JPH0471649A - Fine grinding mill - Google Patents

Fine grinding mill

Info

Publication number
JPH0471649A
JPH0471649A JP18663290A JP18663290A JPH0471649A JP H0471649 A JPH0471649 A JP H0471649A JP 18663290 A JP18663290 A JP 18663290A JP 18663290 A JP18663290 A JP 18663290A JP H0471649 A JPH0471649 A JP H0471649A
Authority
JP
Japan
Prior art keywords
chamber
classification
powder
airflow
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18663290A
Other languages
Japanese (ja)
Other versions
JPH0651123B2 (en
Inventor
Toru Moriwaki
徹 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP18663290A priority Critical patent/JPH0651123B2/en
Publication of JPH0471649A publication Critical patent/JPH0471649A/en
Publication of JPH0651123B2 publication Critical patent/JPH0651123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To efficiently obtain a product having required particle size and dispersion width thereof by separately driving the rotary impellers of a grinding means and a classifying means and independently regulating both the number of revolutions of the two and the air quantity sucked by a fan to an optimum operation state respectively. CONSTITUTION:A grinding means is formed of a rotary disk 9, many slats held on annular disks 13, 14 and a toothed lining member 17 provided on the inner circumferential face of a grinding chamber B. Further a classifying means is formed of a rotary impeller 3 provided with many blades 26 parallel to an axial line and double cylinders 20, 21. Furthermore the circulation means of powder is formed of a ground material transport passage 55 connected to an inner cylinder 20 and a coarse powder returning passage 24. An annular air reservoir 39 connected to the outside air or a pressure air source, a primary side gap 40 and a secondary side gap 41 which connect the air reservoir 39 to a classification chamber D and a carrier chamber E are provided to the inner circumferential faces of partition members 36, 37 between the classification chamber D and the carrier chamber E.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は微粉砕機に関し、主として、鉱石、セラミッ
クス、食品などの固形物を粉砕して粒度分布幅の狭い微
粉(100μm前後から数μm)を作るのに用いられる
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a pulverizer, which mainly grinds solid materials such as ores, ceramics, and foods to produce fine powder with a narrow particle size distribution (from around 100 μm to several μm). used to make.

口従来の技術〕 従来のこの種装置としては、例えば、(1)特公昭50
−21695号公報、(2)実公昭60−39081号
公報、および(3)特開昭64−43352号公報に開
示されたものが知られている。
[Conventional technology] Conventional devices of this type include, for example, (1)
21695, (2) Utility Model Publication No. 60-39081, and (3) Japanese Unexamined Patent Publication No. 64-43352.

前記(1)、 (2)の公報に開示された装置では、粉
砕ロータにより粉砕された粉体は、気流に乗せられて上
端が大径の截頭円錐状の案内板に沿って粉砕ロータと置
忘の分級用羽根車の上端に向かって運ばれる。分級用羽
根車では、粉砕された粉体中の微粉のみが排風機による
気流によって羽根車内を通過され、装置の出口側へと移
動される。しかし、羽根車内を通過しない粉体中の粗粉
は、案内板の内側に沿って下降し、案内板の下端を潜っ
て外方に移動されるときに、粉砕ロータにより再度粉砕
作用を受ける。
In the apparatuses disclosed in the publications (1) and (2) above, the powder pulverized by the pulverizing rotor is carried by the airflow and passed through the pulverizing rotor along a truncated conical guide plate with a large diameter at the upper end. It is carried toward the upper end of the misplaced classification impeller. In the classification impeller, only the fine powder in the pulverized powder is passed through the impeller by the airflow from the exhaust fan and moved to the exit side of the device. However, the coarse powder in the powder that does not pass through the impeller descends along the inside of the guide plate, passes under the lower end of the guide plate and is moved outward, and is again subjected to the crushing action by the crushing rotor.

これらの装置においては、粉体中の微粉と粗粉は、回転
羽根車の遠心力の影響を大きく受ける粗粉を截頭円錐状
の案内板に沿って上下方向に循環を繰り返しながら粉砕
ロータにより粉砕し、粉体中の微粉を羽根車の回転によ
る遠心力に逆って排風機の気流に乗せ、羽根車の内方に
導く吸引作用により分級が行なわれていた。そして、分
級作用により装置から取り出される粉体は、排風機の風
量と羽根車の回転による遠心力とを変えることにより、
所望の粒径のものが得られていた。
In these devices, the fine powder and coarse powder in the powder are separated by a crushing rotor while the coarse powder, which is greatly affected by the centrifugal force of the rotary impeller, is repeatedly circulated vertically along a truncated conical guide plate. Classification was performed by pulverizing the powder, placing the fine powder in the air stream of an exhaust fan against the centrifugal force caused by the rotation of the impeller, and using the suction action to guide it inside the impeller. The powder taken out from the device by the classification action is controlled by changing the air volume of the exhaust fan and the centrifugal force caused by the rotation of the impeller.
Particles with the desired particle size were obtained.

また、前記第3の公報に開示された装置では、粉砕室と
分級室とを区分する仕切り板の周辺部に設けられた円弧
状の長穴かろ、粉砕室で粉砕された粉体搬送用の気流が
噴出され、この気流は分級室の内壁に沿って旋回移動さ
れた後、仕切り板の円弧状の長穴に対向する截頭円錐形
の反射部材により反転され、分級室内の回転羽根車の外
周に近接して旋回移動された気流は、仕切り板の中央部
の円形開口を経て粉砕室に戻される。この粉砕室の戻り
気流において、気流で搬送される粉体中の微粉のみが排
風機による吸引作用によって、分級用羽根車の中へ吸引
され、羽根車内に吸引されない粉体中の粗粉は、仕切り
板の中央部の開口を経て、再度粉砕室において粉砕作用
を受ける。この方式における分級作用の原理は、前記第
1.第2の公報に開示されたものと同じである。
In addition, in the apparatus disclosed in the third publication, an arcuate long hole provided at the periphery of the partition plate that separates the crushing chamber and the classification chamber is used to transport the powder crushed in the crushing chamber. An airflow is ejected, and after the airflow is rotated along the inner wall of the classification chamber, it is reversed by a truncated cone-shaped reflecting member facing the arc-shaped long hole of the partition plate, and the airflow is rotated along the inner wall of the classification chamber. The airflow that has been swirled close to the outer periphery is returned to the grinding chamber through a circular opening in the center of the partition plate. In the return airflow of this grinding chamber, only the fine powder in the powder transported by the airflow is sucked into the classification impeller by the suction action of the exhaust fan, and the coarse powder in the powder that is not sucked into the impeller. After passing through the opening in the center of the partition plate, it is again subjected to the crushing action in the crushing chamber. The principle of classification action in this method is as described in the above-mentioned 1. This is the same as that disclosed in the second publication.

口発明が解決しようとする課題〕 前記従来の第1.第2の装置では、粉体を運ぶ気流は羽
根車の上側大径部から羽根車へ流入するため、羽根車の
下側小径部での気流の通過速度は遅く、気流の粉体粒子
に対する搬送力は小さい。
[Problems to be solved by the invention] The above-mentioned conventional problem 1. In the second device, the airflow carrying the powder flows into the impeller from the upper large-diameter part of the impeller, so the passage speed of the airflow in the lower small-diameter part of the impeller is slow, and the airflow transports the powder particles. Power is small.

これに対し、羽根車による遠心力はその半径に比例する
ので、羽根車の下側はど小さくなる。それ故、羽根車は
下側になるほど小径にして、同一の粉体粒径に対して、
羽根のどの位置でも気流による搬送力Cと羽根車による
遠心力Fの関係が同じになるように配慮されていた。
On the other hand, since the centrifugal force caused by the impeller is proportional to its radius, the lower side of the impeller becomes smaller. Therefore, the diameter of the impeller is made smaller toward the bottom, and for the same powder particle size,
Care was taken to ensure that the relationship between the conveying force C caused by the airflow and the centrifugal force F caused by the impeller is the same at any position on the blade.

