囲に調節した熱可塑性ポリウレタン樹脂からな
る絶縁被覆層Bを、導体Aの外周に1.5mm以下の被
覆厚で押出被覆した本発明の実施例の絶縁電線は、冷媒
等によって抽出される物質が少なく、またフレオンに浸
漬した後に加熱した後の絶縁破壊電圧値が高く、史には
ワニスと接触した場合にもクラックが発生しにくい(シ
ョアー硬さD75以下では発生しない)など耐冷媒性絶
縁電線として適したものであることが分かる。このうち
、特に、ポリ(ヘキサメチレンカーボネイト)を単独で
用いた実施例の絶縁電線が優れた性能を有するものであ
る。
As is clear from Tables 1 and 2, poly-ε-caprolactone and/or poly(hexamethylene carbonate) is used as the polyol component, and the hardness is adjusted to a Shore D range of 50 to 83. The insulated wire of the embodiment of the present invention, in which the outer periphery of the conductor A is extruded and coated with the insulation coating layer B with a coating thickness of 1.5 mm or less, has less substances extracted by refrigerant etc. The dielectric breakdown voltage value after drying is high, and cracks do not easily occur even when it comes into contact with varnish (no cracks occur when the Shore hardness is D75 or less), indicating that it is suitable as a refrigerant-resistant insulated wire. . Among these, the insulated wire of the example using poly(hexamethylene carbonate) alone has particularly excellent performance.

(発明の効果) 本発明の耐冷媒性絶縁電線は、前記のように絶縁被覆層
Bが耐冷媒性、耐油性に優れ、また巻線を含浸するワニ
スによる悪影響を受けることもないので、耐冷媒用モー
タの日出線として最適なものである。勿論、同絶縁被覆
層Bが押出し被覆されてなるものであるので、従来の端
末処理作業性が向上し、製造コストの低減化もはかれる
ものであり、その工業的価値は極めて大である。
(Effects of the Invention) The refrigerant-resistant insulated wire of the present invention has excellent refrigerant-resistant and oil-resistant insulation coating layer B as described above, and is not adversely affected by the varnish that impregnates the winding. This is the best choice for the Hiji line of refrigerant motors. Of course, since the insulating coating layer B is formed by extrusion coating, the conventional terminal processing workability is improved and the manufacturing cost can be reduced, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の耐冷媒性絶縁電線の斜視図、第2図は
フェス適合性試験の説明図、第3図は従来の耐冷媒性絶
縁電線の斜視図である。 Aは導体 Bは絶縁被覆層 (以l−羊日J 第2表 第 図 第3図
FIG. 1 is a perspective view of a refrigerant-resistant insulated wire of the present invention, FIG. 2 is an explanatory diagram of a festival compatibility test, and FIG. 3 is a perspective view of a conventional refrigerant-resistant insulated wire. A is a conductor B is an insulating coating layer (Table 2, Figure 3)

Claims (1)

【特許請求の範囲】[Claims] 導体Aの外周に、ポリ−ε−カプロラクトンポリオール
及び/又はポリ(ヘキサメチレンカーボネート)ポリオ
ールと、鎖延長剤と、ジイソシアネート化合物とから合
成されたショアー硬さD50以上83以下の熱可塑性ポ
リウレタン樹脂からなる被覆厚1.5mm以下の押出し
被覆による絶縁被覆層Bが形成されていることを特徴と
する耐冷媒性絶縁電線。
The outer periphery of the conductor A is made of a thermoplastic polyurethane resin having a Shore hardness D of 50 or more and 83 or less synthesized from poly-ε-caprolactone polyol and/or poly(hexamethylene carbonate) polyol, a chain extender, and a diisocyanate compound. A refrigerant-resistant insulated wire characterized in that an insulating coating layer B is formed by extrusion coating with a coating thickness of 1.5 mm or less.
JP27693690A 1990-05-31 1990-10-16 Refrigerant resistant insulated wire Pending JPH0473815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP91108820A EP0459459A1 (en) 1990-05-31 1991-05-29 Electrically insulating polyurethane resin shaped article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-141911 1990-05-31
JP14191190 1990-05-31

Publications (1)

Publication Number Publication Date
JPH0473815A true JPH0473815A (en) 1992-03-09

Family

ID=15303032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27693690A Pending JPH0473815A (en) 1990-05-31 1990-10-16 Refrigerant resistant insulated wire

Country Status (1)

Country Link
JP (1) JPH0473815A (en)

Similar Documents

Publication Publication Date Title
US3555113A (en) Blends of polymeric amide-imide-ester wire enamels and conductors insulated therewith
US4420536A (en) Self-bonding magnet wire
WO2007114257A1 (en) Multilayer insulated electric wire
US20010010269A1 (en) Multilayer insulated wire and transformer using the same
CA1179216A (en) Power insertable polyamide-imide coated magnet wire
CN101246763A (en) Heat bonding compound lacquered copper wire
JPH0473815A (en) Refrigerant resistant insulated wire
US4480007A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
DE60314528T2 (en) METHOD FOR PRODUCING A MODIFIED DIISOCYANATE, PROCESS FOR PREPARING A SELF-LUBRICATING EMAILLELACK, METHOD FOR PRODUCING A PAINT-ISOLATED ELECTRIC LADDER
WO2015121999A1 (en) Insulated wire, rotary electric machinery, and method for producing insulated wire
EP1026187A1 (en) Stoving lacquer
US4346136A (en) Bondable magnet wire comprising polyamide-imide coating containing residual solvent
KR100561095B1 (en) Insulated wire of several floor
US4404331A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
KR20060035119A (en) Polybutylene terephthalate resin composition and multi-layer insulating electric wire comprising the same
US4324837A (en) Self-bonding magnet wire
JP2010031101A (en) Polyamideimide resin coating and insulated electric wire using it
KR100368571B1 (en) Modified polyester resin for insulated wire and multilayered insulated wire prepared by using them
US20240088737A1 (en) Magent wire with high partial discharge inception voltage (pdiv)
US4485127A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
KR20080013076A (en) Insulating varnish composition containing polyamideimide and insulated wire containing insulated layer coated thereof
JPH093367A (en) Composition for electrical insulation and insulated wire
JP3737913B2 (en) Insulated wire
JPH07141933A (en) Manufacture of rectangular insulating electric wire
JPH06283033A (en) Insulated wire and insulating tube