JPH0471375A - Controller of ultrasonic motor - Google Patents

Controller of ultrasonic motor

Info

Publication number
JPH0471375A
JPH0471375A JP2184657A JP18465790A JPH0471375A JP H0471375 A JPH0471375 A JP H0471375A JP 2184657 A JP2184657 A JP 2184657A JP 18465790 A JP18465790 A JP 18465790A JP H0471375 A JPH0471375 A JP H0471375A
Authority
JP
Japan
Prior art keywords
speed
output frequency
deviation
ultrasonic motor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2184657A
Other languages
Japanese (ja)
Inventor
Yuji Izuno
有司 泉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2184657A priority Critical patent/JPH0471375A/en
Publication of JPH0471375A publication Critical patent/JPH0471375A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To control the output frequency of a power supply means variably so as to minimize a speed deviation by a method wherein a plurality of fuzzy rules concerning an identical speed deviation and a switching means which switches the applicable fuzzy rules in accordance with a speed region are provided in a speed control means. CONSTITUTION:For instance in a high speed operation, when a speed deviation is +10rpm, i.e., the speed is too high, the compatibility of a fuzzy expression, 'a little faster (PS)', is '1' and a frequency deviation corresponding to the compatibility is +0.05kHz. Therefore, the output frequency of a power supply means 5 is increased from the present value by 0.05kHz. In a region where a plurality of membership functions overlap each other, a weighted average value is obtained in accordance with the rations of the compatibilities of the respective membership functions. That is to say, if the speed is higher than the target speed, the output frequency is increased to reduce the speed and, if the speed is lower than the target speed, the output frequency is reduced to increase the speed, so that the speed is always controlled to be the target speed. The rate of the variation of the output frequency is determined by a membership function produced in accordance with empirical values obtained by experiments.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、弾性体とその弾性体を励振する圧電体でなる
振動体を備えた進行波型の超音波モータに対して、前記
圧電体に高周波電力を供給する電源供給手段と、目標速
度を設定する目標速度設定手段と、回転速度を検出する
速度検出手段と、前記速度検出手段による検出速度と前
記目標速度との速度偏差に対するファジィルールに基づ
いて前記電源供給手段の出力周波数を可変制御する速度
制御手段とて構成してある超音波モータの制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a traveling wave type ultrasonic motor including a vibrating body made of an elastic body and a piezoelectric body that excites the elastic body. a power supply means for supplying high frequency power to a target speed, a target speed setting means for setting a target speed, a speed detection means for detecting a rotational speed, and a fuzzy rule for a speed deviation between the speed detected by the speed detection means and the target speed. The present invention relates to an ultrasonic motor control device configured as a speed control means that variably controls the output frequency of the power supply means based on the following.

〔従来の技術〕[Conventional technology]

従来、この種の超音波モータの制御装置では、特にサー
ボ系の速度制御手段として、目標速度の値に関わらず、
前記速度検出手段による検出速度と目標速度との速度偏
差に対する単一のファジィルールに基づいて前記電源供
給手段の出力周波数を可変制御していた。
Conventionally, in this type of ultrasonic motor control device, especially as a speed control means for a servo system, regardless of the target speed value,
The output frequency of the power supply means is variably controlled based on a single fuzzy rule for a speed deviation between the speed detected by the speed detection means and the target speed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の従来技術によるこの種の超音波モータの制御装置
は、振動体の温度変化やモータの負荷変動に起因する振
動体の共振周波数の変動や、振動体の磨耗等の影響か定
性的に把握されていないにも関わらず、超音波モータを
回転速度を可変に且つ安定して制御することを極めて容
易に、しかも、ある程度満足の得られる特性が得られる
状態て行えるように構成したものである。
This type of ultrasonic motor control device based on the conventional technology described above is capable of qualitatively determining the effects of fluctuations in the resonant frequency of the vibrating body due to changes in the temperature of the vibrating body and motor load fluctuations, as well as wear and tear of the vibrating body. Despite the fact that the ultrasonic motor has not yet been developed, it is constructed in such a way that it is possible to control the rotational speed of an ultrasonic motor in a variable and stable manner very easily, and in a state where satisfactory characteristics can be obtained to some extent. .

