JPH0470385B2 - - Google Patents

Info

Publication number
JPH0470385B2
JPH0470385B2 JP61045819A JP4581986A JPH0470385B2 JP H0470385 B2 JPH0470385 B2 JP H0470385B2 JP 61045819 A JP61045819 A JP 61045819A JP 4581986 A JP4581986 A JP 4581986A JP H0470385 B2 JPH0470385 B2 JP H0470385B2
Authority
JP
Japan
Prior art keywords
steel
less
toughness
hot forging
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61045819A
Other languages
Japanese (ja)
Other versions
JPS62202054A (en
Inventor
Kenji Aihara
Kazuhiko Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4581986A priority Critical patent/JPS62202054A/en
Publication of JPS62202054A publication Critical patent/JPS62202054A/en
Publication of JPH0470385B2 publication Critical patent/JPH0470385B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、熱間鍛造用非調質鋼に関する。 (従来の技術) 従来にあつても、自動車部品など多くの機械部
品は熱間鍛造により成形された後、焼入れ、焼戻
しからなる調質処理を行い、さらに切削、研磨な
どの機械加工を施して製造されている。かかる調
質処理は部品の機械的性質を所要の値に調整する
ための熱処理として極めて有用であり、従来より
必須の処理と考えられてきた。 しかしながら、今日のように製造ラインの合理
化、生産性の向上が強く叫ばれている状況下で
は、熱処理工程の省略合理化、熱処理の熱エ
ネルギーの省略合理化、焼入れ時の焼き割れ防
止による生産性向上、焼入れ時の変形の防止に
よる生産性の向上等の観点から従来の製造ライン
の形態には多くの改善すべき点がある。 このような従来技術における今日的問題点を一
気に解決する手段として、上述の調質処理を省略
することが考えられ、そのためにVなどの析出強
化元素を添加して組織の微細化と析出強化とを利
用し、鍛造ままで所要特性を備えたいわゆる非調
質型の鍛造用鋼が種々提案されている。 例えば、特公昭60−45250号には、熱間鍛造後
に成形部品を1000℃から550℃の温度範囲を0.7
℃/sec 以下の速度で冷却して、オーステナイ
ト粒中に多角形フエライトを多量に分散させ、実
質的に細粒組織とすることが開示されている。 特開昭59−100256号は、中炭素鋼領域でのTi
の粗粒化抑制効果を利用するものであつて、
Ti/Nの比を限定することを提案している。 特開昭60−103161号には、C:0.05〜0.15%の
範囲内においてCr+Mn=2.20〜5.90に調整する
ことが開示されている。 このように、従来にあつては、鋼の成分と組織
とを調整することで、熱間鍛造後の冷却途上にお
けるV,Nb等の化合物の析出効果を利用した熱
間鍛造ままの非調質鋼部品を得ていたのであつ
た。 しかしながら、これらの従来の非調質鋼部品
は、同じく熱間鍛造による従来の調質鋼部品に比
べて靱性が劣るため、靱性を要求されない限られ
た一部の部品で実用化されているだけで、高強
度、高靱性を要求される重要部品にまで一般的に
実用化することは不可能であつた。 特に、大型の熱間鍛造部品では加工時に負荷を
下げるために、鋼材の加熱温度を1200℃以上にす
る必要があり、このような高温加熱では予め鋼中
にA,V,Nb,Ti等の細粒化元素を添加して
組織の微細化を図つても、これらの元素の化合物
は鍛造加工に先立つ高温加熱時にほとんど分解固
溶してしまつて、その細粒化作用も消失してしま
う。このため、微細化元素による細粒化を利用す
るにはいきおい熱間鍛造後の熱処理を工夫しなけ
ればならず、結局、高強度、高靱性を実現するこ
とは、費用がかかり、従来技術では極めて困難で
あつた。 (発明が解決しようとする問題点) かくして、本発明の目的は、上述のような従来
技術の欠点を解消した、熱間鍛造用、特に大型部
品の熱間鍛造用非調質鋼を提供することである。 本発明の別の目的は、引張強さ80Kgf/mm2
上、好ましくは90Kgf/mm2以上の高強度とuE20
5Kg−m/cm2以上の優れた靱性を備えている熱間
鍛造用非調質鋼を提供することである。 (問題点を解決するための手段) ここに、本発明者らは、かかる目的達成のた
め、種々検討したところ、従来法と全く異なる観
点からの解決手段があることを知り、本発明を完
成させた。 まず、熱間鍛造用の非調質型鋼を実現するとい
う観点から種々検討したところ、次のような知見
を得た。 すなわち、従来からの炭窒化物分散によりオー
ステナイト粒成長阻止作用をもとにしたオーステ
ナイト組織粗大化の防止法が十分その効果を発揮
できないのは、熱間鍛造におけるような1200〜
1300℃というような高温度に加熱する際には、炭
窒化物がことごとく分解してオーステナイト中に
固溶してしまうため、オーステナイト粒の成長阻
止の作用が全く消失してしまうからである。 したがつて、本発明の目的達成には、このよう
な、加熱状態でも分解固溶しない化合物でなけれ
ばならない。このような化合物としてはMnS,
Tin,ZrN,A2O3,SiO2等の非金属介在物が
ある。ちなみに、従来のオーステナイト微細化化
合物であるANの分解温度は1100℃である。 しかしながら、これらの非金属介在物は従来の
製造方法では粗大でまばらにしか分布しておら
ず、そのままでは結晶粒成長の阻止を有効に発揮
し得る状態ではない。また、従来は非金属介在物
は一般に可及的に少なくすることが要望されてお
り、それを積極的に利用するという考えはみられ
なかつた。 そこで種々の実験を重ねたところ、Zrを含有
する製鋼原料を使用することになり、従来であれ
ば粗大でまばらにしか分布していなかつた非金属
介在物のうち、鋼中の硫化物が極めて微細に分散
するようになるばかりか、鋼中の酸化物も極めて
微細に分散するようになることが分かつた。 かかるZr添加の作用により、微細に分散した
硫化物、酸化物が存在することにより、これによ
つて熱間鍛造前の高温加熱時のオーステナイト結
晶粒の粗大化が抑制されているものと思われる。
一方、これらの非金属介在物はそのような高温で
も分解しないため鍛造加工後の高温領域でのオー
ステナイト粒の粒成長も抑制されると同時に、微
細に分散した多数の介在物が変態の核として作用
するため、これらの作用が複合して鍛造まゝ材に
おける最終組織は微細化される結果、鋼の靱性が
向上するのである。 またさらに、硫化物、酸化物が微細に分散する
ことにより、今度はその他の鋼中介在物も微細分
散することになり、鋼の靱性がさらに一層改善さ
れるのである。 次に、熱間鍛造材の強度と靱性の改善という観
点から検討したところ、Bを0.01%以下添加する
ことによつてMn,Cr,Mo、その他の合金元素
を増加させることなく、90Kgf/mm2以上に強度を