しかしながら、通過気流の設定流量が変ると羽根に沿う
通過速度の低減割合が異なるだけでなく、この低減割合
は、羽根車の半径の低減割合とは必ずしも一致しなくな
る。それ故、ある風量に対しては、羽根の全長に対して
遠心力F/搬送力Cの値をほぼ同じにすることができて
も、いずれの風量に対しても、羽根の全長について、常
に同一の遠心力F/搬送力Cを望むことは、実際上不可
能となる。このため、羽根車の両端において篩目に相当
する限界粒径が異なるだけでなく、装置出口で得られる
粉砕された粉体の粒度分布幅が広くなる不都合があった
However, if the set flow rate of the passing airflow changes, not only will the rate of reduction in the passing velocity along the blade differ, but this rate of reduction will not necessarily match the rate of reduction in the radius of the impeller. Therefore, for a certain air volume, even if the value of centrifugal force F/conveying force C can be made almost the same for the entire length of the blade, for any air volume, the value of It is practically impossible to desire the same centrifugal force F/conveying force C. For this reason, there are disadvantages in that not only the critical particle size corresponding to the sieve mesh differs at both ends of the impeller, but also the particle size distribution width of the pulverized powder obtained at the exit of the device becomes wide.

また、前記第1,2の装置では、粉砕ロータにより粉砕
された粉体は、分級室の内壁と截頭円錐状の案内板とが
形成する環状部を上昇する旋回気流によって運ばれるが
、その間、粉体中の粗粉は微粉より大きな遠心力を受け
るため、分級室の内壁にそって上昇される。次に、気流
は、案内板の上端と分級室の天井とに挟まれる空間を旋
回しながらUターンした後、後続する排風機の作用によ
り回転する羽根車の中へ旋回しながら吸引される。
Further, in the first and second devices, the powder crushed by the crushing rotor is carried by a swirling air current that ascends the annular portion formed by the inner wall of the classification chamber and the truncated conical guide plate. Since the coarse powder in the powder is subject to a larger centrifugal force than the fine powder, it is lifted along the inner wall of the classification chamber. Next, the airflow makes a U-turn while circling in the space between the upper end of the guide plate and the ceiling of the classification room, and is then sucked into the rotating impeller by the action of the following blower.

この際、粗粉は曲率半径の小さい気流のUターン時に一
旦分級室の天井に押し付けられた後、下降中の旋回気流
に伴う遠心力によって案内板の内壁側へ移動されること
になる。
At this time, the coarse powder is once pressed against the ceiling of the classification chamber during the U-turn of the airflow with a small radius of curvature, and then is moved toward the inner wall of the guide plate by the centrifugal force accompanying the downward swirling airflow.

一方、羽根車の上端とハウジングとの間の隙間には、欠
落している羽根の代りに、垂下フランジの如き障害物が
ハウジングに設けられているが、この部分が羽根車を通
過する気流の近道となる個所となるため、気流の通過速
度が最も早くなる。
On the other hand, in the gap between the upper end of the impeller and the housing, an obstruction such as a hanging flange is provided on the housing in place of the missing blade, but this part prevents the airflow passing through the impeller. Since this is a shortcut point, the airflow passes through it at the fastest speed.

したがって、案内板の内壁へ向って移動途中の粗粉が相
対的に早い風速の気流に乗って羽根車の中へ取り込まれ
、目的とする限界粒径より大きな、通常トビと称される
粗粒がこの部分から微粉中に混入して微粉の質を低下す
ることがあった。
Therefore, the coarse particles that are moving toward the inner wall of the guide plate are taken into the impeller by the air current with a relatively high wind speed, and the coarse particles that are larger than the target particle size, usually called black particles, are taken into the impeller. may be mixed into the fine powder from this part and deteriorate the quality of the fine powder.

また、前記第3の公報に記載された装置では、反射部材
により反転した気流は、回転羽根車の外周に近接して、
粉砕室の方に旋回移動する途中において限界粒度以下の
微粉だけを羽根車の中へ取り込むが、気流が反射部材に
よって反転する場合に気流中の粉体の中には、大きな粒
子はど慣性力が強く、反射部材に衝突し、跳ねがえって
直接羽根車の中へ飛び込むものもあり、トビと称される
粗粒が目的とする微粉の中に混じる欠点があった。
Further, in the device described in the third publication, the airflow reversed by the reflection member is brought close to the outer periphery of the rotary impeller,
Only fine powder below the critical particle size is taken into the impeller as it rotates toward the grinding chamber, but when the airflow is reversed by a reflecting member, some of the powder in the airflow may have larger particles due to inertia. The particles were so strong that some of them collided with the reflective member, bounced off, and flew directly into the impeller, which had the disadvantage that coarse particles called black particles were mixed into the target fine powder.

この発明は、従来の技術の有するこのような問題点に鑑
みてなされたものであり、その目的とするところは、供
給される粉砕用原料を限界粒度を越えずに、しかも粒度
分布幅の狭い粉体に粉砕することができる、粉砕効率の
高い微粉砕機を提供しようとするものである。
This invention was made in view of the problems of the prior art, and its purpose is to reduce the particle size of the supplied raw material for pulverization without exceeding the particle size limit, and with a narrow particle size distribution. It is an object of the present invention to provide a pulverizer with high pulverization efficiency that can pulverize into powder.

〔課題を解決するた約の手段〕[A means of saving to solve problems]

上記目的を達成するために、この発明においては、粉砕
室に供給される粉砕用原料を回転式の粉砕手段で粉砕し
、粉砕された粉砕物中の一定粒度以下の微粉を分級室内
の分級手段によって排風機に接続された搬送室から装置
外に取り出すとともに、一定粒度以上の粗粉を粉砕室に
戻して繰り返し粉砕する微粉砕機において、粉砕手段は
、第1駆動軸に固設の回転円板と、この円板の両側でこ
れに平行な2個の環状円板に保持されて径方向外方に突
出される多数の羽根板と、羽根板の外周側を取り囲む粉
砕室の内周面に設けられる歯付ライニング部材とにより
形成され、分級手段は、一端が閉塞された円筒形の外周
部に、軸線と平行な短冊形の羽根が多数設けられている
第2駆動軸に保持された回転羽根車と、この回転羽根車
を取り囲む二重円筒のハウジングとにより形成され、粉
体の循環手段は、粉砕室の外周部の側面に形成される環
状開口部を分級室の二重円筒の内筒に連結する粉砕物輸
送通路と、分級室の二重円筒間に形成される環状空間部
を粉砕室の中心開口部に連結する粗粉戻し通路とにより
形成され、分級室と搬送室との間の仕切り部材の内周面
には、回転羽根車の外周面に近接し、外気または圧力空
気源に接続される環状の空気溜りと、該空気溜りを分級
室と搬送室とに連絡する一次側隙間と二次側隙間とを設
けて、微粉砕機を構成したものである。
In order to achieve the above object, in this invention, the raw material for crushing supplied to the crushing chamber is crushed by a rotary crushing means, and the fine powder of a certain particle size or less in the crushed material is classified by a classifying means in the classification chamber. In a pulverizer, coarse powder of a certain particle size or more is taken out of the device from a transfer chamber connected to an exhaust fan, and is repeatedly pulverized by returning it to the pulverizing chamber. a plate, a number of vanes held by two annular discs parallel to the discs on both sides of the disc and projecting outward in the radial direction, and an inner circumferential surface of a grinding chamber surrounding the outer peripheral side of the vanes. The classification means is formed by a toothed lining member provided at The powder circulation means is formed by a rotary impeller and a double cylindrical housing surrounding the rotary impeller, and the powder circulation means connects the annular opening formed on the side surface of the outer periphery of the crushing chamber to the double cylindrical housing of the classification chamber. It is formed by a crushed material transport passage connected to the inner cylinder and a coarse powder return passage that connects the annular space formed between the double cylinders of the classification chamber to the central opening of the crushing chamber, and the classification chamber and the transfer chamber are connected to each other. On the inner peripheral surface of the partition member between the two, there is an annular air reservoir that is close to the outer peripheral surface of the rotary impeller and is connected to outside air or a pressurized air source, and that communicates the air reservoir with the classification chamber and the transfer chamber. A pulverizer is constructed by providing a primary side gap and a secondary side gap.

