JPH0472704A - Magnetic field correction device - Google Patents

Magnetic field correction device

Info

Publication number
JPH0472704A
JPH0472704A JP2185854A JP18585490A JPH0472704A JP H0472704 A JPH0472704 A JP H0472704A JP 2185854 A JP2185854 A JP 2185854A JP 18585490 A JP18585490 A JP 18585490A JP H0472704 A JPH0472704 A JP H0472704A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
component
output
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2185854A
Other languages
Japanese (ja)
Other versions
JP2698209B2 (en
Inventor
Tomoji Shimada
島田 友二
Koichi Ogawa
浩一 小川
Tatsuya Onoe
尾上 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2185854A priority Critical patent/JP2698209B2/en
Publication of JPH0472704A publication Critical patent/JPH0472704A/en
Application granted granted Critical
Publication of JP2698209B2 publication Critical patent/JP2698209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To make it possible to compensate non-uniform component using a simple constitution by a method wherein a non-magnetic cylinder is rotatably or fixedly provided in such a manner that the optimum angle for correction of a non-uniform magnetic field component will be obtained with the circumferential angle, which becomes the optimum angle of the non-uniform magnetic field component in the inside space of the non-magnetic cylinder, as the center. CONSTITUTION:First, the output ratio of the X-component and the Y-component is sat at beta= tan<-1>(Br/Bx) wherein the output of magnetic materials 2 is corresponded to mounting angle value beta. To be more precise, after the necessary quantity of the magnetic materials 2 have been inserted into non-magnetic tubes l attached to eight places, having the relative angle of psi=X/2(+ or -l/3+ or -1/4), on a rotatable non-magnetic cylinder 6, the non-magnetic cylinder 6 is rotated in the amount of beta. As a result, the output of magnetic field compensating component B<11>, having the desired ratio of the magnitude of the compensated magnetic field output, corresponding to the magnitude of non-uniform magnetic field, is in proportion to the cross-sectional area A of the output of the magnetic material 2, a compensated magnetic field having the desired magnitude can be obtained by increasing or decreasing the cross-sectional areas A1 and A3 of the two parts of the magnetic material 2 on condition that the cross-sectional areas A1 and A3 of the two parts of the magnetic material 2 is set at cross-sectional area ratio of A1/A2=7.16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、核磁気共鳴用マグネット装置における不均
一磁場成分を補正する磁場補正装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic field correction device for correcting non-uniform magnetic field components in a magnet device for nuclear magnetic resonance.

〔従来の技術〕[Conventional technology]

第6図および第7図は従来の磁場補正装置を示す正面断
面図および側面断面図であり、図において、1は非磁性
体よりなる非磁性管、2はこの非磁性管1内に選択的に
挿入および引き抜き自在、すなわち、取り付けおよび取
り外しができるように設けられた棒状の磁性体、3はこ
れらの非磁性管1および磁性体2を内部に配設し、かつ
円筒状をなす回転不可能な非磁性筒5に取り付けられて
、主磁場を発生するコイル、4は均一性が要求される磁
場領域であり、ここでは点線の丸で囲んだ領域となって
いる。
6 and 7 are a front sectional view and a side sectional view showing a conventional magnetic field correction device. In the figures, 1 is a non-magnetic tube made of a non-magnetic material, and 2 is a selective magnetic field inside the non-magnetic tube 1. A rod-shaped magnetic body provided so as to be able to be inserted and pulled out, that is, attached and removed; 3 is a cylindrical non-rotatable body in which the non-magnetic tube 1 and the magnetic body 2 are disposed; A coil 4 that is attached to a non-magnetic tube 5 and generates a main magnetic field is a magnetic field region where uniformity is required, and here it is the region surrounded by a dotted circle.

次に動作について説明する。Next, the operation will be explained.