しかし、超音波モータの駆動周波数による速度の制御特
性は、その速度が小から大の全ての範囲で一定というわ
けてはなく、速度領域に応じて異なるものてあり、とり
わけ低速領域ては回転むらが顕著て不安定である。
However, the speed control characteristics of the ultrasonic motor based on the driving frequency are not constant over the entire speed range from small to large, and differ depending on the speed range, and especially in the low speed range, rotational irregularities may occur. is noticeable and unstable.

その結果、全ての速度領域で回転速度を可変に且つ安定
して制御することを極めて容易に、しかも、一定の満足
の得られる特性か得られる状態で行うことが困難である
という欠点があった。
As a result, there was a drawback that it was difficult to control the rotational speed variably and stably in all speed ranges very easily and in a state where certain satisfactory characteristics could be obtained. .

本発明の目的は上述した従来欠点を解消する点にある。An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

〔課題を解決するための手段〕 この目的を達成するため、本発明による超音波モータの
制御装置の特徴構成は、前記速度制御手段に、同一の速
度偏差に対する複数のファジィルールと、速度領域に応
じて適用するファジィルールを切り替える切り替え手段
を設けてある点にある。
[Means for Solving the Problem] In order to achieve this object, the characteristic configuration of the ultrasonic motor control device according to the present invention is such that the speed control means includes a plurality of fuzzy rules for the same speed deviation and a plurality of fuzzy rules for the speed region. The point is that a switching means is provided for switching the fuzzy rules to be applied accordingly.

〔作 用〕[For production]

つまり、前件部を速度偏差に対する電源供給手段の出力
周波数の大小に関する適合度を表すメンバシップ関数、
後件部をその適合度から演算導出する出力周波数の現在
値からの偏差とするファジィルールを、複数の速度領域
に対応させて複数設けて、切り替え手段が、速度領域に
応じて切り替えたファジィルールに基づき推論を実行し
て、その推論結果から電源供給手段の出力周波数を、前
記速度偏差が小となるように可変制御することで、高速
領域、低速領域等の各領域で最適に目標速度に制御する
のである。
In other words, the antecedent part is a membership function that expresses the degree of adaptation of the output frequency of the power supply means to the speed deviation.
A fuzzy rule in which a plurality of fuzzy rules whose consequent is the deviation from the current value of the output frequency calculated from its fitness degree is provided corresponding to a plurality of speed regions, and the switching means is switched according to the speed region. By executing inference based on the inference result and variably controlling the output frequency of the power supply means so that the speed deviation is small, the target speed can be optimally achieved in each region such as high speed region and low speed region. It's about controlling.

〔発明の効果〕〔Effect of the invention〕

従って、本発明による超音波モータの制御装置を用いる
ことで、振動体の温度変化やモータの負荷変動に起因す
る振動体の共振周波数の変動や、振動体の磨耗等の影響
が定性的に把握、表現されていないにも関わらず、超音
波モータを、高速から低速の速度領域の全範囲で、回転
速度を可変に且つ安定して制御することが極めて容易に
、しかも、一定の満足な特性が得られる状態で行えるよ
うになった。
Therefore, by using the ultrasonic motor control device according to the present invention, changes in the resonant frequency of the vibrating body caused by changes in the temperature of the vibrating body and motor load fluctuations, as well as the effects of wear and tear on the vibrating body, can be qualitatively grasped. Although it is not expressed, it is extremely easy to variably and stably control the rotational speed of an ultrasonic motor over the entire speed range from high to low speeds, and it also has certain satisfactory characteristics. Now it can be done in a state where it can be obtained.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第3図(イ)及び(ロ)に示すように、超音波モータ(
M)は、圧電体(1)に弾性体(2)を固着して超音波
の進行波を発生させる振動体(3)としての固定子(3
)と、その固定子(3)に加圧接触して回転する回転子
(4)とで構成してあり、回転子(4)の出力軸には回
転数検出用のエンコーダ(図示せず)を備えである。
As shown in Figure 3 (a) and (b), the ultrasonic motor (
M) is a stator (3) as a vibrating body (3) that fixes an elastic body (2) to a piezoelectric body (1) and generates an ultrasonic traveling wave.
) and a rotor (4) that rotates in pressurized contact with the stator (3), and an encoder (not shown) for detecting the rotation speed is attached to the output shaft of the rotor (4). Be prepared.