上げることができ、更に、Zrとの複合添加によ
つてベイナイト変態に先立つてオーステナイト粒
界に発生する粗大なフエライト組織の生成が防止
されてベイナイト組織の強度と靱性が改善される
こと、しかもそれが上述のような熱間鍛造まま材
においてとくに顕著であること、を知り、本発明
を完成した。 なお、従来の非調質型鋼では、その組織がフエ
ライト−パーライト組織であるため、これにBを
添加するとベイナイト組織が混在するようにな
り、組織が不均一となり、さらにはV,Nb化合
物の析出強化作用が消失すると考えられていた。 しかしながら、本発明によれば予想外にもV,
Nb添加によつて強度および靱性のさらなる改善
がみられた。 よつて、本発明の要旨とするところは、 重量%で、 C:0.05〜0.35%,Si:0.02〜2.0%、 Mn:0.1〜3.0%,P:0.05%以下、 S:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%、 Ti:0.003〜0.3%,Zr:0.001〜0.5%、 A:0.001〜0.1%,N:0.001〜0.02%、 ならびに、所望により次の各群(1)ないし(3)の少
なくとも1種をさらに含有し、 (1) Cu:0.01〜1.0%,Ni:0.01〜2.0%,
Mo:0.01〜1.0%,V:0.001〜1.0%、および
Nb:0.001〜0.30%の1種もしくは2種以上 (2) S:0.05〜0.5%,Pb:0.005〜0.5%,Ca:
0.001〜0.05%,Te:0.001〜0.2%,Se:0.01〜
0.5%,およびBi:0.01〜0.5%の1種もしくは
2種以上、および (3) 希土類元素少なくとも1種、合計で0.005〜
0.5%、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼である。 このように、本発明は、B添加とZr添加との
組合せを本質的な特徴とするものであり、本発明
によれば、強度90Kgf/mm2以上で、uE20が5Kg−
m/cm2以上の高い靱性を持つ非調質型の熱間鍛造
材が得られるのである。 (作用) 次に、本発明において、鋼組成を上述のように
限定した理由を詳述する。 C: Cは0.35%を越えるとベイナイト組織の強度が
非常に高くなつて切削や矯正加工が困難となると
共に靱性が著しく劣化する。また熱間鍛造部品の
大きさや各部位における冷却速度の相違に強度靱
性が大きく依存し、熱間鍛造成品の機械的性質の
バラツキが非常に大きくなる。したがつて、C含
有量の上限を0.35%とした。C量が0.05%未満と
なるとベイナイト組織の強度が低く、機械構造用
部品としての所要強度が得られなくなるので、
0.05%を下限とした。 Si: Siは強度を確保するのに非常に有効な元素であ
るが、2%を越えるとフエライト地が脆化して靱
性が著しく劣化するので上限を2%、好ましくは
1.5%とした。また、Siは溶鋼の脱酸に有用な元
素として活用され、含有量が0.02%未満では脱酸
が不充分になり鋼の成分、組織、性質が不安定に
なるので下限を0.02%とし、好ましくは0.05%と
した。 Mn: Mnは強靱化作用が大きく極めて有用な元素で
あり、0.1%以上の添加で効果があらわれる。含
有量が0.1%未満になると熱間加工割れを生じ、
また0.3%以下では強化作用が不足して所要の組
織と強度が得られなくなるので、下限が0.1%以
上、好ましくは0.3%以上とした。含有量が3%
を越えると靱性を損なう異常粗大組織があらわれ
る。このため上限を3%以下、好ましくは2.5%
以下とした。 P,S: PおよびSはいずれもの靱性を劣化させ、それ
ぞれ限定範囲の上限を越えると従来の熱間鍛造用
非調質鋼よりもすぐれた靱性を得ることが困難に
なるので、P:0.05%以下、S:0.05%以下とし
た。これらの元素はなるべく微量にすることが好
ましいが、被削性の改善をはかるべくS量を上限
値以上に含有してもよい。 Cr: Crは強度上昇に有効であるが、添加量が3%
を越えると、靱性が劣化するので上限を3%とし
た。熱間鍛造部品の寸法が小さい時や冷却が速い
ときなどではCr含有量が1.5%を越えると、局部
的に硬化組織が現れて靱性が低下することがある
ので、好ましくは1.5%を上限とした。 B: Bは鋼の組織を改善して強靱化をはか図るのに
極めて有効な元素である。従来の熱間鍛造用非調
質鋼ではフエライトパーライト組織の中にベイナ
イトが混在して組織が不均一になること、および
Vの析出硬化作用が減少することからBの添加は
考えられなかつた。しかし、本発明によれば、か
かる従来の認識とは異なり、本来母地をベイナイ
ト組織としているためB添加をこれまでの常識に
反して積極的に添加、活用するのである。 他の合金元素が多い場合、あるいは熱間鍛造部
品の寸法が小さくて冷却速度が大きい場合などで
は、Bの添加量は少なくてよい。 Bの含有量は0.01%を越えると脆化が生じるの
で、この値を上限とし、Bの焼入れ性向上効果が
認められるようになる0.0005%を下限値とした。 Ti: TiはBの作用を有効ならしめるために0.003%
以上含有される。また、Tiにはオーステナイト
粒を微細にして熱間鍛造後の組織を微細にする作
用もあるが、0.3%を越えると、逆に高温加熱す
る時のオーステナイト粒が粗大化するとともに地
の靱性を著しく劣化させるので、この値を上限値
とした。 Zr: Zrを含有する添加剤で処理して、極く微量の
Zr含有にとどめると介在物が非常に均一微細に
分散して熱間鍛造後の靱性が向上する。この場
合、Zr含有量が現在の分析手段では定量的に含
有量を分析することが容易でない極微量であつて
も靱性改善の効果が認められるが、下限値を
0.001%とした。Zr含有量が増加すると上記の介
在物微細均一分散による効果に加えて非常に微細
なZr化合物が生成析出することにより、熱間鍛
造後の組織微細化と靱性向上がさらに効果的にも
たらされる。このときのZr化合物は、例えば
1100℃以上で鍛造加工を加える場合、オーステナ
イトの結晶の再結晶を促進しその後の結晶粒粗大
化を抑制する作用も併せて有する。更に高温加熱
鍛造した後放冷する場合、粗大なオーステナイト
粒から比較的ゆるやかな冷却速度でベイナイト組
織を生成させようとするとオーステナイト粒界か
ら粗大なフエライト結晶が成長しやすい。 Bを添加した鋼でとくにこの傾向が強く、機械
的性質の劣化を招きやすいが、Bと共にZrを添
加することによつて、この粗大フエライトの生成
が抑制されると共に粒内のベイナイトも一層微細
化されて、ベイナイト組織が非常に強靱化され
る。この場合、Zr含有量が0.3%を越えると靱性
が劣化するので、上限を0.3%とした。 A: Aは脱酸元素として非常に有用な元素であ
り、含有量が0.001%未満では気泡を生じたり表
面疵が生成するなどのトラブルを生じやすい。ま
た、0.1%を越えると熱間加工割れを起こしやす
くなるので、下限値を0.001%、上限を0.1%とし
た。 N: Nは0.02%を越えると、Bの効果を減少せしめ
たり、鋼中の気泡や表面疵の生成をもたらす等の
トラブルを生じる。固溶Nは靱性を劣化させるの
でなるべく微量にするのが好ましいが、一方、鋼
中の窒化物は高温加熱、熱間鍛造の時のオーステ
ナイト粒の粗大化を防止する作用があつて、N含
有量が0.001%未満では組織の粗大化が生じるの
で、この値を下限値とした。 V,Nb: これらの元素は熱間鍛造後の組織を均一微細な
ベイナイト組織にすると共に、ベイナイトの強
度、靱性を向上させるのに有効なものであり、1
種または2種添加される。こうした強靱化作用を
具現するためには、V,Nbは0.001%以上が必要
