JPH0472368B2 - - Google Patents

Info

Publication number
JPH0472368B2
JPH0472368B2 JP21697688A JP21697688A JPH0472368B2 JP H0472368 B2 JPH0472368 B2 JP H0472368B2 JP 21697688 A JP21697688 A JP 21697688A JP 21697688 A JP21697688 A JP 21697688A JP H0472368 B2 JPH0472368 B2 JP H0472368B2
Authority
JP
Japan
Prior art keywords
mol
weight
parts
oxide
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21697688A
Other languages
Japanese (ja)
Other versions
JPH0265213A (en
Inventor
Junichi Watanabe
Katsuhiko Arai
Yasushi Inoe
Koichiro Tsujiku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP21697688A priority Critical patent/JPH0265213A/en
Publication of JPH0265213A publication Critical patent/JPH0265213A/en
Publication of JPH0472368B2 publication Critical patent/JPH0472368B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は還元再酸化型半導体コンデンサ用磁器
組成物及び磁器に関する。 [従来の技術] 半導体磁器コンデンサの1種として還元再酸化
型半導体磁器コンデンサが知られている。この還
元再酸化型半導体磁器コンデンサの誘電体はチタ
ン酸バリウム系磁器から成り、例えば特公昭63−
28492号公報に開示されているように、炭酸バリ
ウム(BaCO2)と酸化チタン(TiO2)と希土類
元素の酸化物(Nd、Pr、Sm、Eu、Gd、Dy、
Laの酸化物の少なくとも1種)と、Cr、Mn、
Fe、Co及びNiの内の少なくとも1種の酸化物と
から成る混合物(原料組成物)を用意し、この形
成体を形成し、これを酸化性雰囲気中で焼結さ
せ、得られた焼結体を還元性雰囲気で加熱処理
し、更に酸化性雰囲気中で加熱処理(再酸化処
理)して得る。 [発明が解決しようとする課題] 上述の還元再酸化型半導体磁器コンデンサは、
小型化、大容量化が図れ、且つ高い耐電圧を得る
ことができるという特長を有する。しかし、従来
の磁器組成物では高耐電圧を保つたままより一層
の大容量化を図ることが困難であつた。即ち、絶
縁破壊電圧Vbdを例えば600V以上にしようとす
ると、単位面積当りの静電容量Cが0.3〜0.6μF/
cm2程度に低下し、逆に容量Cを0.7μF/cm2以上に
しようとすると、絶縁破壊電圧Vbdが300〜400V
程度に低下した。 そこで、本発明の目的は、絶縁破壊電圧Vbdが
500V以上、単位面積当りの静電容量Cが0.6μF/
cm2以上の還元再酸化型半導体磁器コンデンサを得
ることが可能な磁器組成物及び磁器を提供するこ
とにある。 [課題を解決するための手段] 上記目的を達成するための本発明は、100.00重
量部の主成分と、Mn(マンガン)に換算して、
0.03〜0.30重量部のMn化合物と、0.05〜0.30重量
部のBi2O3(酸化ビスマス)とから成り、前記主
成分が81.5〜96.5モル%のBaTiO3(チタン酸バリ
ウム)と、La(ランタン)に換算して1.0〜4.0モ
ル%のLa2O3(酸化ランタン)と、Ce(セリウム)、
Pr(プラセオジム)、Nd(ネオジム)、Sm(サマリ
ウム)及びY(イツトリウム)の内の少なくとも
1種から成る希土類元素に換算して0.5〜3.0モル
%の前記希土類元素の酸化物と、1.9〜10.0モル
%のTiO2(酸化チタン)と、0.1〜1.5モル%の
CaZrO3(ジルコン酸カルシウム)とから成ること
を特徴とする還元再酸化型半導体磁器コンデンサ
用磁器組成物に係わるものである。 なお、上記磁器組成物を焼成及び熱処理するこ
とにより、請求項2に示す磁器を得ることができ
る。 [作用] 本発明に従う磁器組成物によつて還元再酸化型
半導体磁器コンデンサを作製すると、500V以上
の絶縁破壊電圧Vbdを有し且つ0.6μF/cm2以上の