まず、第8図および第9図に示すように、マグネット装
置の主磁場方向Zに長い、断面積Aを有する棒状の磁性
体2が、XY面の取付角度ψ、ZY面の端面角度α1.
α2の位置に配置された場合を考えると、磁性体2が均
一性の必要な磁場領域4の点P (r、 θ、φ)に作
る磁場の2方向酸分B2は1次式で表わされる。
First, as shown in FIGS. 8 and 9, a rod-shaped magnetic body 2, which is long in the main magnetic field direction Z of the magnet device and has a cross-sectional area A, is attached at an installation angle ψ in the XY plane and an end face angle α1 in the ZY plane.
Considering the case where the magnetic body 2 is placed at the position α2, the two-way acid component B2 of the magnetic field created at the point P (r, θ, φ) of the magnetic field region 4 that requires uniformity is expressed by a linear equation. .

X(r/a)  X Pn (cosθ)xcosm(
φ−ψ)(1)ここで、 K:磁性体の磁気特性によって決まる値で定数a:磁性
体の取付半径 ε、:ノイマン係数(m≠0ならε。=2.m=0なら
εヨ=1)Pn : n次m位のルジャンドル陪多項式
となっている。この(1)式は極座標系での次式である
が、通常使われる直交座標との対応は、n=2までを例
に取ると、第11図に示す通りである。
X(r/a) X Pn (cosθ)xcosm(
φ−ψ) (1) where, K: Constant value determined by the magnetic properties of the magnetic material a: Mounting radius of the magnetic material ε,: Neumann coefficient (if m≠0, ε.=2.If m=0, εY) =1) Pn: It is a Legendre polynomial of order n and m. This equation (1) is the following equation in a polar coordinate system, but its correspondence with orthogonal coordinates, which is usually used, is as shown in FIG. 11, taking up to n=2 as an example.

一方、コイル3が均一度領域4に作る磁場の2方向酸分
BCZは極座標表示にて次式で表わされる。
On the other hand, the bidirectional acid component BCZ of the magnetic field created by the coil 3 in the uniformity region 4 is expressed by the following equation in polar coordinates.

Bcz”Bo+A1B11+AJ21+A3B”+A4
B51+A5B”m= (j)ここで、Boは位置によ
らず一定の成分を示し、具体的には原点(0,O,O)
での磁場に等しい。
Bcz”Bo+A1B11+AJ21+A3B”+A4
B51+A5B”m= (j) Here, Bo indicates a constant component regardless of the position, specifically the origin (0, O, O)
is equal to the magnetic field at

従って、例えば、AlB11は、B 11 に比例した
誤差成分を示している。
Therefore, for example, AlB11 shows an error component proportional to B 11 .

即ち、均一度領域4の均一性を高めるには、(2)式の
Aより 11等B。以外の成分を打ち消すよ′うな磁性
体2が必要であることが分かる。以下に、従来例として
の、XおよびY方向空間不均一に対応するB11成分補
正用の磁性体2について述べる。(1)式から分かるよ
うに、磁性体2が作る磁場成分は無限側あるが、一般に
a ) rであるからnの値の大きい成分は(1)式中
の(r / a)が非常に小さくなるために無視できる
。そこで、実用上はn、mの値が小さい成分についての
み考えればよい。ここでは上記磁場のZ方向成分B2の
径方向成分(即ちm≠○)のみに注目して、以下に示す
不均一磁場補償成分を考える。この不均一磁場補償成分
は、B”、B”、B”、B”、B2Z B33.B41
.B*Z B43.B44.BSZ B52BS3. 
B”である。ここで、B11成分だけを発生するような
磁性体2の形状、位置は次の手順で決まる。まず、m=
2.3.4の成分を発生しないように、磁性体2を挿入
する非磁性管1の取付角度ψを、 に選ぶ。すなわち、各々の取付角度ψは、また、磁性体
2の一方の端面角度をαとした時。
That is, in order to improve the uniformity of the uniformity region 4, from A of equation (2), 11 magnitude B is used. It can be seen that a magnetic material 2 that cancels out other components is required. Below, a conventional magnetic body 2 for correcting the B11 component corresponding to spatial non-uniformity in the X and Y directions will be described. As can be seen from equation (1), the magnetic field component created by magnetic material 2 has an infinite side, but in general it is a ) r, so for the component with a large value of n, (r / a) in equation (1) is very large. It can be ignored because it is small. Therefore, in practice, it is only necessary to consider components with small values of n and m. Here, we will focus only on the radial component of the Z-direction component B2 of the magnetic field (that is, m≠○), and consider the nonuniform magnetic field compensation component shown below. This non-uniform magnetic field compensation component is B'', B'', B'', B'', B2Z B33. B41
.. B*Z B43. B44. BSZ B52BS3.
B". Here, the shape and position of the magnetic body 2 that generates only the B11 component are determined by the following procedure. First, m =
2. In order to avoid generating the component of 3.4, the installation angle ψ of the non-magnetic tube 1 into which the magnetic body 2 is inserted is selected as follows. That is, each mounting angle ψ is when α is the angle of one end face of the magnetic body 2.