分級室の内筒内へ粉砕物を円滑に輸送するために、粉砕
物輸送通路の出口側開口部は、分級室内の内筒の手前側
で回転羽根車の中心に対し偏心して接続し、予備旋回気
流を形成させることが好ましい。
In order to smoothly transport the pulverized material into the inner cylinder of the classification chamber, the outlet opening of the pulverized material transport passage is eccentrically connected to the center of the rotary impeller at the front side of the inner cylinder in the classification chamber. It is preferable to form a swirling airflow.

〔作 用〕[For production]

粉砕用原料を供給して装置を運転すると、第1駆動軸に
よって回転される羽根板を備えた粉砕手段と、第2駆動
軸によって回転される回転羽根車、および搬送室に接続
される排風機とにより、装置内空間部に給気口から搬送
出口に向かう搬送気流が形成される。粉砕室に供給され
た粉砕用原料は、搬送気流によって回転円板の周辺部に
搬送され、ここで原料は羽根板および粉砕室の周壁への
衝突作用を受けて粉砕される。
When the raw material for pulverization is supplied and the apparatus is operated, a pulverizer equipped with a vane plate rotated by a first drive shaft, a rotary impeller rotated by a second drive shaft, and an exhaust fan connected to the transfer chamber As a result, a conveying airflow from the air supply port toward the conveying outlet is formed in the internal space of the apparatus. The raw material for pulverization supplied to the pulverization chamber is conveyed to the periphery of the rotating disk by the conveying air flow, where the raw material is pulverized by colliding with the blades and the peripheral wall of the pulverization chamber.

粉砕後の粉体は、粉砕物輸送通路を上昇する気流によっ
て分級室の回転羽根車の外周部に運ばれるが、吸引気流
によって旋回気流による遠心力より大きな吸引力を受け
る一定粒度以下の微粉は、回転羽根車内に取り込まれて
、搬送室から装置外に取り8される。これに対し、旋回
気流によって吸引力より大きな遠心力を受ける粗粉は、
分級室の二重円筒間に形成される環状空間部から粗粉戻
し通路を経て粉砕室の中心開口部に戻され、一定粒度以
下の微粉になるまで、繰り返し粉砕作用を受ける。
The powder after pulverization is carried to the outer periphery of the rotary impeller in the classification chamber by the airflow rising through the pulverized material transport passage, but the fine powder below a certain particle size is , taken into the rotary impeller and taken out of the apparatus from the transfer chamber. On the other hand, coarse powder is subjected to a centrifugal force greater than the suction force due to the swirling airflow.
The particles are returned from the annular space formed between the double cylinders of the classification chamber to the central opening of the grinding chamber via the coarse powder return passage, where they are subjected to repeated grinding actions until they become fine particles of a certain particle size or less.

〔実施例〕〔Example〕

第1図ないし第6図はこの発明の一実施例を示す。 1 to 6 show an embodiment of the present invention.

第1図において、本体ケース2内は、供給装置1を備え
た供給室A、粉砕手段を収納する粉砕室B、粉砕物を粉
砕室Bからその上側の分級室りに運ぶ通路と分級により
排除された粗粉を分級室りから粉砕室已に戻す通路から
成る循環ケースC1回転羽根車3を収納する分級室D、
および搬送出口4に排風機が接続される搬送室Eとから
なっており、供給室Aと搬送室Eのフレーム側中央部に
は、それぞれ水平方向に突出する軸受ケース5゜6がそ
れらのフランジ部5a、6aの重合部分をねじ止めされ
ている。
In Fig. 1, the interior of the main body case 2 includes a supply chamber A equipped with a supply device 1, a crushing chamber B housing a crushing means, a passage for transporting the crushed materials from the crushing chamber B to a classification chamber above the crushing chamber, and a passage for removing the crushed materials by classification. a circulation case C1 consisting of a passage for returning the coarse powder from the classification chamber to the crushing chamber; a classification chamber D housing the rotary impeller 3;
and a transfer chamber E to which an exhaust fan is connected to the transfer outlet 4. At the center of the supply chamber A and the transfer chamber E on the frame side, bearing cases 5 and 6 projecting horizontally are attached to their flanges. The overlapping portions of parts 5a and 6a are screwed together.

8は軸受ケース5内の軸受7,7に支持された水平方向
の第1駆動軸で、この第1駆動軸8の一端は粉砕室Bま
て突出されるとともに、他端は軸受ケース5より外方に
突出されている。粉砕室B内の第1駆動軸8には、粉砕
手段を構成する回転円板9のボス部9aがキー10によ
って一体に結合され、回転円板9は第1駆動軸8の先端
小径部に形成されたおねじ部と螺合するナツト11によ
り第1駆動軸8に対する軸方向の位置が決められている
。軸受ケース5より外方に突出している第1駆動軸8の
他端は、粉砕手段を回転する図示しない駆動モータに減
速手段を介して結合されている。
Reference numeral 8 denotes a horizontal first drive shaft supported by bearings 7, 7 in the bearing case 5. One end of the first drive shaft 8 projects into the crushing chamber B, and the other end extends beyond the bearing case 5. It is projected outward. A boss portion 9a of a rotary disk 9 constituting the crushing means is integrally connected to the first drive shaft 8 in the crushing chamber B by a key 10, and the rotary disk 9 is connected to the small diameter portion at the tip of the first drive shaft 8. The axial position with respect to the first drive shaft 8 is determined by the nut 11 that is screwed into the formed male thread. The other end of the first drive shaft 8 protruding outward from the bearing case 5 is coupled via a speed reduction means to a drive motor (not shown) that rotates the crushing means.

粉砕手段は、第1駆動軸8に取り付けられる回転円板9
と、この回転円板9の周縁部と直角に交叉して放射方向
に突出する複数個、例えば5個の結合部材12と、この
結合部材12の左右両端に固定される回転円板9と平行
な2個の環状円板13.14と、これらの環状円板13
.14の周辺部において、挟持された役付ビン15aに
より揺動可能に支持されて外方に突出する所要個数の羽
根板15とで構成された、いわゆるターボ型羽根車で、
回転によって強力なファン効果を発揮する性能を有する
The crushing means includes a rotating disk 9 attached to the first drive shaft 8.
A plurality of, for example, five, coupling members 12 protrude in the radial direction, intersecting the peripheral edge of the rotating disk 9 at right angles, and parallel to the rotating disk 9 fixed to both left and right ends of the coupling members 12. two annular disks 13 and 14, and these annular disks 13
.. It is a so-called turbo-type impeller, which is constituted by a required number of blade plates 15 that are swingably supported by a clamped utility bin 15a and protrude outward in the periphery of the blade 14.
It has the ability to produce a powerful fan effect when rotated.

第1駆動軸8に取り付けられる回転円板9は、第1駆動
軸8に装着のスペーサー16によって位置決めされ、装
置本体の内周面の手前には、各羽根板15の先端部との
間に、隙間δ1が設定された値(例えば、1mm前後)
を保つように歯付ライニング部材17が挿入されており
、この歯付ライニング部材17の外周部と装置本体の内
周面との間に環状の冷却用ジャケット18が形成されて
いる。粉砕室Bの供給室A側の側面には、環状円板13
と羽根板15とに対向して歯付ライニング部材17に当
接する環状のサイドライニング部材19が取り付けられ
ている。
The rotating disk 9 attached to the first drive shaft 8 is positioned by a spacer 16 attached to the first drive shaft 8, and is placed between the tip of each vane plate 15 in front of the inner circumferential surface of the device main body. , the value at which the gap δ1 is set (for example, around 1 mm)
A toothed lining member 17 is inserted so as to maintain the temperature, and an annular cooling jacket 18 is formed between the outer circumferential portion of the toothed lining member 17 and the inner circumferential surface of the main body of the apparatus. On the side of the supply chamber A side of the grinding chamber B, an annular disk 13 is provided.
An annular side lining member 19 that faces the blade plate 15 and contacts the toothed lining member 17 is attached.