単位面積当りの静電容量Cを得ることができる。 [実施例] 次に、本発明の実施例を説明する。 第1表の試料No.1の組成物の主成分を得るため
に、 BaTiO3を2000.00g(90.8モル%)、 La2O3を29.23g(Laに換算して1.9モル%)、 Nd2O3を12.71g(Ndに換算して0.8モル%)、 CeO2を11.38g(Ceに換算して0.7モル%)、 Pr2O3を9.34g(Prに換算して0.6モル%)、 TiO2を31.69g(4.2モル%)、 CaZrO3を16.93g(1.0モル%)秤量した。即
ち、BaTiO3の90.8モル%と、Laの1.9モル%と、
Ndの0.8モル%と、Ceの0.7モル%と、Prの0.6モ
ル%と、TiO2の4.2モル%と、CaZrO3の1.0モル
%との和が100モル%となるようにBaTiO3、La2
O3、Nd2O3、CeO2、Pr2O3、TiO2、CaZrO3を秤
量した。 また、添加成分としてMnCO3(炭酸マンガン)
を4.42g、SiO2O3を2.11g秤量した。なお、上記
主成分の合計重量と4.42gのMnCO3との割合は、
100重量部の上記主成分と0.1重量部のMnとの割
合に対応する。また、上記主成分の合計重量と
2.11gのBi2O3との割合は、100重量部の上記主成
分と0.1重量部のBi2O3との割合に対応する。要す
るに、100重量部の主成分に対してMnが0.1重量
部となるようにMnCO3とBi2O3を秤量した。 次に、上記主成分及び添加成分を湿式混合し、
脱水乾燥後有機バインダを入れて混練し、しかる
後、外径1.5mm、内径0.9mm、厚み0.3mm、長さ3.7
mmの円筒状成型体を得た。 次に、得られた成型体を大気中1320℃で2時間
焼成して誘電体(絶縁体)磁器の焼結体を得、こ
の誘電体磁器を還元性雰囲気中1050℃で2時間熱
処理(半導体化処理)して半導体磁器に変化さ
せ、更に得られた半導体磁器を大気中970℃で1
時間熱処理(再酸化処理)を行つて図面で原理的
に示すように半導体磁器1の表面に誘電体層2を
作つた。なお、半導体磁器1の組成は原料組成に
対応している。また、表面誘電体層2は半導体磁
器1の酸化物から成る。 次に、表面誘電体層2の上に銀(Ag)ペース
トを塗布し、850℃で10分間焼付けることによつ
て一対の電極3,4を形成し、半導体磁器コンデ
ンサを完成させた。 得られたコンデンサの電極3,4にそれぞれリ
ード線を半田付けし、単位面積当りの静電容量
C、tanδ、絶縁抵抗IR、絶縁破壊電圧Vbdを測
定したところ、第2表に示すように、Cは
0.79μF/cm2、tanδは3.1%、IRは1.8×104MΩ、
Vbdは750Vであつた。 なお、C及びtanδは測定電圧0.1V、測定周波
数1kHzの条件で測定し、IRは直流電圧50Vを15
秒間印加した後に測定し、Vbdは直流昇圧破壊方
式で測定した。 大気中での焼成(一次焼成)の温度の変化によ
る特性変動が少ないことを確かめるために、一次
焼成温度を1310℃、1300℃に変えた他は1320℃の
場合と同一条件で半導体コンデンサを作成し、そ
の特性を測定したところ、第2表に示すように、
Cは0.77及び0.75μF/cm2、tanδは3.1%及び3.2
%、、IRはそれぞれ1.7×104MΩ、Vbdは750及び
720Vであつた。 試料No.2〜44においても、組成を第1表に示す
ように変えた他は試料No.1と同一方法でコンデン
サを作り、同一方法で電気的特性を測定した。 磁器組成物の組成を示す第1表において、主成
分のBaTiO3とLaとXとTiO2とCaZrO3はモル%
で示されている。主成分に含まれているXはCe、
Pr、Nb、Sm、Yの内の少なくとも1種から成
る希土類元素である。添加成分のMn及びBiO2O3
は主成分100重量部に対する添加重量部で示され
ている。
[Industrial Field of Application] The present invention relates to a ceramic composition and ceramic for reduction and reoxidation type semiconductor capacitors. [Prior Art] A reduction and reoxidation type semiconductor ceramic capacitor is known as a type of semiconductor ceramic capacitor. The dielectric of this reduction and reoxidation type semiconductor ceramic capacitor is made of barium titanate ceramic.
