JPH0472162B2 - - Google Patents

Info

Publication number
JPH0472162B2
JPH0472162B2 JP57180818A JP18081882A JPH0472162B2 JP H0472162 B2 JPH0472162 B2 JP H0472162B2 JP 57180818 A JP57180818 A JP 57180818A JP 18081882 A JP18081882 A JP 18081882A JP H0472162 B2 JPH0472162 B2 JP H0472162B2
Authority
JP
Japan
Prior art keywords
endoscope
distance
light
output signal
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57180818A
Other languages
Japanese (ja)
Other versions
JPS5970903A (en
Inventor
Osamu Komya
Kunio Kinoshita
Katsuyuki Kanehira
Juji Ikuno
Hiroyuki Furuhata
Koji Tanigawa
Takeaki Nakamura
Mototsugu Ogawa
Taketo Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP57180818A priority Critical patent/JPS5970903A/en
Publication of JPS5970903A publication Critical patent/JPS5970903A/en
Publication of JPH0472162B2 publication Critical patent/JPH0472162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

【発明の詳細な説明】 この発明は、患部の実際の長さを測ることがで
きる内視鏡自動計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic endoscope measuring device that can measure the actual length of an affected area.

一般に、内視鏡を用いて体腔内を観察する場
合、対物端と体腔壁との距離によつて得られる像
の倍率が変わる。そのため、内視鏡像そのものだ
けでは患部の実際の長さの計測は不可能である。
これに対処するために、従来は鉗子を使つて患部
にスケールを置いて長さを測定している。ここ
で、体腔壁は常に動いているので、スケールを置
くことは困難であり、計測に時間がかかるという
欠点がある。また、スケールを置くことにより、
視野が妨げられ、観察に支障をおよぼす虞れがあ
る。
Generally, when observing the inside of a body cavity using an endoscope, the magnification of the image obtained changes depending on the distance between the objective end and the body cavity wall. Therefore, it is impossible to measure the actual length of the affected area using only the endoscopic image itself.
To deal with this, traditionally, forceps are used to place a scale on the affected area to measure the length. Here, since the body cavity wall is constantly moving, it is difficult to place a scale, and there is a drawback that measurement takes time. Also, by placing a scale,
There is a risk that the field of view will be obstructed and observation will be hindered.

この発明の目的は、観察に支障をおよぼすこと
なく簡単に被写体の実際の長さを計測することが
できる内視鏡自動計測装置を提供することであ
る。
An object of the present invention is to provide an endoscope automatic measuring device that can easily measure the actual length of a subject without interfering with observation.

以下、図面を参照してこの発明による内視鏡自
動計測装置の一実施例を説明する。第1図はその
概略的ブロツク図である。ライトガイド12とイ
メージガイド10を有する内視鏡14の接眼部に
テレビジヨンカメラ16が取付けられる。ライト
ガイド12の一端は光源ユニツト18に導びかれ
る。光源ユニツト18は照明用ランプ20とレー
ザ発振器22を有し、両者からの光がハーフミラ
ー24を介してライトガイド12の一端に入射さ
れるように構成される。ライトガイド12の先端
(対物端)からは、照明光が第1図に実線で示す
ように拡散的に放射され、測距用ビーム光として
のレーザ光が第1図に破線で示すように所定角度
で(ここでは、ライトガイド12に沿つて)放射
される。テレビジヨンカメラ16の出力信号が計
測部26および表示部28に供給される。計測部
26の出力信号も表示部28に供給される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an automatic endoscope measuring device according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram thereof. A television camera 16 is attached to an eyepiece of an endoscope 14 having a light guide 12 and an image guide 10. One end of the light guide 12 is guided to a light source unit 18. The light source unit 18 has an illumination lamp 20 and a laser oscillator 22, and is configured so that light from both is incident on one end of the light guide 12 via a half mirror 24. Illumination light is emitted diffusely from the tip (objective end) of the light guide 12 as shown by the solid line in FIG. It is emitted at an angle (here along the light guide 12). An output signal from the television camera 16 is supplied to a measuring section 26 and a display section 28 . The output signal of the measuring section 26 is also supplied to the display section 28 .