駆動軸8より上方の供給室A内には、駆動軸8と直角な
方向にフィードスクリューを備えた供給装置1が設けら
れ、この供給装置1は、微粉砕機の装置外に設けられた
図示しないモータにより駆動され、フィードホッパー(
図示せず)内の粉砕用原料を粉砕室已に供給する。軸受
7に当接するスペーサー16とこれに嵌合して軸受ケー
ス5の内側開口部を塞ぐフロントカバー22の重合部に
は、環状の空気溜り23が形成されており、この空気溜
り23は、その両側の供給室Aと軸受ケース5内の空間
部に連通されるとともに、軸受ケース5に設けられた通
気路24により圧力空気源または外気と連通されている
。25は軸受ケース5の開口部に取り付けられた外側カ
バーである。
In the supply chamber A above the drive shaft 8, a supply device 1 having a feed screw in a direction perpendicular to the drive shaft 8 is provided. Not driven by a motor, the feed hopper (
(not shown) is supplied to the other side of the grinding chamber. An annular air pocket 23 is formed at the overlapping part of the spacer 16 that contacts the bearing 7 and the front cover 22 that fits into the spacer and closes the inner opening of the bearing case 5. It communicates with the supply chambers A on both sides and the space inside the bearing case 5, and also communicates with a pressurized air source or the outside air through a ventilation path 24 provided in the bearing case 5. 25 is an outer cover attached to the opening of the bearing case 5.

それ故、運転中は、圧力空気源または外気と通じている
空気溜り23から外気より圧力の低い負圧状態の供給室
A側に空気が流れ込み、供給室A内の粉体がスペーサー
16とフロントカバー22との隙間部分に侵入するのを
阻止するため、粉体が侵入した場合に起す各種トラブル
の発生は防止される。
Therefore, during operation, air flows from the air reservoir 23 communicating with the pressurized air source or the outside air to the supply chamber A side, which is in a negative pressure state and has a lower pressure than the outside air, and the powder in the supply chamber A is transferred to the spacer 16 and the front. Since powder is prevented from entering the gap between the cover 22 and the cover 22, various troubles that may occur if powder enters are prevented.

粉砕室Bの上側に位置する分級室りの中央部には、第2
駆動軸30に固定される中空円筒形の回転羽根車3が設
けられている。この回転羽根車3の外周面には、設定さ
れた中心角で軸線方向と平行に配列される短冊形の羽根
26が円周に沿って多数設けられており、隣接する羽根
26.26の間に、回転羽根車3の外周面を貫通する吸
気通路27が形成されている。この回転羽根車3は、搬
送室已に突出する部分がボス部28から突出する数枚の
ステープレート29と一体に結合されていて、軸受ケー
ス6から突出する水平方向の第2駆動軸300基端側に
ボス部28と係合するキー31により一体に結合されて
いる。また、回転羽根車3の循環ケースC側の先端の開
口部は、エンドカバー32によって循環ケースCと連通
ずるのを防止されている。
In the center of the classification chamber located above the grinding chamber B, there is a second
A hollow cylindrical rotary impeller 3 fixed to a drive shaft 30 is provided. On the outer peripheral surface of the rotary impeller 3, a large number of rectangular blades 26 are provided along the circumference, arranged parallel to the axial direction at a set center angle, and between adjacent blades 26.26. An intake passage 27 passing through the outer peripheral surface of the rotary impeller 3 is formed in the rotary impeller 3 . The rotary impeller 3 has a portion that protrudes into the transfer chamber that is integrally coupled with several stay plates 29 that protrude from the boss portion 28, and a horizontal second drive shaft 300 that protrudes from the bearing case 6. They are integrally coupled by a key 31 that engages with the boss portion 28 on the end side. Further, the opening at the tip of the rotary impeller 3 on the side of the circulation case C is prevented from communicating with the circulation case C by the end cover 32.

回転羽根車3は、カバー32を第2駆動軸30の端面に
ねじ止めするボルト33により、回転羽根車3のボス部
28と軸受ケース6内の軸受34との間に挿入された位
置決めスペーサー35を介して軸受34の内輪に押圧さ
れている。
The rotary impeller 3 has a positioning spacer 35 inserted between the boss portion 28 of the rotary impeller 3 and the bearing 34 in the bearing case 6 by bolts 33 that screw the cover 32 onto the end face of the second drive shaft 30. It is pressed against the inner ring of the bearing 34 via.

粉砕室Bの反駆動側には、環状円板14の右側に軸方向
と直角な隙間δ2を隔てて、粉砕室Bの円形開口部に仕
切り板51の支持用の耳部51a。
On the non-drive side of the grinding chamber B, an ear portion 51a for supporting the partition plate 51 is provided at the circular opening of the grinding chamber B on the right side of the annular disk 14 with a gap δ2 perpendicular to the axial direction.

51aが嵌められている。耳部51a、51aを除く仕
切り板51の外周と歯付ライニング部材17の歯部に続
く円筒面である粉砕室Bの内径との間には若干の隙間(
a)が形成されている。仕切り板51は、その中心部に
環状円板14の中央円形開口部に連通する扇形の開口部
51bが設けられている。
51a is fitted. There is a slight gap (
a) is formed. The partition plate 51 is provided with a fan-shaped opening 51b in its center that communicates with the central circular opening of the annular disk 14.

仕切り板51の反駆動側の外方には、粉砕機構と分級機
構を連結する循環ケースCが取り付けられている。循環
ケースCの内部は、仕切り用のシュート54aにより内
側と外側とに区分されている。外側の粉砕物輸送通路5
5は、粉砕室Bの周辺部開口が分級室りを形成する二重
円筒の内筒20と結合されており、粉砕室Bて粉砕され
た粉砕物を搬送気流に乗せて分級室りに供給する。
A circulation case C that connects the crushing mechanism and the classification mechanism is attached to the outside of the partition plate 51 on the non-drive side. The inside of the circulation case C is divided into an inside and an outside by a chute 54a for partition. Outer crushed material transport passage 5
5, the peripheral opening of the crushing chamber B is connected to a double cylindrical inner cylinder 20 forming a classification chamber, and the crushed material crushed in the crushing chamber B is carried on a conveying airflow and supplied to the classification chamber. do.

また、循環ケースCの内側の粗粉戻し通路54は、分級
室りの内筒20と外筒21とによって形成される環状空
間部の底部開口部(C)を粉砕室Bの中央開口部51b
に接続して、分級室りに搬送された気流中の粗粉を粉砕
室B側に戻す役割を受は持つ。二重円筒20.21は分
級用の回転羽根車3を同窓に取り囲んでおり、内筒20
の外側には截頭円錐状筒体53aが滑らかに繋がり、こ
の筒体53aの下面には、粉砕物輸送通路55の出口側
開口が回転羽根車3の中心線の延長部に対して偏心した
位置関係で連通されている。内筒20の駆動側縁端20
bは開口していて、対向する中間円板36との間に軸方
向に若干の隙間δ3を形成する。循環ケースCの下部お
よび上部の駆動側端面は、本体ケース2の外面フランジ
部2aと前記の中間円板36の周辺部とを覆う上下のフ
ランジを形成している。循環ケースCの下部の駆動側開
口部52の内径は、粉砕室Bの周辺部の環状開口部の内
径よりやや小さく、仕切り板51の外周との間に若干の
隙間δ4 (例えば10mm前後)が形成されている。
Further, the coarse powder return passage 54 inside the circulation case C connects the bottom opening (C) of the annular space formed by the inner cylinder 20 and the outer cylinder 21 of the classification chamber to the central opening 51b of the crushing chamber B.
The receiver has the role of returning the coarse powder in the airflow conveyed to the classification chamber to the grinding chamber B side. The double cylinders 20 and 21 surround the rotary impeller 3 for classification in the same window, and the inner cylinder 20
A truncated conical cylinder 53a smoothly connects to the outside of the cylinder 53a, and the outlet side opening of the crushed material transport passage 55 is eccentrically connected to the extension of the center line of the rotary impeller 3 on the lower surface of the cylinder 53a. They are connected by position. Drive side edge 20 of inner cylinder 20
b is open and forms a slight gap δ3 in the axial direction between it and the opposing intermediate disk 36. The lower and upper drive-side end surfaces of the circulation case C form upper and lower flanges that cover the outer flange portion 2a of the main body case 2 and the peripheral portion of the intermediate disk 36. The inner diameter of the drive-side opening 52 at the lower part of the circulation case C is slightly smaller than the inner diameter of the annular opening at the periphery of the crushing chamber B, and there is a slight gap δ4 (for example, around 10 mm) between it and the outer periphery of the partition plate 51. It is formed.