もう一方の端面角度を(π−α)に選べば、即ち、Z軸
について対称な磁性体2であれば、(1)式の8か所と
なり、m=2.3.4に対して(1)式でcos’  
m’(φ−ψ)二〇となる。βの値の決め方については
後述するが、βの値が如何に取られた場合でも、cos
m(φ−ψ)= oの関係は成立しているので、B ”
、 B”、 B”、 B42. B43、 B”、 B
s2. B”、 B”の成分はなくなることとなり、残
りはB 11. B”、 B”、 B41. B”であ
る。
If the other end face angle is chosen to be (π-α), that is, if the magnetic body 2 is symmetrical about the Z axis, there will be 8 points in equation (1), and for m = 2.3.4, ( 1) In the formula cos'
m'(φ−ψ) becomes 20. How to determine the value of β will be explained later, but no matter how the value of β is taken, cos
Since the relationship m(φ−ψ)=o holds, B ”
, B”, B”, B42. B43, B", B
s2. The components of B" and B" will disappear, and the remainder will be B11. B”, B”, B41. B”.

π −α となり、結局、B”、B”は発生しない。最後にB51
=O,B51=0を満たすように第10図に示すように
、2つの部分で構成された磁性体2の端面角度と、それ
らの断面積比を決める。B”=0となる端面角度は33
.88°  146.12゜117.96°である。端
面角度が (33,88°、146.12°)の磁性体
2の断面積をA□、(62,04’ 、117.96°
)の磁性体2の断面積をA2とすると、 B51cA、[P、(cos  33.88°)(si
n  33.88°)Sコ+AX [P4 (CO56
2,04°)(sin 62.04°)’]=0より、
八〇/A2=’1.16であればB51=Oとなる。
π −α, and B'' and B'' do not occur after all. Finally B51
As shown in FIG. 10, the end face angle of the magnetic body 2 composed of two parts and the ratio of their cross-sectional areas are determined so that =O,B51=0 is satisfied. The end face angle at which B”=0 is 33
.. 88° 146.12° 117.96°. The cross-sectional area of the magnetic body 2 whose end face angles are (33,88°, 146.12°) is A□, (62,04', 117.96°)
), then B51cA, [P, (cos 33.88°) (si
n 33.88°)S co+AX [P4 (CO56
2,04°)(sin 62.04°)']=0,
If 80/A2='1.16, B51=O.

以上、取付角度、端面角度、断面積比の条件を決定する
ことにより所望の磁場補償成分B1”を選択的に出力す
ることができる。
As described above, by determining the conditions of the mounting angle, end face angle, and cross-sectional area ratio, it is possible to selectively output a desired magnetic field compensation component B1''.

次に、磁場補償成分B 11の実際の不均一磁界成分を
補償する際に、従来方式では上記の取付角度。
Next, when compensating for the actual non-uniform magnetic field component of the magnetic field compensation component B 11, the above mounting angle is used in the conventional method.

端面角度、断面積比の条件の下で、補償磁界成分B11
を直交座標系で示した場合のX成分、Y成分の各成分に
相当する出力を得る。
Under the conditions of end face angle and cross-sectional area ratio, compensation magnetic field component B11
Outputs corresponding to the X component and Y component when expressed in a rectangular coordinate system are obtained.

ところで、極座標表示された磁性体2の補償磁界成分B
 11を直交座標X、Yに分離した成分B工。
By the way, the compensation magnetic field component B of the magnetic body 2 expressed in polar coordinates
Component B works by separating 11 into orthogonal coordinates X and Y.