第2図は、この実施例の電気的構成を示すブロ
ツク図である。テレビジヨンカメラ16は撮像素
子としてCCD32を用いる。CCD32は2次元
マトリクス状に配列された画素を有し、走査回路
34により走査され、各画素毎の画素情報を出力
する。CCD32の出力信号がコンパレータ36
およびプロセスアンプ38に供給される。コンパ
レータ36はCCD32の出力信号を基準レベル
VRと比較し、その出力はCPU40に供給され
る。プロセスアンプ38はCCD32の出力信号
をテレビジヨン信号のフオーマツトに合つた画像
信号とし、その出力画像信号はビデオコントロー
ラ42に供給される。ビデオコントローラ42、
ROM44、CRTモニタ48がシステムバス50
を介してCPU40に接続される。ライトペン5
2がCPU40に接続される。
FIG. 2 is a block diagram showing the electrical configuration of this embodiment. The television camera 16 uses a CCD 32 as an image sensor. The CCD 32 has pixels arranged in a two-dimensional matrix, is scanned by a scanning circuit 34, and outputs pixel information for each pixel. The output signal of CCD32 is sent to comparator 36
and is supplied to the process amplifier 38. Comparator 36 sets the output signal of CCD 32 to the reference level.
In comparison with VR, its output is supplied to the CPU 40. A process amplifier 38 converts the output signal of the CCD 32 into an image signal conforming to the format of a television signal, and the output image signal is supplied to a video controller 42. video controller 42,
ROM 44 and CRT monitor 48 are system bus 50
It is connected to the CPU 40 via. light pen 5
2 is connected to the CPU 40.

この実施例の動作を説明する。この発明では、
テレビジヨンカメラ16の出力信号を表示する画
面上に写る被写体の実際の大きさは被写体までの
距離に応じることが利用される。すなわち、被写
体までの距離がわかつていれば、画面上での長さ
から実際の長さがわかる。そのため、まず、第3
図を参照して、この発明における測距の原理を説
明する。上述したように、ライトガイド12の先
端からは破線で示すようにライトガイド12に沿
つてレーザ光が放射されている。一方、イメージ
ガイド10の先端には、一点鎖線で示すように距
離の増加とともに大きな画像が入射される。その
ため、距離に応じて画像中のレーザ光の照射位置
が異なる。この発明では、画像の直径(通常、イ
メージガイドは円形断面を有するので、画像は円
形である)の一端から測つた照射位置までの間隔
a,a′が距離に比例することを利用する。具体的
には、CCD32のどの画素がレーザ光を受光し
たかによつて距離を測定する。すなわち、CCD
32は2次元マトリクス状に配列された画素を有
するので、そのうちの一列の画素からの出力期間
中のどのタイミングでレーザ光が検出されるかに
よつて測距する。まず、あらかじめ、距離に対す
る照射位置を光学系の諸条件を考慮して求めて、
これをROM44に格納しておく。ROM44は、
画素位置に応じたアドレスにその距離情報を記憶
する。CCD32の出力信号はプロセスアンプ3
8を介してビデオコントローラ42に供給され、
CRTモニタ48で内視鏡像が表示される。一方、
CCD32の出力信号はコンパレータ36で基準
レベルVRと比較される。この基準レベルは、レ
ーザ光の照射位置に対応する画素からの信号がコ
ンパレータ36に供給されたときのみ、コンパレ
ータ36から信号が出力されるように設定され
る。CPU40は、CCD32の走査のためのクロ
ツク信号となる走査回路34の出力信号から同期
信号を検出して、コンパレータ36からの信号の
出力タイミングが一列中のどの画素に対応するか
判断する。CPU40がこの画素位置を検出する
と、ROM44のこの位置に応じたアドレスから
距離情報が読出される。これにより、対物端と体
腔壁との距離が測定される。
The operation of this embodiment will be explained. In this invention,
It is utilized that the actual size of the object appearing on the screen displaying the output signal of the television camera 16 depends on the distance to the object. In other words, if you know the distance to the subject, you can find the actual length from the length on the screen. Therefore, first, the third
The principle of distance measurement in this invention will be explained with reference to the drawings. As described above, laser light is emitted from the tip of the light guide 12 along the light guide 12 as shown by the broken line. On the other hand, a large image is incident on the tip of the image guide 10 as the distance increases, as shown by the dashed line. Therefore, the irradiation position of the laser beam in the image differs depending on the distance. This invention utilizes the fact that the distances a and a' measured from one end of the diameter of the image (usually the image is circular because the image guide has a circular cross section) to the irradiation position are proportional to the distance. Specifically, the distance is measured depending on which pixel of the CCD 32 receives the laser beam. That is, CCD
Since the reference numeral 32 has pixels arranged in a two-dimensional matrix, the distance is measured depending on the timing during the output period from one row of the pixels when the laser beam is detected. First, determine the irradiation position relative to the distance in advance, taking into account the various conditions of the optical system.
This is stored in the ROM44. ROM44 is
The distance information is stored in an address corresponding to the pixel position. The output signal of CCD32 is the process amplifier 3
8 to the video controller 42;
An endoscopic image is displayed on the CRT monitor 48. on the other hand,
The output signal of the CCD 32 is compared with a reference level VR by a comparator 36. This reference level is set so that a signal is output from the comparator 36 only when a signal from a pixel corresponding to the laser beam irradiation position is supplied to the comparator 36. The CPU 40 detects a synchronizing signal from the output signal of the scanning circuit 34, which serves as a clock signal for scanning the CCD 32, and determines which pixel in the row the output timing of the signal from the comparator 36 corresponds to. When the CPU 40 detects this pixel position, distance information is read from the address corresponding to this position in the ROM 44. Thereby, the distance between the objective end and the body cavity wall is measured.