前記圧電体(1)は、周方向に領域(A)、 (B)に
二分割してあり、各領域(A)、 (B)は、波長λの
二分の−の間隔で隣合う区分を交互に厚み方向に分極処
理するとともに、それら領域(A)、 (B)間を四分
の三波長ずらせて配置してある。
The piezoelectric body (1) is divided into two regions (A) and (B) in the circumferential direction, and each region (A) and (B) are divided into adjacent sections at an interval of - half the wavelength λ. The regions (A) and (B) are alternately polarized in the thickness direction, and the regions (A) and (B) are shifted by three-quarters of a wavelength.

前記領域(A)、 (B)に90°位相の異なる高周波
電圧を印加することにより、領域(A)、 (B)に対
応する固定子(3)に発生する定在波が相互に干渉を起
こし、合成されて進行波となる。
By applying high frequency voltages with a 90° phase difference to the regions (A) and (B), the standing waves generated in the stator (3) corresponding to the regions (A) and (B) interfere with each other. are generated and synthesized to form a traveling wave.

即ち、前記回転子(4)は、前記固定子(3)に発生す
る進行波に基づく前記固定子(3)との摩擦力により回
転する。
That is, the rotor (4) rotates due to the frictional force with the stator (3) based on the traveling waves generated in the stator (3).

前記超音波モータ(M)の回転速度は、第4図に示すよ
うに、前記振動体(3)の共振周波数と一致する周波数
でピーク値を示し、そのポイントから上下にずれるに従
って低下する特性曲線で示される。。
As shown in FIG. 4, the rotational speed of the ultrasonic motor (M) exhibits a characteristic curve that shows a peak value at a frequency that matches the resonant frequency of the vibrating body (3) and decreases as it deviates up and down from that point. It is indicated by. .

そして、この特性曲線は、モータにががる負荷の他、前
記振動体(3)の温度によっても変化し、同一の出力周
波数であっても、負荷や温度の変化で回転速度が変化す
る。
This characteristic curve changes not only with the load applied to the motor but also with the temperature of the vibrating body (3), and even if the output frequency is the same, the rotational speed changes with changes in load and temperature.

前記超音波モータ(M)は、前記共振周波数と一致する
周波数よりも高周波域から周波数を徐々に低下させて起
動する。前記共振周波数と一致する周波数での駆動で一
番大きな振動が得られることになる(しかし、この周波
数での駆動はエネルギー変換効率が低下する)。
The ultrasonic motor (M) is started by gradually lowering the frequency from a higher frequency range than the frequency that matches the resonance frequency. The largest vibration can be obtained by driving at a frequency that matches the resonant frequency (however, driving at this frequency reduces energy conversion efficiency).

前記超音波モータ(M)の制御装置は、第1図(イ)、
 (0)に示すように、前記圧電体(1)に高周波電力
を供給する電源供給手段(5)としてのサーボアンプと
、前記回転子(4)の回転速度を検出する速度検出手段
(6)と、目標速度を設定する速度設定手段(7)と、
前記速度検出手段(6)による検出速度に基づいて目標
速度に制御する速度制御手段(8)とで構成してある。
The control device for the ultrasonic motor (M) is shown in FIG.
As shown in (0), a servo amplifier as a power supply means (5) for supplying high frequency power to the piezoelectric body (1), and a speed detection means (6) for detecting the rotational speed of the rotor (4). and a speed setting means (7) for setting a target speed.
The speed control means (8) controls the speed to a target speed based on the speed detected by the speed detection means (6).