BYは、上記の取付角度におけるβの値に対応して、 
Bx =B11cos β、 By =B11sin 
βと表わせることから、X成分のプラス出力のみを得る
ためには、β=O,Y成分のプラス出力のみを得るため
にはβ=π/2の各取付角度とすればよく、これは第1
2図(a)および(b)に示した位置への磁性体2の取
り付けとなる。逆にBxのマイナス出力のみを得るため
にはβ=π、BYのマイナス出力のみを得るには(3/
2)πとすればよく、これは第12図(c)および(d
)に示した位置への磁性体2の取り付けとなる。従って
、任意のX成分とY成分を出力するためには、磁性体2
を挿入する非磁性管1を第12図(e)に示すように、
同一に重なることを考慮しても最低16個設けることと
なる。
BY corresponds to the value of β at the above mounting angle,
Bx = B11 cos β, By = B11 sin
Since it can be expressed as β, in order to obtain only the positive output of the X component, the mounting angle should be β = O, and in order to obtain only the positive output of the Y component, the mounting angle should be β = π/2, which is 1st
The magnetic body 2 is attached to the position shown in FIGS. 2(a) and 2(b). Conversely, to obtain only the negative output of Bx, β = π, and to obtain only the negative output of BY, use (3/
2) π, which is shown in Figure 12 (c) and (d)
) The magnetic body 2 is attached to the position shown in (). Therefore, in order to output arbitrary X and Y components, the magnetic material 2
As shown in FIG. 12(e), the non-magnetic tube 1 into which the
Even if we consider that they overlap, at least 16 pieces will be provided.

一方、X、Y各成分の出力の大きさは、(1)式で明ら
かなように、使用する磁性体2の断面積に比例するため
、必要に応じた断面積を有する磁性体2をX成分、Y成
分発生位置の非磁性管1の中に挿入することとなる。
On the other hand, as is clear from equation (1), the magnitude of the output of each of the X and Y components is proportional to the cross-sectional area of the magnetic body 2 used. component, and the Y component is inserted into the non-magnetic tube 1 at the position where the Y component is generated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の磁場補償装置は以上のように構成されているので
、元来、極座標系で1成分であった不均一成分を直交座
標系の2成分に分解して補償するため、磁性体2を取り
付ける非磁性管1の数が多くなり、使用する磁性体2の
数も多くなって、構成の複雑化およびコストアップを招
くなどの課題があった。
Since the conventional magnetic field compensator is configured as described above, the magnetic body 2 is attached to compensate by decomposing the non-uniform component, which was originally one component in the polar coordinate system, into two components in the orthogonal coordinate system. The number of non-magnetic tubes 1 increases, and the number of magnetic bodies 2 used also increases, resulting in problems such as a complicated structure and an increase in cost.

この発明は上記のような課題を解消するためになされた
もので、極座標系で1成分となる補償磁界を直交座標系
の2成分に分解することなく、簡単な構成で不均一成分
を補償することができる磁場補正装置を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and compensates for non-uniform components with a simple configuration without decomposing the compensation magnetic field, which is one component in a polar coordinate system, into two components in an orthogonal coordinate system. The purpose is to obtain a magnetic field correction device that can perform the following steps.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る磁場補正装置は、非磁性筒の筒内空間に
おける不均一磁場成分が最大となる周方向角度を中心と
して、該不均一磁場成分を補正する最適角度となるよう
に、上記非磁性筒を回転可能または固定的に設けたもの
である。
The magnetic field correction device according to the present invention adjusts the non-magnetic cylinder so that the angle in the circumferential direction at which the non-uniform magnetic field component in the cylinder space of the non-magnetic cylinder becomes the maximum is the optimum angle for correcting the non-uniform magnetic field component. The tube is either rotatable or fixed.