循環ケースCは、下部開口部52を底面として反駆動側
へ向かって狭まる截頭円錐状筒体52aを張り出してい
る。
The circulation case C has a truncated conical cylinder 52a extending from the lower opening 52 as a bottom surface and narrowing toward the non-drive side.

前記環状フランジ53bと搬送室Eのフランジを兼ねる
仕切り壁38aとの間に固定された中間円板36は、循
環ケースCの二重円筒20.21とともに分級室りを形
成し、中間円板36の中心開口部に回転羽根車3を通し
、分級室りに面する側は反駆動側に径が小さくなる円錐
面を形成していて、旋回気流の一部が内筒20の先端開
口部をUターンして、二重円筒20.21の環状空間に
向かう場合に、粗粉が慣性により中間円板36に衝突し
た後、外径側に跳ねかえるようにされている。
The intermediate disk 36 fixed between the annular flange 53b and the partition wall 38a which also serves as a flange of the transfer chamber E forms a classification chamber together with the double cylinder 20.21 of the circulation case C, and the intermediate disk 36 The rotary impeller 3 is passed through the central opening of the inner cylinder 20, and the side facing the classification chamber forms a conical surface whose diameter decreases on the opposite side of the drive. When making a U-turn and heading toward the annular space of the double cylinder 20, 21, the coarse powder collides with the intermediate disk 36 due to inertia, and then bounces toward the outer diameter side.

中間円板36は、回転羽根車3の外周面と嵌合する内周
面の部分に、環状の二次空気溜り39が形成されている
。二次空気溜り39は、回転羽根車3の外周面と中間円
板36の内周面との間に形成される半径方向の寸法が6
5の一次側隙間40により、分級室り側と連通されてお
り、二次空気溜り39の反対側は、仕切り壁38aの中
央開口に挿入され中間円板36により押圧されたンール
リング37の内径との間に形成される半径方向の寸法が
66 (δ6くδ、)の二次側隙間41により搬送室E
側に連通されている。−次側隙間40の長さβ5は、二
次側隙間41の長さβ6より若干短く定められる。
An annular secondary air pocket 39 is formed in a portion of the inner peripheral surface of the intermediate disk 36 that fits into the outer peripheral surface of the rotary impeller 3 . The secondary air pocket 39 is formed between the outer peripheral surface of the rotary impeller 3 and the inner peripheral surface of the intermediate disk 36 and has a radial dimension of 6.
The primary side gap 40 of 5 communicates with the classification chamber side, and the opposite side of the secondary air reservoir 39 is connected to the inner diameter of the ring 37 inserted into the central opening of the partition wall 38a and pressed by the intermediate disk 36. The secondary side gap 41 with a radial dimension of 66 (δ6×δ,) formed between the transfer chamber E
It is connected to the side. - The length β5 of the secondary gap 40 is set to be slightly shorter than the length β6 of the secondary gap 41.

中間円板36の搬送室E側に形成される環状の一次空気
溜り42は、中間円板36の円周方向に等分して設けら
れた多数の連通路43により二次空気溜り39に連絡さ
れて、装置本体に設けられた空気取入口44から流入す
る空気を二次空気溜り39に一様に配分する役割を担う
。それ故、運転生負圧になっている分級室りと搬送室E
には、圧力空気源または外気と連通された二次空気溜り
39の空気が一次側隙間40と二次側隙間41を通して
絶えず吹き出し、回転羽根車3と中間円板36との隙間
部分に分級前の気流中の粉体が侵入するのを妨げて、こ
の粉体がこれらの隙間40゜41を通して搬送室E側に
移動するのを防止する。
An annular primary air reservoir 42 formed on the transfer chamber E side of the intermediate disk 36 is connected to a secondary air reservoir 39 through a large number of communication passages 43 equally divided in the circumferential direction of the intermediate disk 36. It plays the role of uniformly distributing the air flowing in from the air intake port 44 provided in the main body of the device to the secondary air reservoir 39. Therefore, the classification room and the transfer room E are under negative pressure during operation.
In this process, the air in the secondary air reservoir 39 that is in communication with the pressurized air source or the outside air is constantly blown out through the primary side gap 40 and the secondary side gap 41, and the air flows into the gap between the rotary impeller 3 and the intermediate disk 36 before being classified. This prevents the powder in the airflow from entering and prevents the powder from moving to the transfer chamber E side through these gaps 40 and 41.

ステープレート29の最大径部は、外周が渦巻状に形成
された搬送室Eの最小断面に近接した大きさに定められ
ており、軸受ケース6の内側開口は、スペーサー35の
外周と嵌合するフロントカバー45により塞がれている
。スペーサー35とその外周部のフロントカバー45と
の重合部には、通気路46によって圧力空気源または外
気と連通される環状の空気溜り47が設けられ、この空
気溜り47は、スペーサー35の外周とフロントカバー
45の内周との間に形成されるシール用隙間48により
搬送室Eと連絡されている。それ故、運転中は負圧の搬
送室E内に通気路46、空気溜り47、およびソール用
隙間48を通って吹き出す空気によりエアーソールが行
なわれ、搬送室E内の微粉は、搬送出口4に接続された
図示しない排風機により搬送室Eから取り出される。
The maximum diameter part of the stay plate 29 is set to a size close to the minimum cross section of the transfer chamber E whose outer periphery is formed in a spiral shape, and the inner opening of the bearing case 6 fits into the outer periphery of the spacer 35. It is covered by a front cover 45. An annular air pocket 47 that communicates with a pressure air source or the outside air through a ventilation path 46 is provided at the overlapped portion of the spacer 35 and the front cover 45 on its outer periphery. It communicates with the transfer chamber E through a sealing gap 48 formed between the front cover 45 and the inner periphery thereof. Therefore, during operation, air sole is performed by air blown out through the ventilation path 46, air pocket 47, and sole gap 48 into the negative pressure transfer chamber E, and the fine powder in the transfer chamber E is removed from the transfer outlet 4. It is taken out from the transfer chamber E by an exhaust fan (not shown) connected to.

軸受ケース6の外側カバー49から外側に突出した第2
駆動軸30は、減速手段を介してモータ(共に図示せず
)に接続され、粉砕手段と別個に回転される構成になっ
ている。
A second portion protrudes outward from the outer cover 49 of the bearing case 6.
The drive shaft 30 is connected to a motor (both not shown) via a deceleration means, and is configured to be rotated separately from the crushing means.

次に、装置の動作について説明する。Next, the operation of the device will be explained.

微粉砕機の各モータを駆動して装置を運転状態にすると
、供給装置1のフィードスクリューによって供給室Aに
供給された粉砕用原料は、装置内に形成される吸引気流
によって供給室外側の環状円板13の中央部開口を通っ
て回転円板9に沿って粉砕室Bの内周壁側に搬送され、
回転してくる多数の羽根板15と歯付ライニング部材1
7とにより粉砕される。
When each motor of the pulverizer is driven to put the device into operation, the raw material for pulverization supplied to the supply chamber A by the feed screw of the supply device 1 is transferred to the annular shape on the outside of the supply chamber by the suction airflow formed inside the device. It is conveyed to the inner circumferential wall side of the grinding chamber B along the rotating disk 9 through the central opening of the disk 13,
A large number of rotating vanes 15 and toothed lining member 1
7.