前記電源供給手段(5)は、直流チョッパ回路(5A)
の後段に電圧分割形ハーフブリッジインバータ(5B)
を二組組み合わせて構成してあり、所定の位相差を有す
る方形波を昇圧用のトランス(TRI)、 (TR2)
を介して前記圧電体(1)に接続してある。
The power supply means (5) is a DC chopper circuit (5A)
Voltage division type half bridge inverter (5B) in the rear stage
The transformer (TRI) and (TR2) are configured by combining two sets of
It is connected to the piezoelectric body (1) via.

前記速度検出手段(6)は、前記エンコーダ(図示せず
)と、その出力パルスに対する所定時間(約50m5)
毎のパルス数から回転速度を演算する手段で構成してあ
る。
The speed detection means (6) includes the encoder (not shown) and a predetermined time period (approximately 50 m5) for its output pulse.
The rotation speed is calculated from the number of pulses for each pulse.

前記速度制御手段(8)について詳述すれば、前記目標
速度と前記速度検出手段(6)からの検出速度を入力し
て速度偏差を求める手段(9a)と、その速度個差から
前記電源供給手段(5)の出力周波数の変化量を求める
ファジィ制御手段(9)と、その変化量に基づき前記電
源供給手段(5)の出力周波数を可変制御する駆動手段
(D)とて構成してある。
In detail, the speed control means (8) includes means (9a) for calculating a speed deviation by inputting the target speed and the detected speed from the speed detection means (6), and a means (9a) for calculating the speed deviation by inputting the target speed and the detected speed from the speed detection means (6); The fuzzy control means (9) determines the amount of change in the output frequency of the means (5), and the drive means (D) variably controls the output frequency of the power supply means (5) based on the amount of change. .

前記駆動手段(D)には、前記電源供給手段(5)の出
力周波数が前記共振周波数以下になることを防ぐリミッ
タ手段を設けてある。
The driving means (D) is provided with a limiter means for preventing the output frequency of the power supply means (5) from becoming lower than the resonant frequency.

前記ファジィ制御手段(9)は、第2図(イ)乃至(ニ
)に示すメンバシップ関数に基づき、目標速度からの速
度偏差が大であればその速度偏差を小にするために、現
在の電源供給手段(5)の出力周波数の可変量を演算出
力するマイクロコンピュータ等で構成してある。
The fuzzy control means (9) is based on the membership functions shown in FIGS. It is composed of a microcomputer or the like that calculates and outputs the variable amount of the output frequency of the power supply means (5).

目標速度40rpmを境界にそれ以上であれば高速用の
メンバシップ関数(第2図(4)、 ([+))に基づ
き制御し、それ以下であれば低速用のメンバシップ関数
(第2図(ハ)、(ニ))に基づき制御する。
If the target speed is higher than the target speed of 40 rpm, control is performed based on the high speed membership function ((4), ([+)) in Figure 2, and if it is lower than the target speed, control is based on the low speed membership function (Figure 2). Control based on (c) and (d)).

第5図(イ)、 (ロ)、(ハ)、(ニ)に示すように
、低速用のメンバシップ関数で制御すると立ち上がり特
性が悪く、高速用のメンバシップ関数で制御すると定常
偏差が残るが、メンバシップ関数を切り替えることで立
ち上がり特性や定常偏差の改善が図れる。
As shown in Figure 5 (a), (b), (c), and (d), when controlling with a low-speed membership function, the rise characteristics are poor, and when controlling with a high-speed membership function, a steady deviation remains. However, by switching the membership function, the rise characteristics and steady-state deviation can be improved.

例示すると、高速時の例において速度偏差か+1Orp
m、つまり、速すぎる場合には、“少し速い(PS)”
と言う曖昧な表現の適合度合いが°l”であり、これに
対応する周波数偏差か’+0.05kHz”であるので
、前記電源供給手段(5)の出力周波数を現在値より0
.05kHz上昇させるのである。メンバシップ関数が
重なる領域では、その適合度の割合に基づいて加重平均
値を求めることになる。
To illustrate, in the example at high speed, the speed deviation is +1 Or
m, that is, if it is too fast, “slightly fast (PS)”
The degree of conformity of the ambiguous expression is °l", and the corresponding frequency deviation is +0.05kHz, so the output frequency of the power supply means (5) is set to 0 from the current value.
.. This raises the frequency by 0.5kHz. In regions where membership functions overlap, a weighted average value is determined based on the proportion of their fitness.