〔作用〕[Effect]

この発明における磁場補正装置は、不均一磁場の成分に
応じて磁性体を適切な位置に配置することにより、その
磁性体を取り付ける非磁性管の数を減らし、使用する磁
性体の量も低減し、構成の簡素化およびローコスト化を
可能にする。
The magnetic field correction device of the present invention reduces the number of non-magnetic tubes to which the magnetic material is attached by arranging the magnetic material at appropriate positions according to the components of the non-uniform magnetic field, and also reduces the amount of magnetic material used. , making it possible to simplify the configuration and reduce costs.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図および第2図において、1は非磁性体よりなる非
磁性管、2はこの非磁性管1内に選択的に挿入および引
き抜き自在、すなわち、取り付けおよび取り外しができ
るように設けられた棒状の磁性体、3はこれらの非磁性
管1および磁性体2を内部に配設し、かつ円筒状をなす
回転可能な非磁性筒6に取り付けられて、主磁場を発生
するコイル、4は均一性が要求される磁場領域であり、
ここでは点線の丸で囲んだ領域となっている。
In FIGS. 1 and 2, 1 is a non-magnetic tube made of a non-magnetic material, and 2 is a rod-shaped tube that can be selectively inserted into and pulled out of the non-magnetic tube 1, that is, can be attached and removed. 3 is a coil in which the non-magnetic tube 1 and the magnetic material 2 are disposed, and is attached to a cylindrical rotatable non-magnetic tube 6 to generate a main magnetic field; 4 is a uniform coil; This is a magnetic field area that requires
Here, the area is surrounded by a dotted circle.

次に動作について説明する。Next, the operation will be explained.

まず、主磁場方向Zに長い断面積Aを有する棒状の磁性
体2がX、Y面取付角度ψ、Z、Y平面の端面角度α0
.α2の位置に配置された様子は、第8図および第9図
に示した通りであり、棒状の磁性体2が断面積A1およ
びA2の2つの部分から構成されている様子は、第10
図に示した通りである。そして、極座表系で示された磁
場補償成分B 11だけの補正磁場を磁性体2により発
生するためのB22.B3Z B33.B12 B12
 B44.B52Bsff、 Bs4(7)各成分B”
、 B”(7)各成分オヨヒB1”の成分を発生させな
いようにする各条件は従来例と全く同一である。
First, a rod-shaped magnetic body 2 having a long cross-sectional area A in the main magnetic field direction Z has a mounting angle ψ on the X and Y planes and an end face angle α0 on the Z and Y planes.
.. The state in which the rod-shaped magnetic body 2 is arranged at the position α2 is as shown in FIGS.
As shown in the figure. Then, B22.B22 is used to generate a correction magnetic field of only the magnetic field compensation component B11 shown in the polar coordinate system by the magnetic body 2. B3Z B33. B12 B12
B44. B52Bsff, Bs4(7) each component B”
, B'' (7) Each component The conditions for preventing the generation of the component Oyohi B1'' are exactly the same as in the conventional example.

一方、磁場補償成分B”の実際の不均一磁界成分を補償
する際には、磁場補償成分B11を直交座標系で示した
場合のX成分、X成分の成分比に相当する出力を得るこ
と、および不均一磁界の大きさに相当する大きさの逆極
性の補償磁界出力を得ることが必要となる。まず、X成
分とX成分の出力比については、磁性体2の出力が上記
取付角度におけるβの値に対応して、B工= B 11
cos β、B、=sin βと表わせることから、β
は:tan−1(BY/B工)となる。すなわち、回転
可能な非磁性筒6に相対角度が、 の計8ケ所に取り付けられた非磁性管1に磁性体2を必
要な量挿入した後、非磁性筒6を第3図に示す様にβだ
け回転させる。これにより、所望のX成分とX成分の比
率を有する磁場補償成分7311の出力を得ることがで
きる。このとき、磁場補正用の磁性体2は周方向角度β
を中心に配置されることになるが、この角度βで磁場補
償成分Btuの値が最大となっていることは明らかであ
る。
On the other hand, when compensating for the actual non-uniform magnetic field component of the magnetic field compensation component B'', it is necessary to obtain an output corresponding to the X component and the component ratio of the X component when the magnetic field compensation component B11 is expressed in an orthogonal coordinate system. It is necessary to obtain a compensating magnetic field output of opposite polarity and a magnitude corresponding to the magnitude of the non-uniform magnetic field.First, regarding the output ratio of the X component and the X component, the output of the magnetic body 2 at the above mounting angle is Corresponding to the value of β, B engineering = B 11
Since it can be expressed as cos β, B, = sin β, β
: Tan-1 (BY/B engineering). That is, after inserting the required amount of magnetic material 2 into the non-magnetic tube 1 attached to the rotatable non-magnetic tube 6 at a total of eight locations with a relative angle of , the non-magnetic tube 6 is inserted as shown in FIG. Rotate by β. Thereby, it is possible to obtain an output of the magnetic field compensation component 7311 having a desired ratio of the X component to the X component. At this time, the magnetic body 2 for magnetic field correction has a circumferential angle β
It is clear that the value of the magnetic field compensation component Btu is maximum at this angle β.