粉砕手段により粉砕された粉砕物は、歯付ライニング1
7の内側17aを旋回移動する気流によって持ち出され
、仕切り板51の外周と循環ケースCの下部環状フラン
ジ52の内径とによって形成される周辺部隙間δ4を通
って循環ケースCの粉砕物輸送通路55を上昇し、該通
路55が截頭円錐状筒体53aに対して偏心して接続さ
れることにより、予備旋回気流を形成しながら分級室り
の内筒20の中へ運ばれる。
The crushed material crushed by the crushing means is passed through the toothed lining 1
The pulverized material transport passage 55 of the circulation case C is carried out by the airflow swirling inside 17a of the circulation case 7, and passes through the peripheral gap δ4 formed by the outer periphery of the partition plate 51 and the inner diameter of the lower annular flange 52 of the circulation case C. The passage 55 is eccentrically connected to the truncated conical cylinder 53a, so that the air is transported into the inner cylinder 20 of the classification chamber while forming a pre-swirling airflow.

分級室り内に運ばれた粉砕物には、吸引気流による回転
羽根車3内への吸引力と、回転羽根車3の周りの旋回気
流による遠心力の両方が作用するが、回転羽根車3の近
傍では、粉砕物中の微粉に対しては吸引力の方が遠心力
より大きく、粉砕物中の粗粉に対しては遠心力の方が吸
引力より大きくなる。このため、回転羽根車3の径方向
に向かう粉砕物のうち、微粉だけは吸引気流に乗って羽
根26の間の吸気通路27から回転羽根車3内に移動す
る。なお、気流には内筒20の中へ入る前に、予備旋回
速度が付与されているため、内筒20の人口ら)におい
て、すてに粗粉と微粉とを選別するに十分な遠心力が粉
体に作用しているので、最初から正しい選別作用が行な
われる。つまり、粉砕物を運ぶ気流が内筒20の中にお
いて、中間円板36に向かって旋回移動する間、終始、
粗粉と微粉のそれぞれの半径方向外側と内側への移動方
向は変らず、しかも回転羽根車3の外周において、限界
粒子径を一定に保つことができる。
Both the suction force into the rotary impeller 3 due to the suction airflow and the centrifugal force due to the swirling airflow around the rotary impeller 3 act on the crushed material carried into the classification chamber. In the vicinity of , the suction force is greater than the centrifugal force for the fine powder in the pulverized material, and the centrifugal force is greater than the suction force for the coarse powder in the pulverized material. Therefore, among the crushed materials traveling in the radial direction of the rotary impeller 3, only the fine powder moves into the rotary impeller 3 from the intake passage 27 between the blades 26 on the suction air current. Note that since the airflow is given a preliminary swirling speed before entering the inner cylinder 20, sufficient centrifugal force is generated in the inner cylinder 20 to separate coarse powder from fine powder. acts on the powder, so the correct sorting action is performed from the beginning. In other words, while the airflow carrying the pulverized material rotates in the inner cylinder 20 toward the intermediate disk 36, from beginning to end,
The directions in which the coarse powder and fine powder move outward and inward in the radial direction do not change, and the critical particle diameter can be kept constant on the outer periphery of the rotary impeller 3.

かくして、回転羽根車3の内部へ微粉を持ち込んだ気流
は回転羽根車3を支持するステープレート29の間を通
り、搬送804から図示していない微粉取り出し装置に
運ばれる。
In this way, the airflow carrying the fine powder into the interior of the rotary impeller 3 passes between the stay plates 29 that support the rotary impeller 3, and is carried from the conveyor 804 to a fine powder extraction device (not shown).

一方、微粉の多くを取り除かれた残りの気流は、内筒2
0の開口側縁端を外方にUターンした後、内筒20と外
筒21との間の環状空間部から循環ケースCの粗粉戻し
通路54を下降し仕切り板51の中央開口51bを経て
、ターボ型羽根車のファン効果により、環状円板14の
中央開口部を通って羽根板150周辺部に運ばれ、回転
羽根車3内に吸引される粒度以下になるまで繰り返し粉
砕作用を受ける。
On the other hand, the remaining airflow from which most of the fine powder has been removed is transferred to the inner cylinder 2.
After making a U-turn outward on the edge of the opening side of 0, descend through the coarse powder return passage 54 of the circulation case C from the annular space between the inner cylinder 20 and the outer cylinder 21, and open the central opening 51b of the partition plate 51. Then, due to the fan effect of the turbo impeller, the particles are transported through the central opening of the annular disk 14 to the periphery of the vane plate 150, where they are repeatedly pulverized until the particle size falls below the particle size that can be sucked into the rotary impeller 3. .

この場合、粉砕手段の回転円板9は、粉砕室Bと分級室
りとの間の循環気流と、供給装置1から供給される粉砕
用原料を粉砕手段の周辺部に搬送する−次気流とを区分
して互に干渉しないようにするため、循環気流によって
粉砕手段の方に搬送された粗粉を遅滞なく繰り返し粉砕
して粉砕効率を向上する。
In this case, the rotating disk 9 of the pulverizing means is connected to the circulating airflow between the pulverizing chamber B and the classification chamber, and the second airflow for conveying the pulverizing raw material supplied from the supply device 1 to the peripheral area of the pulverizing means. In order to separate the particles and prevent them from interfering with each other, the coarse powder conveyed to the crushing means by the circulating airflow is repeatedly crushed without delay to improve the crushing efficiency.

また、分級室りでは、気流が旋回しなから内筒20の中
へ入り、回転羽根車3の周囲を経て、内部のボス部28
の周りのスロート部に達するのであるが、その際、気流
の径路の延べ長さは、反駆動側から侵入する場合と搬送
室E寄りから侵入する場合とてほとんど変らず、従って
気流が受ける流体抵抗に大した差がないから、回転羽根
車3を通過する微粉を含む気流の侵入速度は、回転羽根
車3の吸気通路27の長さ方向に関して等しくなる。そ
の上、回転羽根車3のボス部28を通過する気流の受け
る軸方向の抵抗は、渦巻型をなす搬送室E内で回転する
数枚のステープレート29の作用により円周上、−様に
なるから、吸気通路27を通過する気流の速度は、円周
上の分布が一様となる。
In addition, in the classification chamber, the airflow swirls and enters the inner cylinder 20, passes around the rotary impeller 3, and passes through the internal boss portion 28.
At that time, the total length of the airflow path is almost the same whether it enters from the non-drive side or from the transfer chamber E side. Since there is not much difference in resistance, the intrusion speed of the airflow containing fine particles passing through the rotary impeller 3 is equal in the length direction of the intake passage 27 of the rotary impeller 3. Furthermore, the axial resistance of the airflow passing through the boss portion 28 of the rotary impeller 3 is caused by the action of several stay plates 29 rotating in the spiral-shaped transfer chamber E. Therefore, the velocity of the airflow passing through the intake passage 27 has a uniform distribution on the circumference.

一方、これまでの研究結果によって、搬送気流が粒子を
回転羽根車3の内部に引き込む力は、粒子の外周長さと
気流速度の積に比例することが知られているため、運転
条件によって回転羽根車3の内部に引き込むことができ
る限界粒子径は、吸気通路27の長さ方向にわたって同
じにすることができる。
On the other hand, as a result of previous research, it is known that the force with which the conveying airflow draws particles into the interior of the rotary impeller 3 is proportional to the product of the outer circumference length of the particles and the airflow velocity. The limit particle size that can be drawn into the interior of the vehicle 3 can be made the same throughout the length of the intake passage 27.

それ故、この実施例の装置によると、搬送出口4から取
り出される粒子の粒度分布幅は、限界粒子径が羽根の長
さ方向に変化する従来の場合に比べて狭くして、均一な
微粉を得ることができる。
Therefore, according to the device of this embodiment, the width of the particle size distribution of the particles taken out from the conveyance outlet 4 is narrower than in the conventional case where the critical particle diameter changes in the length direction of the blade, and uniform fine powder is produced. Obtainable.

また、分級室りの内筒20の中に旋回しながら侵本する
気流は、最初から粗粉、特に゛トビ′と称される大粗粒
を内筒20の内壁に沿って運び入れ、回転羽根車3に接
近させることなく、内筒20の開口側縁端において外方
にUターンさせ、慣性により粗粉または大粗粒が中間円
板36に衝突した場合にも、反溌後に分級室り内におい
て常に径方向外方に移動するため、粗粉または大粗粒が
回転羽根車3の内部に紛れ込むことはほとんどない。
In addition, the airflow swirling and penetrating into the inner cylinder 20 of the classification chamber carries coarse powder, especially large coarse particles called ``Tobi'', along the inner wall of the inner cylinder 20 and rotates them. Even if coarse powder or large coarse particles collide with the intermediate disk 36 due to inertia by making an outward U-turn at the opening side edge of the inner cylinder 20 without approaching the impeller 3, the classification chamber Since the rotary impeller 3 always moves outward in the radial direction within the rotary impeller 3, coarse powder or large coarse particles are almost never mixed into the rotary impeller 3.

