JPH0471934B2 - - Google Patents

Info

Publication number
JPH0471934B2
JPH0471934B2 JP58029997A JP2999783A JPH0471934B2 JP H0471934 B2 JPH0471934 B2 JP H0471934B2 JP 58029997 A JP58029997 A JP 58029997A JP 2999783 A JP2999783 A JP 2999783A JP H0471934 B2 JPH0471934 B2 JP H0471934B2
Authority
JP
Japan
Prior art keywords
phenolic resin
foam
mold
type phenolic
resol type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58029997A
Other languages
Japanese (ja)
Other versions
JPS59155016A (en
Inventor
Takeshi Saburi
Chukei Fuyuki
Shigetoshi Tanaka
Yoshikazu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP58029997A priority Critical patent/JPS59155016A/en
Publication of JPS59155016A publication Critical patent/JPS59155016A/en
Publication of JPH0471934B2 publication Critical patent/JPH0471934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/14Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2061/00Use of condensation polymers of aldehydes or ketones or derivatives thereof, as moulding material
    • B29K2061/04Phenoplasts

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は軽量な難燃性のフエノールフオーム複
合体の製造法に関する。 従来からポリエチレン発泡粒、無機質多孔粒等
の軽量な粒状体を液状からなる発泡性フエノール
樹脂とを混合した後、所定の型内に充填して発泡
性レゾール型フエノール樹脂を発泡硬化させてフ
エノールフオーム複合体を製造することは知られ
ている。 しかし乍ら、この製造法では、軽量な粒状体と
粘度の高い発泡性レゾール型フエノール樹脂との
混合工程が非常に困難であり、特に低密度の複合
体を造るために軽量な粒状体の嵩を大きくとり粘
度の高い発泡性レゾール型フエノール樹脂を少な
くすると困難である。例えば軽量な粒状体と発泡
性レゾール型フエノール樹脂とのみかけ体積比が
20乃至80:1程度になるとその両者の均一な混合
工程は非常に困難になり又混合にも非常に時間を
要することになる。従つて、多数の各粒状体に均
一量の発泡性レゾール型フエノール樹脂を混合す
ることが出来ないことが多くなり、得られたフエ
ノールフオーム複合体に空胴が多く散在し、全体
の密度も不均一になるという欠点、また長い混合
時間中に摩擦熱及び硬化反応熱等で発泡性フエノ
ール樹脂が発泡開始するとか発泡剤が逸散すると
いう欠点があつた。 かかる欠点を解決すべく、発明者等は鋭意研究
の結果、発泡性レゾール型フエノール樹脂の発泡
力を利用して軽量なる粒状体の空隙部を充填する
ことにより解決出来ることを知見した。 即ち、本発明の要旨は発泡剤、整泡剤及び硬化
剤含む液状の発泡性レゾール型フエノール樹脂を
型内の少くとも一面にほぼ均一な厚み層になるよ
うに設けた後、軽量な粒状体を型に充填し、しか
る後加熱して発泡性レゾール型フエノール樹脂を
発泡せしめると共に硬化させて成形することを特
徴とするフエノールフオーム複合体の製造法に存
する。 本発明に於て使用される液状のレゾール型フエ
ノール樹脂としてはフエノール類1モルに対して
ホルムアルデヒド1.2〜3.0モルを反応させ、粘度
10〜500ポイズの液体が泡化上好ましく、加熱又
は酸性硬化剤により縮合反応を行い熱硬化樹脂と
なるものである。 発泡剤としては易揮発性液体のブタン、ペンタ
ン、ヘキサン、石油エーテル等の炭化水素、ジク
ロロジフルオロメタン、トリクロロモノフルオロ
メタン、トリクロロトリフルオロエタン等のハロ
ゲン化炭化水素、又はこれらの混合物が使用出来
る。該揮発性液体は5乃至50重量部混合される。
又、加熱によりガスを発生する重炭酸ナトリウ
ム、炭酸アンモニウム等の炭酸塩、その他熱分解
型発泡剤も使用出来るが上記発泡剤の中でも常温
で液状であるのがレゾール型フエノール樹脂との
混合工程で好適である。 整泡剤としては、フエノールフオームの気泡の
安定形成及び微細にするために混合するものであ
りこれらは脂肪酸とアルコールからなるエステル
の非イオン界面活性剤が混合される。例えばポリ
オキシエチレンソルビタンモノラウレート、ポリ
オキシエチレンソルビタンモノステアレート、ポ
リオキシエチレンソルビタンモノオレエート等が
1乃至10重量部混合して使用される。 硬化剤としてはフエノールスルフオン酸、ベン
ゼンスルフオン酸、硫酸、塩酸、硝酸、リン酸等
の酸性物質が5乃至40重量物質混合して使用され
る。 また、発泡性レゾール型フエノール樹脂に無機
或いは有機フイラーを混合して柔軟性や耐火性を
改良できる。これら無機或いは有機フイラーとし
てはパーライト粉末、タルク、クレー、ホウ砂、
塩化ビニルパウダー等が3乃至30重量部混合して
使用出来る。 軽量な粒状体としては無機質或いは有機質の軽
量骨材の単体又は混合品が使用される。これらの
うち、直径1乃至20mm球状の粒状体が好ましく使
用され、特に直径2.5mm以上が好適である。勿論
多面体や不定形の粒状体も使用出来る。 例えばパーライト、シラスパルーン、ガラスパ
ルーン、発泡ガラス、発泡粘度、ポリスチレン発
泡粒、フエノールパルーン、ピオセラン及びダイ
ラーク(積水化成品工業(株)商品名)発泡粒、プラ
スチツク発泡体の破砕品等が含まれる。 該軽量な粒状体は型内に見掛け上80%乃至100
%(一杯)充填することが好ましく、この場合粒
状体が複合体中に均一に分散されている。 又、本発明ではバツチ成形或いは連続的な成形
も採用出来る。 本発明は以上の通り構成され、型内の一面に、
均一な厚み層になるように設けられた液状の発泡
性レゾール型フエノール樹脂が泡化を開始しなが
ら、型内に既に充填されている軽量な粒状体の空
隙部を円滑に充填されていく現象に基づき、空隙
部に空胴が生ずることなく粒状体同志をよく接合
されると共に空隙部にほぼ均一密度にフエノール
樹脂発泡体が充填されている。 又、特に、軽量な粒状体を型内に見掛け上80%
乃至一杯に充填すると、粒状体が複合体内の全体
に平均して散在しているものが得られる。 実施例 1 型内の寸法が厚み25mm、尋さ300mm×300mmで一
面がフラツトの平板の開閉可能な蓋を持つている
金型を使用した。 発泡性レゾール型フエノール樹脂組成物として (1) レゾール型フエノール樹脂 53.5g (粘度66ポイズ、25℃、比重1.265、PH=
7.9) (2) 整泡剤ポリオキシエチレンソルビタンモノス
テアレート 1.6g (3) 発泡剤トリクロロモノフルオロメタン5.4g トリクロロトリフルオロエタン 2.7g (4) 硬化剤フエノールスルフオン酸(純分67%)
4.3g をこの順に攪拌しながら均一に混合し金型内底部
に紙を敷いた上に全量を全面に均一厚みになるよ
うにすばやく塗布した。この時の厚みは平均約
0.7mmであつた。次に型内にみかけ発泡倍率約50
平均粒径約4.3mmの球形ポリスチレン発泡粒49.5
gを型内にほぼ一杯に充填し紙を積層し蓋を閉じ
て80℃の恒温槽内に40分間保持した。金型を恒温
槽から出しフエノールフオーム複合体を金型から
取出した。この得られた複合体はポリスチレン発
泡粒が全体に均一に分散されており粒間の空隙は
発泡したフエノールで全て充填されていた。そし
てこの複合体の物性は密度41.3Kg/m3曲げ強度
6.03Kg/cm2圧縮強度1.57Kg/cm2(5%歪)、3.07
Kg/cm2(25%歪)、難燃性を示す酸素指数は33で
あつた。 実施例 2 実施例1に於て型内の底面及び上面に紙を積層
しない以外は全く同様にしてフエノールフオーム
複合体を製造した。このフエノールフオーム複合
体の物性は密度41.3Kg/cm2、曲げ強度3.05Kg/cm2
であり密度圧縮強度、酸素指数は実施例1とほぼ
同じであつた。 実施例 3 実施例1に於て球形ポリスチレン発泡粒の平均
粒径を2.1mm,2.7mm,5.8mmとし発泡性レゾール型
フエノール樹脂組成物の塗布量を型内一杯に充填
されて良好なる複合体を得る量のレゾール型フエ