次に、不均一磁界の大きさに相当する大きさの補償磁界
出力を得ることが必要であるが、これは(1)式で示し
た磁性体2の出力が断面積Aに比例していることから、
使用する磁性体2の2つの部分の断面積A工、AXを従
来例の条件と同じく断面積比率A工/A2=7.16を
条件として増減させることで、所望の大きさの補償磁界
を得ることができる。
Next, it is necessary to obtain a compensation magnetic field output of a magnitude corresponding to the magnitude of the nonuniform magnetic field, which is because the output of the magnetic body 2 shown in equation (1) is proportional to the cross-sectional area A. Therefore,
By increasing or decreasing the cross-sectional areas A and AX of the two parts of the magnetic body 2 to be used under the condition of the cross-sectional area ratio A / A2 = 7.16 as in the conventional example, a compensation magnetic field of the desired magnitude can be obtained. Obtainable.

ここで、従来例との比較を行うと、磁性体2を挿入する
非磁性管lは従来16個必要であったものが8個に減少
し、従来、磁性体2の必要断面積X成分用A、、Y成分
用A7であったものが、この実施例の必要面積では、 \ρE丁ゝ+ A T”−となり1、ん(7ゝ4−ス]
7≦ A工+B。
Here, when compared with the conventional example, the number of non-magnetic tubes l into which the magnetic body 2 is inserted is reduced from 16 to 8, and the required cross-sectional area of the magnetic body 2 is reduced to 8. What was A7 for A, Y component becomes \ρE dingゝ+ A T”- for the required area of this example, which becomes 1, N (7ゝ4-s)
7≦ A work + B.

(等号はA工=0もしくはAV=O)が明らかに成り立
つことから、必要磁性体量は従来必要量に対して mンー/A工+Aアの比率で少なくすることができる。
(The equal sign is A = 0 or AV = O), so the amount of magnetic material required can be reduced by the ratio of m-/A = 0 or AV = O compared to the conventionally required amount.

また、B 21の成分、B22の成分についても、磁性
体2を回転可能な非磁性筒6に取り付けた非磁性管1内
に挿入し、非磁性筒6を回転させることにより、ZX成
分とZYX成分よびXX成分とX−Y2構成を同時にか
つ少ない磁性体量で補正することが可能である。このと
きの取付角度、端面角度、断面積比は以上説明と同様な
方法で決定することができ、その結果は第4図に示すよ
うになる。
Furthermore, regarding the component B21 and the component B22, the ZX component and the ZYX component can be determined by inserting the magnetic body 2 into the nonmagnetic tube 1 attached to the rotatable nonmagnetic tube 6 and rotating the nonmagnetic tube 6. It is possible to correct the component, the XX component, and the X-Y2 configuration simultaneously and with a small amount of magnetic material. At this time, the mounting angle, end face angle, and cross-sectional area ratio can be determined in the same manner as described above, and the results are shown in FIG. 4.

なお、上記実施例では磁場補正用の磁性体2が主磁場発
生用のコイル3の内側に設けたものについて示したが、
第5図に示すように主磁場発生用のコイル3の外側に設
けてもよい、また、B”用。
In addition, in the above embodiment, the magnetic body 2 for magnetic field correction is provided inside the coil 3 for generating the main magnetic field, but
As shown in FIG. 5, it may be provided outside the coil 3 for generating the main magnetic field.