As disclosed in Publication No. 28492, barium carbonate (BaCO 2 ), titanium oxide (TiO 2 ), and rare earth element oxides (Nd, Pr, Sm, Eu, Gd, Dy,
at least one type of oxide of La), Cr, Mn,
A mixture (raw material composition) consisting of at least one oxide of Fe, Co, and Ni is prepared, a formed body is formed, and this is sintered in an oxidizing atmosphere. The body is heat-treated in a reducing atmosphere and then further heat-treated in an oxidizing atmosphere (re-oxidation treatment). [Problem to be solved by the invention] The above-mentioned reduction and reoxidation type semiconductor ceramic capacitor has the following problems:
It has the features of being able to be made smaller, have a larger capacity, and have a higher withstand voltage. However, with conventional ceramic compositions, it has been difficult to increase the capacity while maintaining a high withstand voltage. In other words, if you try to increase the dielectric breakdown voltage Vbd to 600V or more, the capacitance C per unit area will be 0.3 to 0.6μF/
cm2 , and if you try to increase the capacitance C to 0.7μF/cm2 or more , the dielectric breakdown voltage Vbd will be 300 to 400V.
It has decreased to a certain extent. Therefore, an object of the present invention is to reduce the dielectric breakdown voltage Vbd.
500V or more, capacitance C per unit area is 0.6μF/
The object of the present invention is to provide a ceramic composition and ceramic that can obtain a reduced and reoxidized semiconductor ceramic capacitor of cm 2 or more. [Means for Solving the Problems] The present invention for achieving the above object consists of 100.00 parts by weight of the main component and Mn (manganese),
It consists of 0.03 to 0.30 parts by weight of Mn compound and 0.05 to 0.30 parts by weight of Bi 2 O 3 (bismuth oxide), and the main components are 81.5 to 96.5 mol% of BaTiO 3 (barium titanate) and La (lanthanum oxide). ) and 1.0 to 4.0 mol% La 2 O 3 (lanthanum oxide), Ce (cerium),
0.5 to 3.0 mol% of an oxide of the rare earth element consisting of at least one of Pr (praseodymium), Nd (neodymium), Sm (samarium), and Y (yttrium); mol% TiO2 (titanium oxide) and 0.1-1.5 mol%
The present invention relates to a ceramic composition for a reduction and reoxidation type semiconductor ceramic capacitor characterized by comprising CaZrO 3 (calcium zirconate). Incidentally, the porcelain according to claim 2 can be obtained by firing and heat-treating the above-mentioned porcelain composition. [Function] When a reduction and reoxidation type semiconductor ceramic capacitor is manufactured using the ceramic composition according to the present invention, it has a dielectric breakdown voltage Vbd of 500 V or more and a capacitance C per unit area of 0.6 μF/cm 2 or more. Obtainable. [Example] Next, an example of the present invention will be described. In order to obtain the main components of the composition of sample No. 1 in Table 1, 2000.00 g (90.8 mol%) of BaTiO 3 , 29.23 g (1.9 mol% in terms of La) of La 2 O 3 , Nd 2 12.71 g of O 3 (0.8 mol % in terms of Nd), 11.38 g of CeO 2 (0.7 mol % in terms of Ce), 9.34 g of Pr 2 O 3 (0.6 mol % in terms of Pr), 31.69 g (4.2 mol %) of TiO 2 and 16.93 g (1.0 mol %) of CaZrO 3 were weighed. That is, 90.8 mol% of BaTiO 3 and 1.9 mol% of La,
BaTiO 3 , La were added so that the sum of 0.8 mol % of Nd, 0.7 mol % of Ce, 0.6 mol % of Pr, 4.2 mol % of TiO 2 and 1.0 mol % of CaZrO 3 was 100 mol %. 2
O 3 , Nd 2 O 3 , CeO 2 , Pr 2 O 3 , TiO 2 and CaZrO 3 were weighed. In addition, MnCO 3 (manganese carbonate) is added as an additive component.