ノール樹脂分を65g,55g,56gとする以外は全
く同様の配合比及び方法にてフエノールフオーム
複合体を得た。 これらの物性は次表の通りである。
The present invention relates to a method for producing lightweight, flame-retardant phenolic foam composites. Conventionally, lightweight granules such as polyethylene foam granules and inorganic porous granules are mixed with liquid foamable phenolic resin, and then filled into a predetermined mold and the foamable resol-type phenolic resin is foamed and hardened to form phenol foam. It is known to produce composites. However, with this manufacturing method, the mixing process of lightweight granules and highly viscous foamable resol type phenolic resin is extremely difficult. It is difficult to increase the amount of foaming resol type phenolic resin with high viscosity. For example, the apparent volume ratio of lightweight granules and expandable resol type phenolic resin is
When the ratio is about 20 to 80:1, it becomes very difficult to uniformly mix the two, and it also takes a lot of time. Therefore, it is often impossible to mix a uniform amount of expandable resol-type phenolic resin into each of a large number of granules, and the resulting phenol foam composite has many cavities scattered and the overall density is also low. There are disadvantages in that the mixture becomes uniform, and that the foamable phenolic resin starts to foam due to frictional heat, curing reaction heat, etc. during a long mixing time, and the foaming agent dissipates. In order to solve this problem, the inventors have conducted intensive research and found that it can be solved by filling the voids of lightweight granules by utilizing the foaming power of the foamable resol type phenolic resin. That is, the gist of the present invention is to provide a liquid foamable resol type phenolic resin containing a foaming agent, a foam stabilizer, and a hardening agent so as to form a layer with a substantially uniform thickness on at least one surface of a mold, and then to form a lightweight granular material. The present invention relates to a method for producing a phenol foam composite, which is characterized in that the foaming resol type phenolic resin is filled into a mold, and then heated to foam and cure the foamable resol type phenolic resin. The liquid resol-type phenolic resin used in the present invention is prepared by reacting 1.2 to 3.0 moles of formaldehyde with 1 mole of phenols to reduce the viscosity.
A liquid having a poise of 10 to 500 poise is preferable from the viewpoint of foaming, and undergoes a condensation reaction by heating or using an acidic curing agent to become a thermosetting resin. As the blowing agent, easily volatile liquid hydrocarbons such as butane, pentane, hexane, petroleum ether, etc., halogenated hydrocarbons such as dichlorodifluoromethane, trichloromonofluoromethane, trichlorotrifluoroethane, etc., or mixtures thereof can be used. The volatile liquid is mixed in an amount of 5 to 50 parts by weight.
In addition, carbonates such as sodium bicarbonate and ammonium carbonate that generate gas when heated, and other thermally decomposed blowing agents can also be used, but among the above blowing agents, those that are liquid at room temperature are used in the mixing process with the resol type phenolic resin. suitable. The foam stabilizer is mixed to stably form phenol foam bubbles and make them fine, and a nonionic surfactant of ester consisting of a fatty acid and an alcohol is mixed therein. For example, 1 to 10 parts by weight of polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, etc. are used. As the curing agent, acidic substances such as phenolsulfonic acid, benzenesulfonic acid, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. are used by mixing 5 to 40 weight substances. Furthermore, flexibility and fire resistance can be improved by mixing an inorganic or organic filler with the expandable resol type phenolic resin. These inorganic or organic fillers include perlite powder, talc, clay, borax,