B”用t B”用のコイルを同時に1つの電磁石に用い
てもよい、さらに、上記実施例では磁場補正用の磁性体
2が回転可能な非磁性筒6に取り付けられ、この非磁性
筒6を回転させることによって位置を決め、磁場補正を
行うものを示したが、回転させた位置へ当初より固定取
付するようにしてもよい。
The coils for B" and tB" may be used in one electromagnet at the same time.Furthermore, in the above embodiment, the magnetic body 2 for magnetic field correction is attached to a rotatable non-magnetic cylinder 6, and this non-magnetic cylinder 6 Although the magnetic field correction is performed by determining the position by rotating the magnetic field, it is also possible to fix the magnetic field to the rotated position from the beginning.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、不均一磁場成分が最大
となる周方向角度を中心として、該不均一磁場成分を補
正する最適角度となるように、上記非磁性筒を回転可能
または固定的に設けるように構成したので、極座標系で
示される1つの磁界成分を一度に且つ少ない磁性体で補
正することが可能となり、磁場補正に要する作業時間が
短縮され、使用材料も少なく、ローコストに構成できる
ものが得られる効果がある。
As described above, according to the present invention, the non-magnetic cylinder is rotatable or fixed so that the angle in the circumferential direction at which the non-uniform magnetic field component is maximum is the optimum angle for correcting the non-uniform magnetic field component. Since the structure is configured such that one magnetic field component shown in the polar coordinate system can be corrected at once with a small number of magnetic materials, the working time required for magnetic field correction is shortened, less materials are used, and the structure is low cost. There is an effect that you can get what you can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による磁場補正装置を示す
正面断面図、第2図は第1図の磁場補正装置の詳細を示
す側面断面図、第3図は磁性体と非磁性筒との関係を示
す説明図、第4図はこの発明による磁性体の取付角度、
端面角度、断面積比の決定値を示す表口、第5図は磁場
補正装置の他の実施例を示す正面断面図、第6図は従来
の磁場補正装置を示す正面断面図、第7図は第6図の磁
場補正装置を示す側面断面図、第8図は2方向から見た
棒状の磁性体の配置関係を示す説明図、第9図は第8図
の磁性体をX方向から見た配置関係を示す説明図、第1
0図は磁性体を示す斜視図、第11図は磁性体による磁
場の直交座標系での成分表示を示す表口、第12図は磁
性体の磁場の成分に応じた取付角度を示す説明図である
。 2は磁性体、3はコイル、6は非磁性筒。 なお、図中、同一符号は同一、または相当部分を示す。 〜rQ(C 第 図 第 図 第10 図 第 図 (O Xへ分プラス土り 工Tデ!ぺ49)しラスj二D X爪の、工への七D
FIG. 1 is a front sectional view showing a magnetic field correction device according to an embodiment of the present invention, FIG. 2 is a side sectional view showing details of the magnetic field correction device shown in FIG. 1, and FIG. FIG. 4 is an explanatory diagram showing the relationship between the mounting angle of the magnetic body according to the present invention,
5 is a front sectional view showing another embodiment of the magnetic field correction device; FIG. 6 is a front sectional view showing a conventional magnetic field correction device; FIG. 7 is a side cross-sectional view showing the magnetic field correction device in Fig. 6, Fig. 8 is an explanatory diagram showing the arrangement relationship of the rod-shaped magnetic bodies viewed from two directions, and Fig. 9 is a side sectional view showing the magnetic body in Fig. 8 viewed from the X direction. Explanatory diagram showing the arrangement relationship, 1st
Figure 0 is a perspective view showing the magnetic body, Figure 11 is the front page showing the components of the magnetic field due to the magnetic body in an orthogonal coordinate system, and Figure 12 is an explanatory diagram showing the mounting angle according to the component of the magnetic field of the magnetic body. It is. 2 is a magnetic material, 3 is a coil, and 6 is a non-magnetic tube. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. ~rQ (C Figure Figure Figure 10 Figure Figure Figure (O

Claims (1)