次に、操作者はCRTモニタ48上で長さを測
りたい線分の両端をライトペン52で指示する。
これにより、CPU40にCRTモニタ48上での
長さが入力される。CPU40はこの長さと先に
求めた距離に基づいて、実際の長さを求め、ビデ
オコントローラ42に供給し、第4図に示すよう
に内視鏡像とともに測長結果を表わす数値が表示
される。図中、点はレーザ光の照射位置を示す。
Next, the operator indicates on the CRT monitor 48 both ends of the line segment whose length is to be measured using the light pen 52.
As a result, the length on the CRT monitor 48 is input to the CPU 40. Based on this length and the previously determined distance, the CPU 40 determines the actual length and supplies it to the video controller 42, and as shown in FIG. 4, a numerical value representing the length measurement result is displayed together with the endoscopic image. In the figure, dots indicate the irradiation position of the laser beam.

このように、この実施例によれば、被写体にビ
ーム光を照射しこの照射位置を検出するだけで被
写体までの距離を求め、この距離と表示画面上の
長さとにより、簡単、かつ、観察に支障をおよぼ
さずに、実際の長さを求めることのできる内視鏡
自動計測装置が提供される。
In this way, according to this embodiment, the distance to the subject is determined simply by irradiating the subject with a beam of light and detecting the irradiation position, and this distance and the length on the display screen make it easy to observe. An automatic endoscope measuring device is provided that can determine the actual length without causing any trouble.