その上、運転中負圧状態になっている装置内には、圧力
空気源または外気に通じている空気溜り23.39.4
7から供給室A、分級室D、搬送室E、および軸受ケー
ス5,6内に空気が吹き出されてエアーシール作用をす
るため、気流中に含まれる粉体が分級作用を受けずに搬
送室Eから外側に送り出されるのを防止するとともに、
軸受7゜34内に侵入してトラブルを発生するのをなく
すことができる。
Moreover, inside the device, which is under negative pressure during operation, there is an air reservoir 23.39.4 connected to a source of pressurized air or to the outside air.
Since air is blown out from 7 into the supply chamber A, classification chamber D, transfer chamber E, and bearing cases 5 and 6 and acts as an air seal, the powder contained in the airflow is not subjected to the classification effect and flows into the transfer chamber. In addition to preventing it from being sent out from E,
It is possible to eliminate troubles caused by intrusion into the bearing 7°34.

この場合、分級室りと搬送室Eの両方にエアーシールを
行なう二次空気溜り39では、隙間寸法が大きく長さが
短い一次側隙間40を通って流出する空気量は、逆の寸
法関係になっている二次側隙間41から流出する空気量
より多くなる。そして、−次側隙間40のエアーシール
は、分級室り内の限界粒子径より大きな粗粒(トビ)が
搬送室E側に移動するのを阻止し、搬送室Eから取り出
される粒度分布幅が広くなるのを防いで製品の品質を高
めるのに役立ち、二次側隙間41は、搬送室Eに搬送さ
れた微粉が分級室りに戻るのを阻止して分級効率の低下
するのを防止する。
In this case, in the secondary air reservoir 39 that air seals both the classification chamber and the transfer chamber E, the amount of air flowing out through the primary side gap 40, which has a large gap size and a short length, has an opposite dimensional relationship. The amount of air flowing out from the secondary side gap 41 is larger than the amount of air flowing out from the secondary side gap 41. The air seal in the -next side gap 40 prevents coarse particles larger than the limit particle diameter in the classification chamber from moving to the transfer chamber E side, and the width of the particle size distribution taken out from the transfer chamber E is The secondary gap 41 prevents the fine powder from becoming wider and improves the quality of the product, and prevents the fine powder transferred to the transfer chamber E from returning to the classification chamber, thereby preventing the classification efficiency from decreasing. .

さらに、粉砕手段と回転羽根車3とは別駆動になってい
るため、両者の回転数と排風機による吸引風量とをそれ
ぞれ独立に最適運転状態に調整することにより、所望の
粒度と粒度分布幅を持った製品を能率良く作り出すこと
ができる。
Furthermore, since the crushing means and the rotary impeller 3 are driven separately, the number of rotations of both and the amount of suction air by the exhaust fan can be adjusted independently to the optimum operating conditions to achieve the desired particle size and particle size distribution width. It is possible to efficiently produce products with

ご発明の効果〕 この発明は、上述の通り構成されているので、次に記載
する効果を奏する。
Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

請求項1の微粉砕機においては、 (1)微粉を運ぶ気流が分級室の回転羽根車の中へ侵入
するときに受ける抵抗は、回転羽根車の円周面上のいず
れの位置かあ侵入する場合にもほぼ同じであるため、気
流が回転羽根車の吸気通路を通過する速度は、回転羽根
車の外周面の全体に対して均一になる。これに対し、回
転羽根車の近傍では、粒子を搬送する気流の搬送力と、
回転羽根車の旋回気流による遠心力との関係は、回転羽
根車における羽根の軸方向のどの位置でもほぼ同じにな
る。
In the pulverizer according to claim 1, (1) the resistance that the airflow carrying the fine powder receives when it enters the rotary impeller of the classification chamber is at any position on the circumferential surface of the rotary impeller; The speed at which the airflow passes through the intake passage of the rotary impeller becomes uniform over the entire outer circumferential surface of the rotary impeller. On the other hand, near the rotary impeller, the transport force of the airflow that transports the particles,
The relationship with the centrifugal force due to the swirling airflow of the rotary impeller is approximately the same at any position in the axial direction of the blades in the rotary impeller.

したがって、回転羽根車の外周部における限界粒子径が
ほぼ同じになるため、粒度分布幅の狭い均一な製品を能
率良く作り出すことができる。
Therefore, the critical particle diameters at the outer periphery of the rotary impeller are approximately the same, making it possible to efficiently produce a uniform product with a narrow particle size distribution.

(2)また、搬送気流中に含まれる粗粉や粗粒は、分級
室内の旋回気流によって吸引気流による吸弓力より大き
な遠心力を受けるため、回転羽根車の外周面にほとんど
接近することがない上、分級室と搬送室とに空気溜りか
ら吹き出される空気流によって分級室内の粗粉や粗粒が
この隙間部分を通って搬送室に移動されるのを効果的に
防止されるため、搬送室から装置外に取り出される微粉
中に限界粒径以上の粗粉や粗粒が含まれるのを防止する
ことができる。
(2) In addition, the coarse powder and coarse particles contained in the conveying airflow are subject to a centrifugal force greater than the bow suction force due to the suction airflow due to the swirling airflow in the classification chamber, so they almost never come close to the outer peripheral surface of the rotary impeller. In addition, the air flow blown out from the air pocket between the classification chamber and the transfer chamber effectively prevents the coarse powder and coarse particles in the classification chamber from being transferred to the transfer chamber through this gap. It is possible to prevent coarse powder or coarse particles having a particle size exceeding the limit particle size from being included in the fine powder taken out of the apparatus from the transfer chamber.

(3)その上、粗粉または粗粒を含んで分級室から粉砕
室に戻される循環気流と、粉砕用原料を粉砕室に供給す
る一次気流とは、粉砕手段の回転円板によって互に干渉
しないように区分されているから、循環気流によって粉
砕手段の方に搬送された粗粉または粗粒を、繰り返し能
率良く粉砕して分級室の方に搬送することができる。
(3) In addition, the circulating airflow containing coarse powder or coarse particles returned from the classification chamber to the grinding chamber and the primary airflow that supplies the raw material for grinding to the grinding chamber interfere with each other due to the rotating disk of the grinding means. Since the coarse powder or coarse particles are conveyed to the crushing means by the circulating air flow, they can be repeatedly and efficiently crushed and conveyed to the classification chamber.