It can be used by mixing 3 to 30 parts by weight of vinyl chloride powder or the like. As the lightweight granules, a single or mixed inorganic or organic lightweight aggregate is used. Among these, spherical particles with a diameter of 1 to 20 mm are preferably used, and particles with a diameter of 2.5 mm or more are particularly preferred. Of course, polyhedrons and irregularly shaped granules can also be used. Examples include perlite, shirasu paroon, glass paroon, foamed glass, foamed viscosity, polystyrene foam pellets, phenol paroon, piocelan, and Dylarc (Sekisui Plastics Co., Ltd. trade name) foam pellets, crushed products of plastic foam, and the like. The lightweight granules have an apparent content of 80% to 100% in the mold.
% (full) loading is preferred, in which case the granules are uniformly dispersed in the composite. Further, in the present invention, batch molding or continuous molding can be employed. The present invention is configured as described above, and on one side of the mold,
A phenomenon in which the liquid foamable resol type phenolic resin, which has been placed in a layer with a uniform thickness, begins to foam and smoothly fills the voids of the lightweight granules already filled in the mold. Based on this, the granules are well bonded to each other without forming cavities in the voids, and the voids are filled with the phenolic resin foam at a substantially uniform density. In addition, in particular, the lightweight granules can be placed in the mold by 80% of the apparent amount.
A to full filling results in an average distribution of granules throughout the composite. Example 1 A mold was used which had internal dimensions of 25 mm in thickness, 300 mm x 300 mm in width, and had a lid with a flat plate on one side that could be opened and closed. As a foamable resol type phenolic resin composition (1) Resol type phenolic resin 53.5g (viscosity 66 poise, 25°C, specific gravity 1.265, PH=
7.9) (2) Foam stabilizer polyoxyethylene sorbitan monostearate 1.6g (3) Foaming agent trichloromonofluoromethane 5.4g trichlorotrifluoroethane 2.7g (4) Curing agent phenolsulfonic acid (purity 67%)
4.3 g was mixed uniformly in this order while stirring, and the entire amount was quickly applied to the entire surface of the mold to a uniform thickness on a sheet of paper placed at the bottom of the mold. The average thickness at this time is approximately
It was 0.7mm. Next, the apparent foaming ratio in the mold is approximately 50.
Spherical polystyrene foam particles with an average particle size of approximately 4.3 mm 49.5
g was filled into the mold almost completely, paper was layered, the lid was closed, and the mold was kept in a constant temperature bath at 80° C. for 40 minutes. The mold was taken out of the thermostat, and the phenol foam composite was taken out from the mold. In the resulting composite, foamed polystyrene grains were uniformly dispersed throughout, and the voids between the grains were all filled with foamed phenol. The physical properties of this composite are density: 41.3Kg/m 3 bending strength
6.03Kg/cm 2 Compressive strength 1.57Kg/cm 2 (5% strain), 3.07
Kg/cm 2 (25% strain), and the oxygen index indicating flame retardancy was 33. Example 2 A phenol foam composite was produced in exactly the same manner as in Example 1 except that paper was not laminated on the bottom and top surfaces of the mold. The physical properties of this phenol foam composite are density 41.3Kg/cm 2 and bending strength 3.05Kg/cm 2
The density compressive strength and oxygen index were almost the same as in Example 1. Example 3 In Example 1, the average particle diameters of the spherical polystyrene foam particles were 2.1 mm, 2.7 mm, and 5.8 mm, and the coating amount of the expandable resol type phenolic resin composition was filled to the fullest in the mold to produce a good composite. Phenol foam composites were obtained using exactly the same blending ratio and method except that the resol type phenol resin content was changed to 65 g, 55 g, and 56 g. Their physical properties are shown in the table below.