であるので、この値を下限値とした。また、
V1.0%,Nb0.3%を越えると組織が著しく脆化し
て靱性が劣化するので、これらをそれぞれの上限
値とした。 Cu,Ni,Mo: これらの元素はいずれも熱間鍛造後の組織を均
一微細なベイナイト組織にするのに有効なもので
あり、鍛造部品のサイズと形状に応じて1種また
は2種以上添加される。こうした作用を具現する
ためには、それぞれ0.01%以上が必要であるの
で、これを下限値とした。また、Cu:1.0%,
Ni:2.0%,Mo:1%を越えると熱間鍛造後の
組織は異常粗大組織を伴うようになり靱性を大き
く損なうので、これらをそれぞれの上限値とし
た。 したがつて、本発明にあつて、Cu0.01〜1.0%,
Ni:0.01〜2.0%,Mo:0.01〜1.0%,V;0.001
〜1.0%,Nb:0.001〜0.3%とした。 希土類元素: 高温加熱の熱間鍛造の場合には、特に希土類元
素を添加することにより、靱性を大きく改善する
ことができる。この向上効果はZr処理鋼で一層
大きくあらわれており、含有量0.001%を越えて
その効果が認められる。希土類元素の添加量が
0.5%を越えても向上効果は飽和してしまうので、
上限値を0.5%とした。 被削性向上元素: 被削性を向上させることが要求される場合、
S,Pb,Ca,Te,Se,Biの1種もしくは2種以
上の添加が有効である。S:0.05%,Pb:0.005
%,Ca:0.001%,Te:0.001%,Se:0.01%,
Bi:0.01%がそれぞれ有効に作用する最小含有量
であるので、これらを下限値とした。S:0.5%,
Pb:0.5%,Ca:0.05%,Te:0.2%,Se:0.5%,
Bi0.5%を越えて含有ても被削性向上効果は飽和
し、むしろ靱性が大きく劣化するので、また熱間
加工割れをおこすため、これらを上限値とした。 本発明は、上述のような鋼組織を有する熱間鍛
造用非調質鋼に関するものであるが、本発明にお
けるZr添加の効果を最大限に発揮させるために
は、鋳込後1400〜1000℃間に冷却速度を2℃/分
以上とするのが好ましい。介在物や化合物の微細
均一分散という点に関していえば冷却速度は大き
いほど有効であるが、表面割れ発生などのトラブ
ルを生じやすくなるので、トラブルを回避できる
範囲内で可能な限り冷却速度をとることが望まし
い。なお、所望により非金属介在物の量、種類を
予め調整するには、例えば脱酸の程度を調節する
とか、その他、すでに当業者には良く知られた手
段によつて適宜行うことができる。 このようにして得られた本発明にかかる熱間鍛
造用鋼は、一般には1200〜1300℃に加熱されてか
ら1050℃以上の仕上り温度で熱間鍛造され、放冷
され、適宜機械加工後、非調質型製品となる。こ
のときの熱間鍛造については何ら制限はなく、従
来のものであつてもよく、またさらに従来の適宜
オーステナイト微細化処理をこの熱間鍛造後に行
つてもよい。 なお、最終製品にいたるまでの過程の中で少な
くとも一回以上150〜650℃に加熱することによつ
て、さらに、降伏強度と延性靱性が改善される。 次に、本発明を実施例によつてさらに詳細に説
明する。 実施例 1 第1表に示す化学成分の鋼を200Kg低周波誘導
炉で溶製し、鋳込み後、型抜きをしてから断続的
に気水噴霧冷却を反復して施して1400〜1000℃の
間を5.2℃/分で冷却し、得られた鋼塊を一辺80
mmの角棒に鍛伸したものを次の熱間鍛造実験の素
材に用いた。 この一辺80mmの角棒を1250℃に加熱した後1100
℃の鍛造仕上り温度で一辺30mmの角棒に熱間鍛造
後自然放冷した。 上記のシユミレーシヨン熱間鍛造材の中心部か
らJIS 14A号の引張試験片(平行部直径10mm)と
JIS 3号シヤルピー試験片を製作して機械的性質
を調査した。 得られた特性を第2表にまとめて記載した。
(Industrial Application Field) The present invention relates to non-tempered steel for hot forging. (Conventional technology) Even in the past, many mechanical parts such as automobile parts are formed by hot forging, then subjected to heat treatment consisting of quenching and tempering, and then subjected to machining such as cutting and polishing. Manufactured. Such thermal refining treatment is extremely useful as a heat treatment for adjusting the mechanical properties of parts to desired values, and has traditionally been considered an essential treatment. However, in today's situation where there is a strong demand for rationalization of production lines and improvement of productivity, it is necessary to improve productivity by streamlining the elimination of heat treatment processes, streamlining the elimination of heat energy for heat treatment, and preventing quench cracking during quenching. There are many points that should be improved in the conventional manufacturing line form from the viewpoint of improving productivity by preventing deformation during hardening. As a means to solve these current problems in the conventional technology at once, it may be possible to omit the above-mentioned heat treatment, and for this purpose, a precipitation strengthening element such as V is added to refine the structure and strengthen the precipitation. Various types of so-called non-thermal forging steels have been proposed that utilize the forging process and have the required properties as-forged. For example, in Japanese Patent Publication No. 60-45250, the temperature range of 1000℃ to 550℃ after hot forging is 0.7℃.