4.42 g of SiO 2 O 3 and 2.11 g of SiO 2 O 3 were weighed. The ratio between the total weight of the above main components and 4.42g of MnCO 3 is:
This corresponds to a ratio of 100 parts by weight of the above main components and 0.1 parts by weight of Mn. In addition, the total weight of the above main components and
The proportion of 2.11 g of Bi 2 O 3 corresponds to the proportion of 100 parts by weight of the above-mentioned main component and 0.1 part by weight of Bi 2 O 3 . In short, MnCO 3 and Bi 2 O 3 were weighed so that Mn was 0.1 part by weight with respect to 100 parts by weight of the main component. Next, wet mix the above main ingredients and additive ingredients,
After dehydration and drying, an organic binder is added and kneaded, and then the outer diameter is 1.5 mm, the inner diameter is 0.9 mm, the thickness is 0.3 mm, and the length is 3.7 mm.
A cylindrical molded body of mm was obtained. Next, the obtained molded body is fired in the air at 1320°C for 2 hours to obtain a sintered body of dielectric (insulator) porcelain, and this dielectric porcelain is heat treated at 1050°C in a reducing atmosphere for 2 hours (semiconductor oxidation treatment) to transform it into semiconductor porcelain, and then heat the obtained semiconductor porcelain in the atmosphere at 970℃ for 1
A time heat treatment (reoxidation treatment) was performed to form a dielectric layer 2 on the surface of the semiconductor ceramic 1 as shown in principle in the drawings. Note that the composition of the semiconductor ceramic 1 corresponds to the raw material composition. Further, the surface dielectric layer 2 is made of an oxide of the semiconductor ceramic 1. Next, silver (Ag) paste was applied onto the surface dielectric layer 2 and baked at 850° C. for 10 minutes to form a pair of electrodes 3 and 4, thereby completing a semiconductor ceramic capacitor. Lead wires were soldered to electrodes 3 and 4 of the obtained capacitor, and the capacitance per unit area C, tan δ, insulation resistance IR, and dielectric breakdown voltage Vbd were measured, as shown in Table 2. C is
0.79μF/cm 2 , tanδ is 3.1%, IR is 1.8×10 4 MΩ,
Vbd was 750V. In addition, C and tan δ are measured under the conditions of measurement voltage 0.1V and measurement frequency 1kHz, and IR is measured with DC voltage 50V at 15V.
It was measured after applying for a second, and Vbd was measured using a DC boost breakdown method. In order to confirm that there is little variation in characteristics due to changes in temperature during firing (primary firing) in the atmosphere, semiconductor capacitors were created under the same conditions as in the case of 1320°C, except that the primary firing temperature was changed to 1310°C and 1300°C. However, when we measured its characteristics, as shown in Table 2,
C is 0.77 and 0.75μF/cm 2 , tanδ is 3.1% and 3.2
%, IR is 1.7× 104 MΩ, Vbd is 750 and
It was 720V. For Samples No. 2 to 44, capacitors were made in the same manner as in Sample No. 1 except that the compositions were changed as shown in Table 1, and the electrical characteristics were measured in the same manner. In Table 1 showing the composition of the porcelain composition, the main components BaTiO 3 , La, X, TiO 2 and CaZrO 3 are expressed in mol%.