【特許請求の範囲】[Claims]  筒内に均一磁界の磁場領域を形成するコイルを配置し
た非磁性筒と、該非磁性筒の内部または外部に略筒形状
に沿って配置した複数の磁性体とを備えた磁場補正装置
において、上記空間の不均一磁場成分が最大となる周方
向角度を中心として、該不均一磁場成分を補正する最適
角度となるように、上記非磁性筒を回転可能または固定
的に設けたことを特徴とする磁場補正装置。
A magnetic field correction device comprising: a non-magnetic tube in which a coil for forming a magnetic field region of a uniform magnetic field is disposed; and a plurality of magnetic bodies disposed inside or outside the non-magnetic tube along a substantially cylindrical shape; The non-magnetic cylinder is rotatably or fixedly provided so that the angle in the circumferential direction at which the spatial non-uniform magnetic field component is maximum is the optimum angle for correcting the non-uniform magnetic field component. Magnetic field correction device.
JP2185854A 1990-07-13 1990-07-13 Magnetic field correction device Expired - Lifetime JP2698209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185854A JP2698209B2 (en) 1990-07-13 1990-07-13 Magnetic field correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185854A JP2698209B2 (en) 1990-07-13 1990-07-13 Magnetic field correction device

Publications (2)

Publication Number Publication Date
JPH0472704A true JPH0472704A (en) 1992-03-06
JP2698209B2 JP2698209B2 (en) 1998-01-19

Family

ID=16178044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185854A Expired - Lifetime JP2698209B2 (en) 1990-07-13 1990-07-13 Magnetic field correction device

Country Status (1)

Country Link
JP (1) JP2698209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794333A (en) * 2014-02-18 2014-05-14 哈尔滨理工大学 Dry magnetic-strip type electric reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280447A (en) * 1988-05-02 1989-11-10 Hitachi Ltd Nuclear spin resonance fault photographing device
JPH01305508A (en) * 1988-06-03 1989-12-08 Mitsubishi Electric Corp Magnetic shim for correcting magnetic field

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280447A (en) * 1988-05-02 1989-11-10 Hitachi Ltd Nuclear spin resonance fault photographing device
JPH01305508A (en) * 1988-06-03 1989-12-08 Mitsubishi Electric Corp Magnetic shim for correcting magnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794333A (en) * 2014-02-18 2014-05-14 哈尔滨理工大学 Dry magnetic-strip type electric reactor

Also Published As

Publication number Publication date
JP2698209B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US6529005B1 (en) Device for homogenizing a magnetic field
US5235284A (en) Passive shim arrangement for nuclear magnetic resonance
CN110857970B (en) Magnet assembly and method for manufacturing a magnet assembly
EP0374377B1 (en) Passive shims for correction of (3,2) and (3,-2) harmonic terms in magnetic resonance magnets
GB2155642A (en) Apparatus for generating highly homogeneous magnetic field
JPH02501805A (en) A correction device that uses a magnetic member to correct the non-uniformity of the magnetic field within a magnet.
US5992006A (en) Method for passive control of magnet hemogeneity
US20020140535A1 (en) Integral passive shim system for a magnetic resonance apparatus
US10976391B2 (en) Halbach magnet arrangement with notch
US20190259565A1 (en) Compact deflecting magnet
US20210116525A1 (en) Hybrid mpi and mri/ct imaging apparatus and method
US6534984B2 (en) Asymmetric arrangement of permanent-magnetic elements for a magnetic resonance apparatus
JPH03501342A (en) NMR imager, method of correcting non-uniformity, and method of making magnets used in NMR imager
CN115831570A (en) Shimming method of Halbach-configuration magnet
JPH0472704A (en) Magnetic field correction device
US9778334B2 (en) Magnetic shimming and magnet arrangements
EP0608179B1 (en) Apparatus for compensation of field distortion in a magnetic structure
EP1252530A1 (en) Permanent magnet and shim design
CN114706031A (en) In-situ calibration method for three-dimensional coil in triaxial vector atomic magnetometer
Tranquille et al. The CERN-ELENA electron cooler magnetic system
US10790078B2 (en) Apparatus and method for magnetic field compression
US5677660A (en) Electromagnetic device
CN109085519A (en) Superconducting magnet magnetic field shimming system and method
Nishimura The strongest array beyond Halbach array
US2684455A (en) Symmetrical magnetic deflection system