なお、上述の説明では、測距用ビーム光は可視
レーザ光としたが、Nd−YAGレーザ光のような
不可視レーザ光、あるいは、赤外光を用いてもよ
い。赤外光を用いる場合は、イメージガイド10
とCCD32の間に入射光を画像用のR、G、B
成分および赤外成分に分ける4色分解光学系を設
け、CCD32も4色分設ける。また、テレビジ
ヨンカメラ16は全て接眼部に設けるのではな
く、CCD等の撮像素子は対物端に設けてもよい。
あるいは、測距用レーザダイオードを内視鏡の先
端に設けてもよい。さらに、測距用には撮像用と
は別のラインセンサを用いてもよい。また、
CRTモニタ48上での長さの入力は、キーボー
ド等から行なつてもよい。
In the above description, the distance measuring beam light is a visible laser light, but an invisible laser light such as a Nd-YAG laser light or an infrared light may also be used. When using infrared light, image guide 10
and CCD 32 to input the incident light into R, G, B for images.
A four-color separation optical system is provided that separates the infrared component and the infrared component, and the CCD 32 is also provided for four colors. Furthermore, the television camera 16 is not entirely provided at the eyepiece, and an image pickup device such as a CCD may be provided at the objective end.
Alternatively, a distance measuring laser diode may be provided at the tip of the endoscope. Furthermore, a line sensor different from that for imaging may be used for distance measurement. Also,
The length may be entered on the CRT monitor 48 using a keyboard or the like.

以上説明したように、この発明によれば、簡単
な構成で、かつ、観察に支障をおよぼさない内視
鏡自動計測装置が提供される。
As described above, according to the present invention, there is provided an automatic endoscope measurement device that has a simple configuration and does not interfere with observation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による内視鏡自動計測装置の
一実施例のブロツク図、第2図はその電気的構成
を示すブロツク図、第3図はこの発明における測
距の原理を説明するための図、第4図はこの実施
例の表示の一例を示す図である。 12……ライトガイド、22……レーザ発振
器、32……CCD、36……コンパレータ、3
8……プロセスアンプ、40……CPU、42…
…ビデオコントローラ、44……ROM、48…
…CRTモニタ、52……ライトペン。
Fig. 1 is a block diagram of an embodiment of an endoscope automatic measuring device according to the present invention, Fig. 2 is a block diagram showing its electrical configuration, and Fig. 3 is a block diagram for explaining the principle of distance measurement in this invention. FIG. 4 is a diagram showing an example of the display of this embodiment. 12...Light guide, 22...Laser oscillator, 32...CCD, 36...Comparator, 3
8...Process amplifier, 40...CPU, 42...
...Video controller, 44...ROM, 48...
...CRT monitor, 52...Light pen.

Claims (1)

【特許請求の範囲】 1 観察対象物内に挿入し、ライトガイドからな
る照明手段によつて得られる照明光で内部を観察
する内視鏡と、 前記内視鏡に接続して照明手段に照明光を供給
する光源装置と、 前記内視鏡により得られた光学像を撮像する2
次元マトリクス状に配列された画素を有する撮像
手段と、 測距用光源より上記照明手段を介して内視鏡の
対物部から出射方向が固定されたビーム光を放射
するビーム光放射手段と、 前記撮像手段の画素の出力信号から撮影画面に
おける前記ビーム光の照射位置を検出し、これに
もとづいて前記内視鏡の対物部と被写体との距離
を求める測距手段と、 前記撮像手段の出力信号を表示するモニタ手段
と、 このモニタ手段の画面上での任意の2点間の距
離を算出する手段からの距離情報と前記測距手段
からの距離情報とから前記2点間の実際の長さを
求める測長手段と、 を具備したことを特徴とする内視鏡自動計測装
置。 2 前記測長手段の出力信号が前記モニタ手段で
表示されることを特徴とする特許請求の範囲第1
項記載の内視鏡自動計測装置。
[Scope of Claims] 1. An endoscope that is inserted into an object to be observed and observes the interior with illumination light obtained by illumination means consisting of a light guide; and an endoscope that is connected to the endoscope and illuminates the illumination means. a light source device that supplies light; and 2 that captures an optical image obtained by the endoscope.
an imaging means having pixels arranged in a dimensional matrix; a beam light emitting means for emitting a beam of light with a fixed output direction from the objective section of the endoscope from a distance measuring light source via the illumination means; a distance measuring means for detecting the irradiation position of the beam light on the photographing screen from the output signal of the pixel of the imaging means, and determining the distance between the objective section of the endoscope and the subject based on this; and the output signal of the imaging means. a monitor means for displaying the distance between the two arbitrary points on the screen of the monitor means, and an actual length between the two points based on the distance information from the means for calculating the distance between two arbitrary points on the screen of the monitor means and the distance information from the distance measuring means. What is claimed is: 1. An endoscope automatic measuring device comprising: a length measuring means for determining . 2. Claim 1, wherein the output signal of the length measuring means is displayed on the monitor means.
Endoscope automatic measurement device described in Section 1.
JP57180818A 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope Granted JPS5970903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180818A JPS5970903A (en) 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180818A JPS5970903A (en) 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope

Publications (2)

Publication Number Publication Date
JPS5970903A JPS5970903A (en) 1984-04-21
JPH0472162B2 true JPH0472162B2 (en) 1992-11-17

Family

ID=16089889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180818A Granted JPS5970903A (en) 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope

Country Status (1)

Country Link
JP (1) JPS5970903A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468233A (en) * 1987-09-10 1989-03-14 Fuji Photo Optical Co Ltd Object dimension measuring apparatus of electronic endoscope
JPH0698134B2 (en) * 1988-03-17 1994-12-07 和雄 馬場 Ultrasound endoscopy
US4980763A (en) * 1989-06-12 1990-12-25 Welch Allyn, Inc. System for measuring objects viewed through a borescope
JP3418480B2 (en) * 1995-04-17 2003-06-23 医療法人社団ケント会 Medical support equipment
GB9610197D0 (en) * 1996-05-15 1996-07-24 Keymed Medicals & Ind Equip Digitally measuring scopes using a high resolution edcoder
CN1399528A (en) * 1999-09-24 2003-02-26 加拿大国家研究委员会 Method and apparatus for performing intra-operative angiography
US20050182434A1 (en) 2000-08-11 2005-08-18 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US20060239921A1 (en) 2005-04-26 2006-10-26 Novadaq Technologies Inc. Real time vascular imaging during solid organ transplant
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
WO2009135178A2 (en) 2008-05-02 2009-11-05 Flower Robert W Methods for production and use of substance-loaded erythrocytes (s-les) for observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
EP2863801B8 (en) 2012-06-21 2024-06-12 Stryker Corporation Quantification and analysis of angiography and perfusion
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
WO2016055837A1 (en) 2014-10-09 2016-04-14 Novadaq Technologies Inc. Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Also Published As

Publication number Publication date
JPS5970903A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
JPH0472162B2 (en)
JPH0436364B2 (en)
EP2263520A1 (en) Endoscope system, endoscope, and method for measuring distance and illumination angle
KR970706485A (en) METHOD AND APPARATUS FOR MEASURING LIGHT PROJECTION CONCENTRATION
CA2166824A1 (en) Shadow probe
JPH0243487B2 (en)
JP3418480B2 (en) Medical support equipment
JPH0349567B2 (en)
JPH0243486B2 (en)
JP3776561B2 (en) 3D measuring endoscope device
JPS641726B2 (en)
KR20200002504A (en) Apparatus for Measuring Temperature of Things Using Thermal Image Sensor and a Method Thereof
JP3271813B2 (en) Calibration method and calibration device for image measurement device
JP2008229219A (en) Electronic endoscope system
JPS6251618B2 (en)
JPH0238218B2 (en)
JPS61293423A (en) Apparatus for measuring cornea
JP2691271B2 (en) Corneal shape measuring device
JP3199793B2 (en) Imaging device
JPH061177B2 (en) Method of measuring smoothness of coated surface
JP2012152246A (en) White balance adjusting system, endoscope processor, and correction and balance adjustment cap
JP2012152314A (en) White balance adjusting system, endoscope processor, and correction and balance adjustment cap
JPH0430290B2 (en)
JPH0552533A (en) Endoscope apparatus for three-dimensional measurement
JPS5969722A (en) Path endoscope video system