is shown. X contained in the main component is Ce,
It is a rare earth element consisting of at least one of Pr, Nb, Sm, and Y. Additional components Mn and BiO 2 O 3
is expressed in parts by weight added to 100 parts by weight of the main component.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1表及び第2から明らかなように、本発明に
従う組成物によれば、絶縁破壊電圧Vbdが500〜
800V、単位面積当りの静電容量が0.6〜0.8μF/
cm2のコンデンサを得ることができる。 一方、試料No.2、6、20、21、23、26、27、
30、31、34、35、36、39、40、44では本発明の目
的を達成することができない。従つて、これ等は
本発明の範囲外のものであり、比較例として掲載
されている。 次に組成の限定理由を説明する。 Laが1.0モル%未満になると、Laの添加効果が
小さくなり過ぎてコンデンサの絶縁破壊電圧Vbd
が目標値よりも低くなる。一方、Laが4.0モル%
よりも多くなると、表面誘電体層2の誘電率が低
くなり、単位面積当りの静電容量Cが目標値より
も小さくなる。従つて、Laの好ましい範囲は1.0
〜4.0モル%である。 X(Ce、Pr、Nd、Sm、Yの少なくとも1種)
が1種又は複数種の合計で0.5モル%未満になる
と、表面誘電体層2の誘電率を上げる効果を十分
に得ることができなくなり、静電容量Cが目標値
未満になる。一方、Xが3.0モル%よりも多くな
ると、絶縁破壊電圧Vbdが目標値よりも低くな
る。従つてXの好ましい範囲は0.5〜3.0モル%で
ある。 BaTiO3を81.5〜96.5モル%の範囲外及びTiO2
を1.9〜10.0モル%の範囲外にすると、焼結性が
悪くなり、静電容量C及び絶縁破壊電圧Vbdが低
下する。 CaZrO3は焼結性改善効果を有するが、0.1モル
%未満だとその効果をほとんど得ることができ
ず、1.5モル%を越えると表面誘電体層2の誘電
率が下がる。従つて、CaZrO3の好ましい範囲は
0.1〜1.5モル%である。 Mnを0.03重量部未満にすると、表面誘電体層
2を均一に形成することが困難になり、絶縁破壊
電圧Vbdが低下する。Mnを0.30重量部よりも多
くすると、表面誘電体層2を薄く形成することが
困難になり、絶縁破壊電圧Vbdを高く保つたまま
静電容量Cを高くすることができない。従つて、
Mnの好ましい範囲は0.03〜0.30重量部である。 Bi2O3は一次焼成温度の範囲を広げる効果を有
するが、このBi2O3が0.05重量未満だと、その効
果をほとんど期待することができない。Bi2O3
0.30重量部を越えると、誘電体層2の誘電率が下
がり、静電容量が低下すると共に、焼結状態が悪
くなり、絶縁破壊電圧が下がる。従つて、Bi2O3
の好ましい範囲は0.05〜0.30の重量部である。 [変形例] 本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) MnCO3の代りにMnO2を使用してもよい。 (2) 酸化性雰囲気による焼成(焼結)時の温度を
1260〜1400℃、還元性雰囲気の加熱処理温度を
900〜1180℃、再酸化処理の温度を900〜1100℃
の範囲で変えることができる。 (3) BaTiO3の代りにBaCO3とTiO2を出発材料
してもよい。 (4) 電極3,4の内の一方の下の誘電体層2を省
くことができる。 [発明の効果] 上述のように本発明によれば、絶縁破壊電圧が
500V以上、単位面積当りの静電容量が0.6μF/cm2
以上の半導体磁器コンデンサを提供することが可
能になる。
[Table] As is clear from Tables 1 and 2, according to the composition according to the present invention, the dielectric breakdown voltage Vbd is 500~
800V, capacitance per unit area is 0.6 to 0.8μF/
You can get a capacitor of cm 2 . On the other hand, sample No. 2, 6, 20, 21, 23, 26, 27,
30, 31, 34, 35, 36, 39, 40, and 44 cannot achieve the object of the present invention. Therefore, these are outside the scope of the present invention and are listed as comparative examples. Next, the reason for limiting the composition will be explained. When La is less than 1.0 mol%, the effect of adding La becomes too small and the capacitor's dielectric breakdown voltage Vbd
becomes lower than the target value. On the other hand, La is 4.0 mol%
When the amount is larger than , the dielectric constant of the surface dielectric layer 2 becomes low, and the capacitance C per unit area becomes smaller than the target value. Therefore, the preferred range of La is 1.0
~4.0 mol%. X (at least one of Ce, Pr, Nd, Sm, Y)
If the total amount of one or more types is less than 0.5 mol %, the effect of increasing the dielectric constant of the surface dielectric layer 2 cannot be sufficiently obtained, and the capacitance C becomes less than the target value. On the other hand, when X exceeds 3.0 mol%, the dielectric breakdown voltage Vbd becomes lower than the target value. Therefore, the preferred range of X is 0.5 to 3.0 mol%. BaTiO3 outside the range of 81.5-96.5 mol% and TiO2