請求項2の微粉砕機においては、粉砕室から分級室へ粉
砕物を輸送する気流の通路が分級室の内筒の延長部を形
成する筒体に対して偏向して連通されることによって、
粉砕物を運ぶ気流は内筒に侵入する以前において予備旋
回運動を与えられているため、分級のための回転羽根車
の周囲において、粉体の遠心力による選別作用が回転羽
根車の軸方向入口側から正常に働くとともに、粗粉が粉
砕物輸送通路の出口側から引き続き内筒の壁際に集合し
て移動するたt、目的とする微粉の中へ粗粉や粗粒が紛
れ込む恐れがない。
In the pulverizer according to claim 2, the airflow path for transporting the pulverized material from the crushing chamber to the classification chamber is deflected and communicated with the cylinder forming an extension of the inner cylinder of the classification chamber, so that:
The airflow carrying the pulverized material is given a preliminary swirling motion before entering the inner cylinder, so that the sorting action of the centrifugal force on the powder occurs around the rotary impeller for classification in the axial direction of the inlet of the rotary impeller. Since the powder works normally from the side, and the coarse powder continues to collect and move from the outlet side of the pulverized material transport passage to the wall of the inner cylinder, there is no fear that the coarse powder or coarse particles will mix into the target fine powder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の縦断面図、第2図は、第
1図の右側面図、第3図は粉砕手段だけの縦断面図、第
4図は粉砕手段の回転円板に結合部材が取り付けられて
いる状態を示す左半分の正面図、第5図は粉砕手段の環
状円板の左半分を示す正面図、第6図は循環ケースを取
り除いて示した粉砕室の右側面図である。 3・・・回転羽根車   8・・・第1駆動軸9・・・
回転円板    13.14・・・環状円板15・・・
羽根板 17・・・歯付ライニング部材 26・・・回転羽根車の羽根 30・・・第2駆動軸 第6図 1a 39・・・二次空気溜り 41・・・二次側隙間 55・・・粉砕物輸送通路 A・・・供給室 C・・・循環ケース E・・・搬送室 δ5・・・−次側隙間の径方向寸法 δ6・・・二次側隙間の径方向寸法 C・・・−次側隙間の長さ 16・・・二次側隙間の長さ 40・・・−次側隙間 54・・・粗粉戻し通路 B・・・粉砕室 D・・・分級室 第 図 第 図 第 ]314 図
Fig. 1 is a longitudinal sectional view of one embodiment of the present invention, Fig. 2 is a right side view of Fig. 1, Fig. 3 is a longitudinal sectional view of only the crushing means, and Fig. 4 is a rotating disk of the crushing means. Fig. 5 is a front view of the left half of the annular disc of the crushing means, showing the state in which the coupling member is attached to the shank, Fig. 6 is a front view of the left half of the annular disk of the crushing means, and Fig. 6 is the right side of the crushing chamber with the circulation case removed. It is a front view. 3... Rotating impeller 8... First drive shaft 9...
Rotating disk 13.14... Annular disk 15...
Vane plate 17...Toothed lining member 26...Rotary impeller blades 30...Second drive shaft Fig. 6 1a 39...Secondary air pocket 41...Secondary side gap 55...・Pulverized material transport passage A...Supply chamber C...Circulation case E...Transfer chamber δ5...-Radial dimension of the next-side gap δ6...Radial dimension of the secondary-side gap C...・-Next side gap length 16...Secondary side gap length 40...-Next side gap 54...Coarse powder return passage B...Crushing chamber D...Classification chamber Fig. Figure] 314 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)粉砕室に供給される粉砕用原料を回転式の粉砕手
段で粉砕し、粉砕された粉砕物中の一定粒度以下の微粉
を分級室内の分級手段によって排風機に接続された搬送
室から装置外に取り出すとともに、一定粒度以上の粗粉
を粉砕室に戻して繰り返し粉砕する微粉砕機において、 粉砕手段は、第1駆動軸に固設の回転円板と、この円板
の両側でこれに平行な2個の環状円板に保持されて径方
向外方に突出される多数の羽根板と、羽根板の外周側を
取り囲む粉砕室の内周面に設けられる歯付ライニング部
材とにより形成され、分級手段は、一端が閉塞された円
筒形の外周部に、軸線と平行な短冊形の羽根が多数設け
られている第2駆動軸に保持された回転羽根車と、この
回転羽根車を取り囲む二重円筒のハウジングとにより形
成され、 粉体の循環手段は、粉砕室の外周部の側面に形成される
環状開口部を分級室の二重円筒の内筒に連結する粉砕物
輸送通路と、分級室の二重円筒間に形成される環状空間
部を粉砕室の中心開口部に連結する粗粉戻し通路とによ
り形成され、 分級室と搬送室との間の仕切り部材の内周面には、回転
羽根車の外周面に近接し、外気または圧力空気源に接続
される環状の空気溜りと、該空気溜りを分級室と搬送室
とに連絡する一次側隙間と二次側隙間とが設けられてい
ることを特徴とする微粉砕機。
(1) The raw material for pulverization supplied to the pulverization chamber is pulverized by a rotary pulverizer, and the fine powder of a certain particle size or less in the pulverized material is collected from a conveyor chamber connected to an exhaust fan by a categorizing means in the pulverizer. In a pulverizer that takes coarse powder out of the device and returns it to the pulverizing chamber to repeatedly pulverize coarse powder of a certain particle size or higher, the pulverizing means consists of a rotating disk fixed to the first drive shaft, and a rotary disk mounted on both sides of this disk. It is formed by a large number of vanes held by two annular disks parallel to each other and protruding radially outward, and a toothed lining member provided on the inner peripheral surface of the grinding chamber surrounding the outer peripheral side of the vanes. The classification means includes a rotary impeller held on a second drive shaft, which has a cylindrical outer periphery with one end closed and a number of rectangular blades parallel to the axis; The powder circulation means is formed by a surrounding double cylindrical housing; , a coarse powder return passage connecting the annular space formed between the double cylinders of the classification chamber to the central opening of the crushing chamber, and consists of an annular air pocket that is close to the outer peripheral surface of the rotary impeller and connected to outside air or a pressure air source, and a primary gap and a secondary gap that connect the air pocket to the classification chamber and the transfer chamber. A pulverizer characterized in that it is equipped with a pulverizer.
(2)循環手段の粉砕物輸送通路の出口側開口部は、分
級室内の内筒の手前側で回転羽根車の中心に対し偏心し
て接続される特許請求の範囲第1項記載の微粉砕機。
(2) The pulverizer according to claim 1, wherein the outlet side opening of the pulverized material transport passage of the circulation means is connected eccentrically to the center of the rotary impeller on the front side of the inner cylinder in the classification chamber. .
JP18663290A 1990-07-12 1990-07-12 Pulverizer Expired - Lifetime JPH0651123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18663290A JPH0651123B2 (en) 1990-07-12 1990-07-12 Pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18663290A JPH0651123B2 (en) 1990-07-12 1990-07-12 Pulverizer

Publications (2)

Publication Number Publication Date
JPH0471649A true JPH0471649A (en) 1992-03-06
JPH0651123B2 JPH0651123B2 (en) 1994-07-06

Family

ID=16191980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18663290A Expired - Lifetime JPH0651123B2 (en) 1990-07-12 1990-07-12 Pulverizer

Country Status (1)

Country Link
JP (1) JPH0651123B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826129B1 (en) * 2006-06-09 2008-05-06 한국분체기계주식회사 Rotating body for mill machine
CN107694135A (en) * 2017-11-13 2018-02-16 昆明特康科技有限公司 A kind of grinding machine and its application method for high humidity high viscosity dry materials powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826129B1 (en) * 2006-06-09 2008-05-06 한국분체기계주식회사 Rotating body for mill machine
CN107694135A (en) * 2017-11-13 2018-02-16 昆明特康科技有限公司 A kind of grinding machine and its application method for high humidity high viscosity dry materials powder
CN107694135B (en) * 2017-11-13 2021-09-14 昆明特康科技有限公司 Grinding machine for drying and pulverizing high-humidity high-viscosity materials and application method thereof

Also Published As

Publication number Publication date
JPH0651123B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US4694994A (en) Roller mill
US6902126B2 (en) Hybrid turbine classifier
US4813619A (en) Disintegrator having grinding chamber with rotors including carrying disk with grinding wheels concentrically arranged thereon
JP2003071307A (en) Pulverizer
JPH08281213A (en) Classifier
JP4805473B2 (en) Fine grinding device and powder product manufacturing system
JPH0471649A (en) Fine grinding mill
JP3515089B2 (en) Airflow classifier
JP2823099B2 (en) Fine grinding equipment
NZ198677A (en) Pulveriser with classifier
JPH0763642B2 (en) Cement clinker crusher
JPH02207852A (en) Pulverizer
JP6779246B2 (en) Crushing device with classification function and crushing method of the object to be processed
JP2003001127A (en) Chopper
JP3482669B2 (en) Classifier
JPH04256449A (en) Vertical crusher
JP7514952B2 (en) Exhaust guide and exhaust method
JPH0739772A (en) Roller mill having rotary classifier built therein
JP6767410B2 (en) Crusher
JPH0647079B2 (en) Pulverizer
JPS6377554A (en) Vertical type crusher
JPS6366582B2 (en)
JPH0543859Y2 (en)
JPH11216426A (en) Air classifier
JPH07213940A (en) Grinder