つまり、目標速度より速ければ出力周波数を上昇させて
速度を低下させ、目標速度より遅ければ出力周波数を低
下させて速度を上昇させることで、常に目標速度に制御
すへ(作用するのである。
In other words, if the speed is faster than the target speed, the output frequency is increased and the speed is decreased, and if it is slower than the target speed, the output frequency is decreased and the speed is increased, thereby always controlling the target speed.

出力周波数の変化させる度合いは、実験による経験値を
基に生成したメンバシップ関数による。
The degree to which the output frequency is changed depends on a membership function generated based on empirical values from experiments.

〔別実施例〕[Another example]

以下に本発明の別実施例を説明する。 Another embodiment of the present invention will be described below.

先の実施例で用いたメンバシップ関数は、これに限定す
るものではなく、速度偏差の範囲とその適合度、周波数
偏差とその適合度は任意に設定してよい。
The membership function used in the previous embodiment is not limited to this, and the speed deviation range and its suitability, and the frequency deviation and its suitability may be set arbitrarily.

先の実施例では、メンバシップ関数の決定にあたり、予
めの実験値に基づいて決定しているか、メンバシップ関
数の決定は、前記ファジィ制御手段(9)に、回転子と
固定子の摩擦力の経時変化や製造誤差その他の原因によ
る特性の変化やばらつきを学習する学習機能を搭載して
、メンバシップ関数を自動的に設定するように構成する
ことで、予め設定するための実験等の作業なくして、所
期の目的を達成することができる。
In the previous embodiment, the membership function is determined based on experimental values in advance, or the membership function is determined by using the fuzzy control means (9) to determine the frictional force between the rotor and the stator. Equipped with a learning function that learns changes and variations in characteristics due to changes over time, manufacturing errors, and other causes, and is configured to automatically set membership functions, eliminating the need for experiments and other work to set them in advance. By doing so, you can achieve your intended purpose.

同様に、初期に設定したメンバシップ関数を、経時変化
に対応させて学習機能を用いて、自動的に修正するよう
に構成してもよい。
Similarly, the initially set membership function may be configured to be automatically corrected using a learning function in response to changes over time.

先の実施例では、高速用と低速用のメンバシップ関数を
回転速度40rpmを境界値として切り替えているが、
境界値はこの値に限定するものではない。
In the previous embodiment, the membership functions for high speed and low speed are switched with the rotation speed of 40 rpm as the boundary value.
The boundary value is not limited to this value.

先の実施例では、高速用と低速用の二種類のメンバシッ
プ関数を用いているが、メンバシップ関数としてはこの
二種類に限定するものではなく、中速用のメンバシップ
関数等、複数の速度領域に応じたものを設定してもよい
In the previous example, two types of membership functions, one for high speed and one for low speed, are used, but the membership function is not limited to these two types, and multiple membership functions such as a membership function for medium speed are used. It may be set according to the speed range.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る超音波モータの制御装置の実施例を
示し、第1図(イ)、 ([1)は制御装置のブロック
構成図、第2図(イ)、(ロ)、(ハ)、(ニ)はメン
バシップ関数の関係図、第3図(()、 (0)は超音
波モータの概略構成図、第4図は駆動周波数と出力速度
の関係図、第5図(イ)、 (0)、 (ハ)、(ニ)
は実験結果の制御特性図である。 (1)・・・・・・電圧体、(2)・・・・・・弾性体
、(3)・・川・振動体、(5)・・・・・・電源供給
手段、(6)・旧・・速度検出手段、(7)・・・・・
・目標速度設定手段、(8)・旧・・速度制御手段。
The drawings show an embodiment of the control device for an ultrasonic motor according to the present invention. ), (d) are relationship diagrams of membership functions, Figure 3 ((), (0) are schematic configuration diagrams of ultrasonic motors, Figure 4 is relationship diagrams between drive frequency and output speed, and Figure 5 (I) is a diagram of the relationship between the membership functions. ), (0), (c), (d)
is a control characteristic diagram of experimental results. (1) Voltage body, (2) Elastic body, (3) River/vibration body, (5) Power supply means, (6)・Old...Speed detection means, (7)...
・Target speed setting means, (8)・Old speed control means.