If it is outside the range of 1.9 to 10.0 mol %, sinterability will deteriorate, and capacitance C and dielectric breakdown voltage Vbd will decrease. CaZrO 3 has the effect of improving sinterability, but if it is less than 0.1 mol %, this effect is hardly obtained, and if it exceeds 1.5 mol %, the dielectric constant of the surface dielectric layer 2 decreases. Therefore, the preferred range of CaZrO3 is
It is 0.1-1.5 mol%. When Mn is less than 0.03 parts by weight, it becomes difficult to uniformly form the surface dielectric layer 2, and the dielectric breakdown voltage Vbd decreases. If the Mn content is more than 0.30 parts by weight, it becomes difficult to form the surface dielectric layer 2 thinly, and the capacitance C cannot be increased while maintaining the dielectric breakdown voltage Vbd high. Therefore,
The preferred range of Mn is 0.03 to 0.30 parts by weight. Bi 2 O 3 has the effect of widening the range of primary firing temperature, but if this Bi 2 O 3 is less than 0.05 weight, almost no effect can be expected. Bi 2 O 3
If it exceeds 0.30 parts by weight, the dielectric constant of the dielectric layer 2 decreases, the capacitance decreases, the sintering condition deteriorates, and the dielectric breakdown voltage decreases. Therefore, Bi 2 O 3
The preferred range of is 0.05 to 0.30 parts by weight. [Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible. (1) MnO 2 may be used instead of MnCO 3 . (2) Temperature during firing (sintering) in oxidizing atmosphere
1260-1400℃, heat treatment temperature in reducing atmosphere
900~1180℃, reoxidation treatment temperature 900~1100℃
can be changed within the range. (3) BaCO 3 and TiO 2 may be used as starting materials instead of BaTiO 3 . (4) The dielectric layer 2 under one of the electrodes 3, 4 can be omitted. [Effect of the invention] As described above, according to the present invention, the dielectric breakdown voltage is
500V or more, capacitance per unit area is 0.6μF/cm 2
It becomes possible to provide the above semiconductor ceramic capacitor.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係わる磁器コンデンサ
を原理的に示す断面図である。 1…… 半導体磁器、2……表面誘電体層、
3,4……電極。
The drawing is a sectional view showing the principle of a ceramic capacitor according to an embodiment of the present invention. 1... Semiconductor ceramic, 2... Surface dielectric layer,
3, 4... Electrode.

Claims (1)

【特許請求の範囲】 1 100.00重量部の主成分と、Mn(マンガン)に
換算して、0.03〜0.30重量部のMn化合物と、0.05
〜0.30重量部のBi2O3(酸化ビスマス)とから成
り、 前記主成分が81.5〜96.5モル%のBaTiO3(チタ
ン酸バリウム)と、La(ランタン)に換算して1.0
〜4.0モル%のLa203(酸化ランタン)と、Ce(セリ
ウム)、Pr(プラセオジム)、Nd(ネオジム)、Sm
(サマリウム)及びY(イツトリウム)の内の少な
くとも1種から成る希土類元素に換算して0.5〜
3.0モル%の前記希土類元素の酸化物と、1.9〜
10.0モル%のTiO2(酸化チタン)と、0.1〜1.5モ
ル%のCaZrO3(ジルコン酸化カルシウム)とから
成ることを特徴とする還元再酸化型半導体コンデ
ンサ用磁器組成物。 2 100重量部の主成分と、0.03〜0.30重量部の
Mnと、Bi2O3に換算して0.05〜0.30の重量部のBi
とを含有している半導体磁器と、前記半導体磁器
の表面に形成された前記半導体磁器の酸化物から
成る誘電体層とから成り、 前記主成分が81.5〜96.5モル%のBaTiO3と、
1.0〜4.0モル%のLaと、0.5〜3.0モル%のX(但
し、XはCe、Pr、Nd、Sm及びYの内の少なく
とも1種の希土類元素)と、TiO2に換算して1.9
〜10.0モル%のTiと、0.1〜1.5モル%のCaZrO3
を含むものであることを特徴とする還元再酸化型
半導体コンデンサ用磁器。
[Claims] 1. 100.00 parts by weight of the main component, 0.03 to 0.30 parts by weight of a Mn compound in terms of Mn (manganese), and 0.05 parts by weight.