It is disclosed that a large amount of polygonal ferrite is dispersed in austenite grains by cooling at a rate of .degree. C./sec or less to form a substantially fine grain structure. JP-A No. 59-100256 describes Ti in the medium carbon steel area.
It utilizes the coarsening suppressing effect of
It is proposed to limit the Ti/N ratio. JP-A-60-103161 discloses that Cr+Mn is adjusted within the range of 0.05 to 0.15% and Cr+Mn=2.20 to 5.90. In this way, in the past, by adjusting the composition and structure of the steel, it was possible to produce a non-tempered steel as hot forged by utilizing the precipitation effect of compounds such as V and Nb during cooling after hot forging. It was because they were getting steel parts. However, these conventional non-tempered steel parts have inferior toughness compared to conventional hot-forged steel parts, so they are only put into practical use in a limited number of parts that do not require high toughness. Therefore, it has been impossible to put it into practical use in important parts that require high strength and toughness. In particular, for large hot forged parts, it is necessary to heat the steel material to 1200℃ or higher in order to reduce the load during processing. Even if grain refining elements are added to refine the structure, most of the compounds of these elements decompose into solid solution during high temperature heating prior to forging, and their grain refining effect also disappears. For this reason, in order to take advantage of grain refinement by refining elements, it is necessary to devise heat treatment after vigorous hot forging, and in the end, achieving high strength and high toughness is expensive and cannot be achieved with conventional technology. It was extremely difficult. (Problems to be Solved by the Invention) Thus, an object of the present invention is to provide a non-tempered steel for hot forging, particularly for hot forging of large parts, which eliminates the drawbacks of the prior art as described above. That's true. Another object of the present invention is to provide a hot forging product having high strength with a tensile strength of 80 Kgf/mm 2 or more, preferably 90 Kgf/mm 2 or more, and excellent toughness with a uE 20 of 5 Kg-m/cm 2 or more. The objective is to provide non-thermal steel. (Means for solving the problem) In order to achieve the above object, the present inventors conducted various studies and found that there was a solution from a completely different perspective from the conventional method, and completed the present invention. I let it happen. First, we conducted various studies from the perspective of realizing a non-temperature type steel for hot forging, and the following knowledge was obtained. In other words, the conventional method of preventing austenite structure coarsening based on the effect of inhibiting austenite grain growth by dispersing carbonitrides cannot fully demonstrate its effect when the temperature is 1200 to
This is because when heating to a high temperature such as 1300°C, all the carbonitrides are decomposed and dissolved in the austenite, completely eliminating the effect of inhibiting the growth of austenite grains. Therefore, in order to achieve the object of the present invention, it is necessary to use a compound that does not decompose into solid solution even under heated conditions. Such compounds include MnS,
There are non-metallic inclusions such as Tin, ZrN, A 2 O 3 and SiO 2 . Incidentally, the decomposition temperature of AN, which is a conventional austenite refining compound, is 1100°C. However, in the conventional manufacturing method, these nonmetallic inclusions are coarse and only sparsely distributed, and as they are, they are not in a state where they can effectively inhibit crystal grain growth. Furthermore, in the past, it has generally been desired to reduce the number of nonmetallic inclusions as much as possible, and there has been no idea of actively utilizing them. After conducting various experiments, it was decided to use a steelmaking raw material containing Zr, and among the nonmetallic inclusions that were conventionally coarse and sparsely distributed, sulfides in the steel were significantly reduced. It was found that not only the steel became finely dispersed, but also the oxides in the steel became extremely finely dispersed. It is thought that the presence of finely dispersed sulfides and oxides due to the effect of Zr addition suppresses the coarsening of austenite crystal grains during high-temperature heating before hot forging. .
On the other hand, since these nonmetallic inclusions do not decompose even at such high temperatures, grain growth of austenite grains in the high temperature region after forging is suppressed, and at the same time, many finely dispersed inclusions act as transformation nuclei. These effects combine to refine the final structure of the forged material, improving the toughness of the steel. Furthermore, by finely dispersing sulfides and oxides, other inclusions in the steel are also finely dispersed, and the toughness of the steel is further improved. Next, we investigated from the perspective of improving the strength and toughness of hot forged materials, and found that by adding 0.01% or less of B, we could achieve 90Kgf/mm without increasing Mn, Cr, Mo, and other alloying elements. The strength can be increased to 2 or more, and furthermore, the combined addition with Zr prevents the formation of coarse ferrite structures that occur at austenite grain boundaries prior to bainite transformation, improving the strength and toughness of bainite structures. The present invention was completed based on the knowledge that this is particularly noticeable in hot-forged as-built materials such as those mentioned above. In addition, since the structure of conventional non-tempered steel is a ferrite-pearlite structure, when B is added to it, a bainite structure becomes mixed, the structure becomes non-uniform, and furthermore, V and Nb compounds precipitate. It was thought that the reinforcing effect would disappear. However, according to the present invention, unexpectedly V,
Further improvements in strength and toughness were observed with the addition of Nb. Therefore, the gist of the present invention is as follows: In weight%, C: 0.05 to 0.35%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, S: 0.05% or less, Cr : 0.1~3.0%, B: 0.0005~0.01%, Ti: 0.003~0.3%, Zr: 0.001~0.5%, A: 0.001~0.1%, N: 0.001~0.02%, and each of the following groups ( Further containing at least one of (1) to (3), (1) Cu: 0.01 to 1.0%, Ni: 0.01 to 2.0%,
Mo: 0.01~1.0%, V: 0.001~1.0%, and
Nb: 0.001 to 0.30%, one or more types (2) S: 0.05 to 0.5%, Pb: 0.005 to 0.5%, Ca:
0.001~0.05%, Te: 0.001~0.2%, Se: 0.01~
0.5%, and Bi: 0.01~0.5% of one or more types, and (3) at least one rare earth element, total of 0.005~
It is a non-thermal steel for hot forging, consisting of 0.5% Fe and unavoidable impurities. As described above, the present invention is essentially characterized by the combination of B addition and Zr addition, and according to the present invention, the strength is 90Kgf/mm 2 or more and uE 20 is 5Kg-
A non-thermal hot forged material with high toughness of m/cm 2 or higher can be obtained. (Function) Next, the reason why the steel composition is limited as described above in the present invention will be explained in detail. C: When C exceeds 0.35%, the strength of the bainite structure becomes extremely high, making cutting and straightening difficult, and the toughness significantly deteriorates. In addition, the strength and toughness largely depend on the size of the hot-forged part and the cooling rate at each location, resulting in very large variations in the mechanical properties of the hot-forged product. Therefore, the upper limit of the C content was set to 0.35%. If the C content is less than 0.05%, the strength of the bainite structure will be low and the strength required for mechanical structural parts will not be obtained.