【表】 球形のポリスチレン発泡粒の粒径が3mm附近で
発泡性レゾール型フエノール樹脂の充填量の変位
が見られる。粒径が約3mmを越えると発泡性フエ
ノール樹脂が発泡初期の泡化段階でポリスチレン
発泡粒の空隙部を移動し易くなり著じるしく低密
度のフエノールフオーム層となることがわかつ
た。この傾向は発泡剤の量を変えて実験を行つて
もフエノールフオーム層の密度は変るがポリスチ
レン発泡粒の粒径との関係に於て粒径が約3mm附
近で発泡性レゾール型フエノール樹脂の充填量の
変位は同様になることが確認出来た。 実施例 4 実施例1の配合に更に無機フイラークレー5部
(2.7g)を加えて実施例1と同様にフエノールフ
オーム複合体を製造した。このフエノールフオー
ム複合体の物性は密度42.5Kg/cm2、曲げ強度6.15
Kg/cm2、圧縮強度1.61Kg/cm2(5%歪時)であり
ブンゼンバーナーで燃焼試験を行つた所、残じん
が無く難燃性にすぐれていた。 実施例 5 発泡性レゾール型フエノール樹脂組成物として (1) レゾール型フエノール樹脂 70g (粘度66ポイズ、25℃比重1.265,PH=7.9) (2) 整泡剤ポリオキシエチレンソルビタン2.1g モノステアレート (3) 発泡剤トリクロロモノフルオロメタン 14g トリクロロトリフルオロエタン 7g (4) 硬化剤フエノールスルフオン酸(純分67%)
5.6gを混合し、軽量な粒状体として平均粒径
5.3mmのパーライト(商品名フヨーライト、フ
ヨーライト工業株式会社製)200gを使用する
以外は実施例1と同様な製造法を実施した。こ
のフエノールフオーム複合体はポリスチレン発
泡粒を使用した時と同様にパーライトが全体に
均一に分散されており粒間の空隙は発泡したフ
エノールフオームで全て充填されていた。 この複合体の物性は密度120Kg/m2、曲げ強
度2.59Kg/cm2、圧縮強度0.91Kg/cm2(5%歪
時)であつた。 実施例 6 発泡性レゾール型フエノール樹脂組成物として (1) レゾール型フエノール樹脂 70g (粘度66ポイズ、25℃比重1.265,PH=7.9) (2) 整泡剤ポリオキシエチレンソルビタン2.1g モノステアレート (3) 発泡剤トリクロロモノフルオロメタン 10.5g トリクロロトリフルオロエタン 5.3g (4) 硬化剤フエノールスルフオン酸(純部67%)
10.5gを混合し軽量な粒状体として平均粒径
3.7mmの発泡ガラス(商品名セロビーズ豊田紡
織株式会社製)400gを酸処理したものを使用
する以外は実施例1と同様の製造法で実施し
た。このフエノールフオーム複合体も実施例1
と同様に発泡ガラスが全体に均一に分散されて
おり粒間の空隙は発泡したフエノールフオーム
で全て充填されていた。この複合体の物性は密
度204Kg/cm2、曲げ強度6.70Kg/cm2、圧縮強度
1.63Kg/cm2(5%歪時)であつた。 比較例 実施例1に於て型内部に紙を積層することな
く、混合した発泡性レゾール型フエノール樹脂組
成物を型面に塗布することなくあらかじめポリス
チレン発泡粒と混合してから型内に充填して加熱
発泡して成型した。 この複合体は発泡粒が互いにフエノールフオー
ムで接着されているがフエノールフオームが充満
していない空胴が多数あり骨材間の空隙を完全に
フエノール発泡層で充填することは出来なかつ
た。
[Table] A change in the filling amount of the foamable resol type phenolic resin can be seen when the particle size of the spherical polystyrene foam particles is around 3 mm. It has been found that when the particle size exceeds about 3 mm, the expandable phenolic resin easily moves through the voids of the polystyrene foam particles during the initial foaming stage, resulting in a significantly lower density phenolic foam layer. This trend shows that the density of the phenol foam layer changes even when the amount of blowing agent is changed and the density of the phenol foam layer changes, but in relation to the particle size of the polystyrene foam particles, when the particle size is around 3 mm, the filling of the foamable resol type phenolic resin It was confirmed that the amount of displacement was the same. Example 4 A phenol foam composite was produced in the same manner as in Example 1 by adding 5 parts (2.7 g) of inorganic filler clay to the formulation of Example 1. The physical properties of this phenol foam composite are density 42.5Kg/cm 2 and bending strength 6.15.