Claims (1)

【特許請求の範囲】  弾性体(2)とその弾性体(2)を励振する圧電体(
1)でなる振動体(3)を備えた進行波型の超音波モー
タに対して、前記圧電体(1)に高周波電力を供給する
電源供給手段(5)と、目標速度を設定する目標速度設
定手段(7)と、回転速度を検出する速度検出手段(6
)と、前記速度検出手段(6)による検出速度と前記目
標速度との速度偏差に対するファジィルールに基づいて
前記電源供給手段(5)の出力周波数を可変制御する速
度制御手段(8)とで構成してある超音波モータの制御
装置であって、 前記速度制御手段(8)に、同一の速度偏差に対する複
数のファジィルールと、速度領域に応じて適用するファ
ジィルールを切り替える切り替え手段を設けてある超音
波モータの制御装置。
[Claims] An elastic body (2) and a piezoelectric body (
power supply means (5) for supplying high frequency power to the piezoelectric body (1), and a target speed for setting a target speed for a traveling wave type ultrasonic motor equipped with a vibrating body (3) consisting of: A setting means (7) and a speed detection means (6) for detecting the rotation speed.
), and a speed control means (8) for variably controlling the output frequency of the power supply means (5) based on a fuzzy rule for a speed deviation between the speed detected by the speed detection means (6) and the target speed. A control device for an ultrasonic motor, wherein the speed control means (8) is provided with a switching means for switching between a plurality of fuzzy rules for the same speed deviation and a fuzzy rule applied according to a speed region. Ultrasonic motor control device.
JP2184657A 1990-07-11 1990-07-11 Controller of ultrasonic motor Pending JPH0471375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2184657A JPH0471375A (en) 1990-07-11 1990-07-11 Controller of ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2184657A JPH0471375A (en) 1990-07-11 1990-07-11 Controller of ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH0471375A true JPH0471375A (en) 1992-03-05

Family

ID=16157072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2184657A Pending JPH0471375A (en) 1990-07-11 1990-07-11 Controller of ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0471375A (en)

Similar Documents

Publication Publication Date Title
JP2637467B2 (en) Vibration type actuator device
US7183691B2 (en) Control apparatus for vibration type actuator and control method thereof
JP2863280B2 (en) Driving method of ultrasonic motor
Wang et al. A modified PI-like fuzzy logic controller for switched reluctance motor drives
Lin Fuzzy adaptive model-following position control for ultrasonic motor
JP3437359B2 (en) Control device of vibration wave drive device
US6472842B1 (en) Self-tuning control of switched-reluctance motor drive system
CN111654218B (en) Switched reluctance motor torque distribution function control system with improved fuzzy control
Izuno et al. Speed tracking servo control system incorporating traveling-wave-type ultrasonic motor and feasible evaluations
JPH06189566A (en) Drive control device for vibration wave motor
JPH0471375A (en) Controller of ultrasonic motor
JPH0471374A (en) Controller of ultrasonic motor
W. Chung, KT Chau Servo speed control of traveling-wave ultrasonic motors using pulse width modulation
JPH0475479A (en) Controller for ultrasonic motor
JP2642783B2 (en) Ultrasonic motor controller
CN111641356B (en) Multi-motor connection system and current hysteresis control method
JPH0475478A (en) Controller for ultrasonic motor
CN208939846U (en) A kind of superimposed pulse speed-adjusting driving system
JPS58172984A (en) Speed controller for dc motor
JPH04222476A (en) Driving and controlling device for ultrasonic motor
CN114900068A (en) Driving device and method for ultrasonic motor
JP2749314B2 (en) Variable speed turbine generator control unit
JPH04165981A (en) Motor controller
JPH01234069A (en) Drive speed controller for vibration wave motor
JP2663416B2 (en) Material testing machine