The lower limit was set at 0.05%. Si: Si is a very effective element for ensuring strength, but if it exceeds 2%, the ferrite base becomes brittle and the toughness deteriorates significantly, so the upper limit should be set at 2%, preferably
It was set at 1.5%. In addition, Si is utilized as an element useful for deoxidizing molten steel, and if the content is less than 0.02%, deoxidation will be insufficient and the composition, structure, and properties of the steel will become unstable, so the lower limit is set at 0.02%, and preferably was set at 0.05%. Mn: Mn is an extremely useful element with a strong toughening effect, and is effective when added in an amount of 0.1% or more. If the content is less than 0.1%, hot processing cracks will occur,
Furthermore, if it is less than 0.3%, the reinforcing effect is insufficient and the required structure and strength cannot be obtained, so the lower limit is set to 0.1% or more, preferably 0.3% or more. Content is 3%
If this value is exceeded, an abnormal coarse structure appears that impairs toughness. For this reason, the upper limit should be 3% or less, preferably 2.5%.
The following was made. P, S: Both P and S deteriorate the toughness, and if the upper limit of each limited range is exceeded, it becomes difficult to obtain toughness superior to conventional non-tempered steel for hot forging, so P: 0.05 % or less, S: 0.05% or less. Although it is preferable that these elements be contained in as small a quantity as possible, the S content may be contained above the upper limit value in order to improve machinability. Cr: Cr is effective in increasing strength, but the amount added is 3%.
If it exceeds this, the toughness deteriorates, so the upper limit was set at 3%. If the Cr content exceeds 1.5% when the dimensions of hot-forged parts are small or cooling is rapid, a hardened structure may appear locally and the toughness may decrease, so the upper limit is preferably 1.5%. did. B: B is an extremely effective element for improving the structure of steel and making it tougher. In conventional non-tempered steel for hot forging, the addition of B could not be considered because bainite is mixed in the ferrite pearlite structure, making the structure non-uniform, and the precipitation hardening effect of V is reduced. However, according to the present invention, contrary to such conventional understanding, since the base material originally has a bainite structure, B is actively added and utilized contrary to conventional common sense. When other alloying elements are present in large quantities, or when the dimensions of the hot forged parts are small and the cooling rate is high, the amount of B added may be small. If the content of B exceeds 0.01%, embrittlement will occur, so this value was set as the upper limit, and the lower limit was set at 0.0005%, at which the effect of B on improving hardenability is recognized. Ti: Ti is 0.003% to make the action of B effective
Contained above. Additionally, Ti has the effect of making the austenite grains finer and making the structure after hot forging finer, but if it exceeds 0.3%, the austenite grains will become coarser when heated at high temperatures, and the toughness of the base will deteriorate. Since it causes significant deterioration, this value was set as the upper limit. Zr: Treated with additives containing Zr to release extremely small amounts of Zr.
If the Zr content is kept, inclusions will be dispersed very uniformly and finely, improving the toughness after hot forging. In this case, the effect of improving toughness can be recognized even if the Zr content is a very small amount that is difficult to quantitatively analyze using current analytical methods.
It was set as 0.001%. When the Zr content increases, in addition to the above-mentioned effect of fine and uniform dispersion of inclusions, very fine Zr compounds are generated and precipitated, which further effectively refines the structure and improves toughness after hot forging. The Zr compound at this time is, for example,
When forging is performed at a temperature of 1100°C or higher, it also has the effect of promoting recrystallization of austenite crystals and suppressing subsequent grain coarsening. Furthermore, in the case of cooling after high-temperature heating and forging, if a bainite structure is attempted to be generated from coarse austenite grains at a relatively slow cooling rate, coarse ferrite crystals tend to grow from austenite grain boundaries. This tendency is particularly strong in steels containing B, which tends to lead to deterioration of mechanical properties, but by adding Zr together with B, the formation of coarse ferrite is suppressed, and the bainite within the grains becomes even finer. The bainite structure becomes extremely tough. In this case, if the Zr content exceeds 0.3%, the toughness will deteriorate, so the upper limit was set at 0.3%. A: A is a very useful element as a deoxidizing element, and if the content is less than 0.001%, problems such as bubbles and surface flaws are likely to occur. In addition, if it exceeds 0.1%, hot working cracks are likely to occur, so the lower limit was set to 0.001% and the upper limit was set to 0.1%. N: If N exceeds 0.02%, it may reduce the effect of B or cause problems such as the formation of bubbles and surface flaws in the steel. Solid solution N degrades toughness, so it is preferable to keep the amount as small as possible. On the other hand, nitrides in steel have the effect of preventing coarsening of austenite grains during high-temperature heating and hot forging. If the amount is less than 0.001%, coarsening of the structure will occur, so this value was set as the lower limit. V, Nb: These elements are effective in making the structure after hot forging into a uniform and fine bainite structure and improving the strength and toughness of bainite.