Kg/cm 2 , compressive strength 1.61 Kg/cm 2 (at 5% strain), and when a combustion test was conducted using a Bunsen burner, there was no residue and the flame retardance was excellent. Example 5 As a foamable resol type phenolic resin composition (1) 70 g of resol type phenolic resin (viscosity 66 poise, specific gravity 1.265 at 25°C, PH = 7.9) (2) 2.1 g of foam stabilizer polyoxyethylene sorbitan monostearate ( 3) Foaming agent trichloromonofluoromethane 14g trichlorotrifluoroethane 7g (4) Hardening agent phenolsulfonic acid (purity 67%)
5.6g is mixed and the average particle size is made into a lightweight granule.
The same manufacturing method as in Example 1 was carried out except that 200 g of 5.3 mm pearlite (trade name Fuyolite, manufactured by Fuyolite Industries Co., Ltd.) was used. In this phenol foam composite, pearlite was uniformly dispersed throughout as in the case of using expanded polystyrene particles, and all the voids between the particles were filled with expanded phenol foam. The physical properties of this composite were a density of 120 Kg/m 2 , a bending strength of 2.59 Kg/cm 2 , and a compressive strength of 0.91 Kg/cm 2 (at 5% strain). Example 6 As a foamable resol type phenolic resin composition (1) 70 g of resol type phenolic resin (viscosity 66 poise, specific gravity 1.265 at 25°C, PH = 7.9) (2) 2.1 g of foam stabilizer polyoxyethylene sorbitan monostearate ( 3) Foaming agent trichloromonofluoromethane 10.5g trichlorotrifluoroethane 5.3g (4) Hardening agent phenolsulfonic acid (purity 67%)
10.5g is mixed and the average particle size is made into a lightweight granule.
The manufacturing method was the same as in Example 1, except that 400 g of 3.7 mm foamed glass (trade name: Cellobeads, manufactured by Toyota Boshoku Co., Ltd.) treated with acid was used. This phenol foam complex was also used in Example 1.
Similarly, the foamed glass was uniformly dispersed throughout, and the voids between the particles were all filled with foamed phenol foam. The physical properties of this composite are density 204Kg/cm 2 , bending strength 6.70Kg/cm 2 , compressive strength
It was 1.63Kg/cm 2 (at 5% strain). Comparative Example In Example 1, without laminating paper inside the mold, the mixed foamable resol type phenolic resin composition was mixed with polystyrene foam particles in advance without applying it to the mold surface, and then filled into the mold. It was heated, foamed, and molded. In this composite, the foam particles were bonded to each other with phenol foam, but there were many cavities that were not filled with phenol foam, and it was not possible to completely fill the voids between the aggregates with the phenol foam layer.