~0.30 parts by weight of Bi 2 O 3 (bismuth oxide), the main components of which are 81.5 to 96.5 mol% of BaTiO 3 (barium titanate) and 1.0 parts by weight in terms of La (lanthanum).
~4.0 mol% La 2 0 3 (lanthanum oxide), Ce (cerium), Pr (praseodymium), Nd (neodymium), Sm
0.5 to a rare earth element consisting of at least one of (samarium) and Y (yttrium)
3.0 mol% of the rare earth element oxide, and 1.9 to
A ceramic composition for a reduction and reoxidation type semiconductor capacitor, comprising 10.0 mol% TiO 2 (titanium oxide) and 0.1 to 1.5 mol% CaZrO 3 (calcium zircon oxide). 2 100 parts by weight of the main component and 0.03 to 0.30 parts by weight
Mn and 0.05 to 0.30 parts by weight of Bi calculated as Bi 2 O 3
and a dielectric layer made of an oxide of the semiconductor ceramic formed on the surface of the semiconductor ceramic, the main component being BaTiO 3 of 81.5 to 96.5 mol %,
1.0 to 4.0 mol% La, 0.5 to 3.0 mol%
A porcelain for a reduction and reoxidation type semiconductor capacitor, characterized in that it contains ~10.0 mol% Ti and 0.1-1.5 mol% CaZrO3 .
JP21697688A 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor Granted JPH0265213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21697688A JPH0265213A (en) 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21697688A JPH0265213A (en) 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor

Publications (2)

Publication Number Publication Date
JPH0265213A JPH0265213A (en) 1990-03-05
JPH0472368B2 true JPH0472368B2 (en) 1992-11-18

Family

ID=16696866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21697688A Granted JPH0265213A (en) 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor

Country Status (1)

Country Link
JP (1) JPH0265213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074637A1 (en) * 2016-10-21 2018-04-26 주식회사 지유디이에스 Mixture composition for manufacturing semiconductor for pet brush for pets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114341A1 (en) * 2007-03-16 2008-09-25 Fujitsu Microelectronics Limited Semiconductor device and process for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074637A1 (en) * 2016-10-21 2018-04-26 주식회사 지유디이에스 Mixture composition for manufacturing semiconductor for pet brush for pets

Also Published As

Publication number Publication date
JPH0265213A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
JP4446324B2 (en) Dielectric porcelain composition and capacitor using the same
JP2002362970A (en) Dielectric ceramic composition and ceramic capacitor
JP2958819B2 (en) Non-reducing dielectric porcelain composition
JP2958818B2 (en) Non-reducing dielectric porcelain composition
JPH0472368B2 (en)
JPH0514409B2 (en)
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH0472369B2 (en)
JPH0472367B2 (en)
JPH0514410B2 (en)
JP3125481B2 (en) Grain boundary insulating layer type semiconductor ceramic composition
JPH0451964B2 (en)
JP2779740B2 (en) Dielectric porcelain and porcelain capacitor
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPH0652718A (en) Dielectric porcelain and porcelain capacitor
JP3120500B2 (en) Non-reducing dielectric porcelain composition
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP3185333B2 (en) Non-reducing dielectric ceramic composition
JPS6046811B2 (en) Composition for semiconductor ceramic capacitors
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPS6240316B2 (en)
JPH01236608A (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPH03280411A (en) Manufacture of surface reoxidized type semiconductor ceramic capacitor
JP2958824B2 (en) Non-reducing dielectric porcelain composition