A seed or two are added. In order to realize such a toughening effect, V and Nb need to be at least 0.001%, so this value was set as the lower limit. Also,
When V1.0% and Nb0.3% are exceeded, the structure becomes extremely brittle and the toughness deteriorates, so these were set as the respective upper limit values. Cu, Ni, Mo: All of these elements are effective in making the structure after hot forging into a uniform and fine bainite structure, and one or more of these elements may be added depending on the size and shape of the forged part. be done. In order to realize these effects, 0.01% or more of each is required, so this was set as the lower limit. Also, Cu: 1.0%,
If Ni: 2.0% and Mo: 1% are exceeded, the structure after hot forging becomes accompanied by an abnormally coarse structure, which greatly impairs toughness, so these upper limits were set for each. Therefore, in the present invention, Cu0.01-1.0%,
Ni: 0.01~2.0%, Mo: 0.01~1.0%, V; 0.001
~1.0%, Nb: 0.001~0.3%. Rare earth elements: In the case of hot forging using high temperature heating, the toughness can be greatly improved by adding rare earth elements in particular. This improvement effect is even more pronounced in Zr-treated steel, and the effect is observed when the Zr content exceeds 0.001%. The amount of rare earth elements added is
Even if it exceeds 0.5%, the improvement effect will be saturated, so
The upper limit was set at 0.5%. Machinability improving elements: When it is required to improve machinability,
Addition of one or more of S, Pb, Ca, Te, Se, and Bi is effective. S: 0.05%, Pb: 0.005
%, Ca: 0.001%, Te: 0.001%, Se: 0.01%,
Bi: 0.01% is the minimum content for each to act effectively, so these were set as the lower limit values. S: 0.5%,
Pb: 0.5%, Ca: 0.05%, Te: 0.2%, Se: 0.5%,
If the Bi content exceeds 0.5%, the machinability improvement effect is saturated, and the toughness is rather significantly deteriorated, and hot working cracks may occur, so these are set as upper limits. The present invention relates to a non-thermal steel for hot forging having the above-mentioned steel structure, but in order to maximize the effect of Zr addition in the present invention, it is necessary to It is preferable that the cooling rate be 2° C./min or more during this period. In terms of fine and uniform dispersion of inclusions and compounds, a higher cooling rate is more effective, but this increases the likelihood of problems such as surface cracking, so it is important to set the cooling rate as fast as possible within the range that can avoid problems. is desirable. Note that, if desired, the amount and type of nonmetallic inclusions can be adjusted in advance by, for example, adjusting the degree of deoxidation, or by other means already well known to those skilled in the art. The hot forging steel according to the present invention thus obtained is generally heated to 1200 to 1300°C, then hot forged at a finishing temperature of 1050°C or higher, allowed to cool, and then machined as appropriate. It becomes a non-temperature product. There is no restriction on the hot forging at this time, and it may be a conventional one, and a conventional austenite refining treatment may be further performed after this hot forging. Note that the yield strength and ductile toughness are further improved by heating the product to 150 to 650°C at least once during the process leading to the final product. Next, the present invention will be explained in more detail with reference to Examples. Example 1 A 200Kg steel with the chemical composition shown in Table 1 was melted in a low-frequency induction furnace, and after casting and cutting, it was repeatedly cooled with air and water spray intermittently to a temperature of 1400 to 1000℃. Cool the steel ingot at a rate of 5.2°C/min.
A square bar with a diameter of mm was forged and used as the material for the next hot forging experiment. After heating this square bar with a side of 80mm to 1250℃, 1100℃
After hot forging into a square bar with a side of 30 mm at a forging finish temperature of °C, it was allowed to cool naturally. A JIS No. 14A tensile test piece (parallel part diameter 10 mm) was taken from the center of the simulation hot forged material above.
JIS No. 3 Shapey test pieces were manufactured and their mechanical properties were investigated. The obtained properties are summarized in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1表および第2表に示すように、まず、鋼記
号No.41は、従来の熱間鍛造用非調質鋼、鋼記号No.
42は中低CのMn−Cr−B鋼である。これらの従
来鋼では引張強さが80Kgf/mm2以上の熱間鍛造部
品を作ることは可能であるが、uE20が5Kg−m/
cm2以上を得ることはできず、uE-40はほぼ完全な
脆性破壊になつている。 鋼記号No.1〜5はC量の効果をみたものであ
り、鋼記号No.1はCが低く、引張強さが70Kgf/
mm2に達していないため目的に合わない。 鋼記号No.6〜8はSi量の効果をみたものであ
り、Si=2.0%になると、靱性はやや低下するが、
目標値は越えている。 鋼記号No.9〜11はMn量の効果をみたものであ
り、鋼記号No.11になると熱間鍛造放冷まで引張強
さは高いが、降伏点が比較的低く、靱性も目標ギ
リギリであるが、目標値を越えた性質が得られて
いる。 鋼記号No.12〜13は、Cr量の効果をみたもので
あつて、鋼記号No.12の0.03%では強度が不足す
る。 鋼記号No.14はB量の効果をみたもので、0.0090
%ではわずかに靱性が下がる傾向がみられるもの
の目標を実現している。 鋼記号No.15〜17はZrの効果をみたものであつ
て、鋼記号No.42と鋼記号No.10、鋼記号No.15〜16と
を比較すると、Zrの効果は明らかであるが、鋼
記号No.17になると、靱性の劣化が見られる。 鋼記号No.18〜20はZrとBの複合添加の効果を
みたもので、B非添加のNo.18では強度がかろうじ
て80Kgf/mm2をこえているものの、uE20は5Kg−
m/cm2に達していない。Bを単独で添加したNo.19
で強度が86.2Kgf/mm2に上昇しているが、靱性の
向上は認め難い。ZrとBを複合添加した本発明
鋼のNo.20では強度、靱性ともに大幅に向上してい
る。 鋼記号No.21〜22はTiの効果をみたものである。 鋼記号No.23〜29は、Cu,Ni,Mo,V,Nb
の複合添加系の例である。 鋼記号No.30S含有量を高めて被削性改善をはか
つた場合の強度と靱性をみたもので、鋼記号No.
41,42の従来鋼よりもすぐれた性質になつている
のがわかる。 鋼記号No.31〜32はPbを添加した場合、鋼記号
No.33〜34はTeを添加した場合の結果で、いずれ
も性質の劣化は少ない。 鋼記号No.35〜36は、Ca−S−Teの複合添加、
鋼記号No.37はSe添加、鋼記号No.38はBi添加の各
効果をみたものであつて、いずれも従来鋼よりも
すぐれた性質を示している。 鋼記号No.39〜40はS含有量の高い鋼でCeを添
加したもので、鋼記号No.30と比べると希土類元素
であるCe添加による靱性向上が認められる。
[Table] As shown in Tables 1 and 2, steel symbol No. 41 is the conventional non-temperature steel for hot forging, steel symbol No.
42 is a medium-low C Mn-Cr-B steel. With these conventional steels, it is possible to make hot forged parts with a tensile strength of 80Kgf/mm2 or more , but it is possible to make hot forged parts with a tensile strength of 80Kgf/mm2 or more, but it is possible to make hot forged parts with a tensile strength of 5Kgf/mm
It is not possible to obtain more than cm 2 , and uE -40 has almost completely brittle fracture. Steel symbols No. 1 to 5 are based on the effect of C content, and steel symbol No. 1 has low C and tensile strength of 70Kgf/
It is not fit for purpose because it does not reach mm 2 . Steel codes No. 6 to 8 are based on the effect of Si content, and when Si = 2.0%, toughness decreases slightly, but
The target value has been exceeded. Steel symbols No. 9 to 11 are based on the effect of Mn content, and steel symbol No. 11 has high tensile strength until hot forging and cooling, but the yield point is relatively low and the toughness is just below the target. However, properties exceeding the target values were obtained. Steel symbols No. 12 to 13 are based on the effect of the Cr content, and steel symbol No. 12, which is 0.03%, lacks strength. Steel symbol No. 14 is based on the effect of B content, which is 0.0090.