Claims (1)

【特許請求の範囲】[Claims] 1 発泡剤、整泡剤及び硬化剤を含む液状の発泡
性レゾール型フエノール樹脂を型内の少くとも一
面にほぼ均一な厚み層になるように設けた後、軽
量な粒状体を型に充填し、しかる後加熱してレゾ
ール型フエノール樹脂を発泡せしめると共に硬化
させて成形することを特徴とするフエノールフオ
ーム複合体の製造法。
1. After applying a liquid foamable resol-type phenolic resin containing a blowing agent, a foam stabilizer, and a hardening agent to a layer of approximately uniform thickness on at least one surface of the mold, the mold is filled with lightweight granules. . A method for producing a phenol foam composite, which is characterized in that the resol type phenolic resin is foamed and cured by heating and then molded.
JP58029997A 1983-02-23 1983-02-23 Manufacture of composite body that consists of phenolic resin and foam Granted JPS59155016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029997A JPS59155016A (en) 1983-02-23 1983-02-23 Manufacture of composite body that consists of phenolic resin and foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029997A JPS59155016A (en) 1983-02-23 1983-02-23 Manufacture of composite body that consists of phenolic resin and foam

Publications (2)

Publication Number Publication Date
JPS59155016A JPS59155016A (en) 1984-09-04
JPH0471934B2 true JPH0471934B2 (en) 1992-11-17

Family

ID=12291565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029997A Granted JPS59155016A (en) 1983-02-23 1983-02-23 Manufacture of composite body that consists of phenolic resin and foam

Country Status (1)

Country Link
JP (1) JPS59155016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271868A (en) * 1986-05-20 1987-11-26 プラチナ万年筆株式会社 Article container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115775A (en) * 1977-03-18 1978-10-09 Charbonnages Sicca I Se Se A S Seibutsu

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115775A (en) * 1977-03-18 1978-10-09 Charbonnages Sicca I Se Se A S Seibutsu

Also Published As

Publication number Publication date
JPS59155016A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
US3726755A (en) High-strength foam material
US20080224357A1 (en) Method for Producing Foamed Slabs
JPWO2006043435A1 (en) Method for producing foam
US4596682A (en) Method of manufacturing fire retardant polystyrene insulating board
CN112703225A (en) Quasi-incombustible phenolic resin composition and quasi-incombustible material obtained from the same
EP2867331A2 (en) Fire-resistant polyurethane material and fire-resistant structure
US3813356A (en) Fire-retardant material or conglomerate containing filler consisting essentially of magnesium silicate
US3830894A (en) Process for the preparation of filled phenol resin foam materials
CN102746611A (en) Phenolic resin composition and foam material prepared therefrom
US3766100A (en) Rigid phenolic foams suitable for use as non flammable insulating material
JPH0471934B2 (en)
JPH10101836A (en) Production of epoxy resin foam
CA1248723A (en) Process for the preparation of a composite phenol foam
JPS6149328B2 (en)
JPS6289744A (en) Production of foamed phenolic resin composite material
JPS61113629A (en) Foamable composition and foamed material produced therefrom
EP0154794A1 (en) Expandable phenolic resin-coated composite beads, a process for production thereof and a process for molding thereof
JPH0571621B2 (en)
SU812796A1 (en) Method of producing heat-insulating material
JPS61103943A (en) Resole-type phenolic resin foamed article containing aggregate particle
JPS62227934A (en) Production of fire retardant polystyrene heat insulating material
JPH08253613A (en) Synthetic resin foam
JPH0316899B2 (en)
CN109370083A (en) A kind of true golden plate of environment-friendly type and its production method
JPS6046982A (en) Manufacture of flame retardant heat insulator