%, the target was achieved although there was a slight tendency for the toughness to decrease. Steel symbols No. 15 to 17 are based on the effect of Zr, and when comparing steel symbol No. 42, steel symbol No. 10, and steel symbol No. 15 to 16, the effect of Zr is clear. , when the steel code reaches No. 17, a deterioration in toughness can be seen. Steel codes No. 18 to 20 are based on the effect of combined addition of Zr and B. Although No. 18 without B addition barely exceeds 80Kgf/ mm2 in strength, uE 20 has a strength of 5Kg-
m/cm 2 has not been reached. No.19 with B added alone
Although the strength has increased to 86.2 Kgf/ mm2 , it is difficult to recognize any improvement in toughness. No. 20, the steel of the present invention containing a combination of Zr and B, has significantly improved strength and toughness. Steel symbols No. 21 to 22 are based on the effect of Ti. Steel symbols No. 23 to 29 are Cu, Ni, Mo, V, Nb
This is an example of a complex additive system. Steel Symbol No. 30This shows the strength and toughness when machinability is improved by increasing the S content. Steel Symbol No.
It can be seen that the properties are superior to conventional steels No. 41 and 42. Steel symbols No. 31 to 32 are steel symbols when Pb is added.
Nos. 33 to 34 are the results when Te is added, and in all cases there is little deterioration in properties. Steel symbols No. 35 to 36 are composite additions of Ca-S-Te,
Steel code No. 37 shows the effects of Se addition, and steel code No. 38 shows the effects of Bi addition, and both show properties superior to conventional steel. Steel codes No. 39 to 40 are steels with high S content and Ce added, and compared to steel code No. 30, it is recognized that the toughness is improved due to the addition of Ce, which is a rare earth element.

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.05〜0.03%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%.P:0.05%以下、 S:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%,Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%の1
種もしくは2種を含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。 2 重量%で、 C:0.05〜0.03%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%.P:0.05%以下、 S:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%、Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%の1
種もしくは2種を含有し、 さらに、 Cu:0.01〜1.0%,Ni:0.01〜2.0%、および
Mo:0.01〜1.0%の1種もしくは2種以上含有
し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。 3 重量%で C:0.05〜0.30%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%,P:0.05%以下、 S:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%,Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%の1
種もしくは2種を含有し、 また、さらに、 希土類元素を少なくとも1種、合計で0.005〜
0.5%含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。 4 重量%で、 C:0.05〜0.03%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%,P:0.05%以下、 S:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%,Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%、の
1種もしくは2種を含有し、 さらに、 Cu:0.01〜1.0%,Ni:0.01〜2.0%、および
Mo:0.01〜1.0%の1種もしくは2種以上を含有
し、 また、さらに、 希土類元素を少なくとも1種、合計で0.005〜
0.5%含有し、 残部Feおよび不可避的不純物 からなる熱間鍛造用非調質鋼。 5 重量%で、 C:0.05〜0.03%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%,P:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%,Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%の1
種もしくは2種を含有し、 さらに、 S:0.05〜0.5%,Pb:0.005〜0.5%、 Ca:0.001〜0.05%,Te:0.001〜0.2%、 Se:0.01〜0.5%,Bi:0.01〜0.5% の1種もしくは2種以上を含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。 6 重量%で、 C:0.05〜0.03%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%,P:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%,Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%の1
種もしくは2種を含有し、 さらに、 Cu:0.01〜1.0%,Ni:0.01〜2.0%、および
Mo:0.01〜1.0%の1種もしくは2種以上を含有
し、 さらに、 S:0.05〜0.5%,Pb:0.005〜0.5%、 Ca:0.001〜0.05%,Te:0.001〜0.2%、 Se:0.01〜0.5%,Bi:0.01〜0.5% の1種もしくは2種以上を含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。 7 重量%で、 C:0.05〜0.30%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%,P:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%,Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%の1
種もしくは2種を含有し、 さらに、 S:0.05〜0.5%,Pb:0.005〜0.5%、 Ca:0.001〜0.05%,Te:0.001〜0.2%、 Se:0.01〜0.5%,Bi:0.01〜0.5% の1種もしくは2種以上を含有し、 また、さらに、 希土類元素を少なくとも1種、合計で0.005〜
0.5%含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。 8 重量%で、 C:0.05〜0.30%未満、Si:0.02〜2.0%、 Mn:0.1〜3.0%,P:0.05%以下、 Cr:0.1〜3.0%、 B:0.0005〜0.01%,Ti:0.003〜0.3%、 Zr:0.001〜0.5%,Al:0.001〜0.1%、 N:0.001〜0.02%、 さらに、 V:0.001〜1.0%およびNb:0.001〜0.30%、の
1種もしくは2種を含有し、 さらに、 Cu:0.01〜1.0%,Ni:0.01〜2.0%、および
Mo:0.01〜1.0%の1種もしくは2種以上を含有
し、 さらに、 S:0.05〜0.5%,Pb:0.005〜0.5%、 Ca:0.001〜0.05%,Te:0.001〜0.2%、 Se:0.01〜0.5%、Bi:0.01〜0.5% の1種もしくは2種以上を含有し、 また、さらに 希土類元素を少なくとも1種、合計で0.005%
〜0.5%含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。
[Claims] 1% by weight: C: 0.05 to less than 0.03%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%. P: 0.05% or less, S: 0.05% or less, Cr: 0.1-3.0%, B: 0.0005-0.01%, Ti: 0.003-0.3%, Zr: 0.001-0.5%, Al: 0.001-0.1%, N: 0.001 ~0.02%, further V: 0.001~1.0% and Nb: 0.001~0.30% 1
Non-tempered steel for hot forging, containing one or two types of iron, with the balance consisting of Fe and unavoidable impurities. 2% by weight, C: 0.05 to less than 0.03%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%. P: 0.05% or less, S: 0.05% or less, Cr: 0.1-3.0%, B: 0.0005-0.01%, Ti: 0.003-0.3%, Zr: 0.001-0.5%, Al: 0.001-0.1%, N: 0.001 ~0.02%, further V: 0.001~1.0% and Nb: 0.001~0.30% 1
Contains one or two species, and further contains Cu: 0.01-1.0%, Ni: 0.01-2.0%, and
Non-thermal steel for hot forging, containing one or more Mo: 0.01 to 1.0%, with the balance being Fe and unavoidable impurities. 3 In weight%: C: 0.05 to less than 0.30%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, S: 0.05% or less, Cr: 0.1 to 3.0%, B: 0.0005 to 0.01 %, Ti: 0.003-0.3%, Zr: 0.001-0.5%, Al: 0.001-0.1%, N: 0.001-0.02%, further V: 0.001-1.0% and Nb: 0.001-0.30%.
Contains one or two rare earth elements, and further contains at least one rare earth element, totaling 0.005~
Non-tempered steel for hot forging, containing 0.5% Fe and the remainder consisting of Fe and unavoidable impurities. 4 In weight%, C: 0.05 to less than 0.03%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, S: 0.05% or less, Cr: 0.1 to 3.0%, B: 0.0005 to 0.01%, Ti: 0.003~0.3%, Zr: 0.001~0.5%, Al: 0.001~0.1%, N: 0.001~0.02%, and further V: 0.001~1.0% and Nb: 0.001~0.30%. Or contains two types, further Cu: 0.01-1.0%, Ni: 0.01-2.0%, and
Mo: Contains one or more of 0.01 to 1.0%, and further contains at least one rare earth element, totaling 0.005 to 1.0%.
Non-tempered steel for hot forging, containing 0.5% Fe and the remainder consisting of Fe and unavoidable impurities. 5% by weight, C: 0.05 to less than 0.03%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, Cr: 0.1 to 3.0%, B: 0.0005 to 0.01%, Ti: 0.003 ~0.3%, Zr: 0.001~0.5%, Al: 0.001~0.1%, N: 0.001~0.02%, furthermore, V: 0.001~1.0% and Nb: 0.001~0.30%.
Furthermore, S: 0.05-0.5%, Pb: 0.005-0.5%, Ca: 0.001-0.05%, Te: 0.001-0.2%, Se: 0.01-0.5%, Bi: 0.01-0.5 % or more, with the balance consisting of Fe and unavoidable impurities. 6 In weight%, C: 0.05 to less than 0.03%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, Cr: 0.1 to 3.0%, B: 0.0005 to 0.01%, Ti: 0.003 ~0.3%, Zr: 0.001~0.5%, Al: 0.001~0.1%, N: 0.001~0.02%, furthermore, V: 0.001~1.0% and Nb: 0.001~0.30%.
Contains one or two species, and further contains Cu: 0.01-1.0%, Ni: 0.01-2.0%, and
Contains one or more of Mo: 0.01-1.0%, S: 0.05-0.5%, Pb: 0.005-0.5%, Ca: 0.001-0.05%, Te: 0.001-0.2%, Se: 0.01 ~0.5%, Bi: 0.01~0.5%, or two or more types, with the remainder being Fe and unavoidable impurities. 7 In weight%, C: 0.05 to less than 0.30%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, Cr: 0.1 to 3.0%, B: 0.0005 to 0.01%, Ti: 0.003 ~0.3%, Zr: 0.001~0.5%, Al: 0.001~0.1%, N: 0.001~0.02%, furthermore, V: 0.001~1.0% and Nb: 0.001~0.30%.
Furthermore, S: 0.05-0.5%, Pb: 0.005-0.5%, Ca: 0.001-0.05%, Te: 0.001-0.2%, Se: 0.01-0.5%, Bi: 0.01-0.5 %, and further contains at least one rare earth element, totaling from 0.005 to 0.005%.
Non-tempered steel for hot forging, containing 0.5% Fe and the remainder consisting of Fe and unavoidable impurities. 8% by weight, C: 0.05 to less than 0.30%, Si: 0.02 to 2.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, Cr: 0.1 to 3.0%, B: 0.0005 to 0.01%, Ti: 0.003 -0.3%, Zr: 0.001-0.5%, Al: 0.001-0.1%, N: 0.001-0.02%, and further contains one or two of V: 0.001-1.0% and Nb: 0.001-0.30%. , Furthermore, Cu: 0.01~1.0%, Ni: 0.01~2.0%, and
Contains one or more of Mo: 0.01-1.0%, S: 0.05-0.5%, Pb: 0.005-0.5%, Ca: 0.001-0.05%, Te: 0.001-0.2%, Se: 0.01 ~0.5%, Bi: 0.01~0.5%, and at least one rare earth element, totaling 0.005%.
Non-thermal steel for hot forging, containing ~0.5%, with the balance consisting of Fe and unavoidable impurities.
JP4581986A 1986-03-03 1986-03-03 Non-heattreated steel for hot forging Granted JPS62202054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4581986A JPS62202054A (en) 1986-03-03 1986-03-03 Non-heattreated steel for hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4581986A JPS62202054A (en) 1986-03-03 1986-03-03 Non-heattreated steel for hot forging

Publications (2)

Publication Number Publication Date
JPS62202054A JPS62202054A (en) 1987-09-05
JPH0470385B2 true JPH0470385B2 (en) 1992-11-10

Family

ID=12729855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4581986A Granted JPS62202054A (en) 1986-03-03 1986-03-03 Non-heattreated steel for hot forging

Country Status (1)

Country Link
JP (1) JPS62202054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013529A1 (en) * 1996-09-27 1998-04-02 Kawasaki Steel Corporation High strength and high tenacity non-heat-treated steel having excellent machinability
WO2010010649A1 (en) 2008-07-23 2010-01-28 Takahashi Yoshiaki Frictional-resistance reduced ship, and method for steering the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515173B2 (en) * 1990-09-28 1996-07-10 愛知製鋼株式会社 High strength, high toughness non-heat treated steel for forging
JP3139876B2 (en) * 1993-04-05 2001-03-05 新日本製鐵株式会社 Method of manufacturing non-heat treated steel for hot forging and non-heat treated hot forged product, and non-heat treated hot forged product
US5922145A (en) * 1996-11-25 1999-07-13 Sumitomo Metal Industries, Ltd. Steel products excellent in machinability and machined steel parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988715A (en) * 1972-12-26 1974-08-24
JPS5524932A (en) * 1978-08-08 1980-02-22 Nippon Steel Corp Manufacture of bainite tough hardening steel
JPS5719324A (en) * 1980-05-30 1982-02-01 Nippon Steel Corp Production of steel for machine structural use for forging having fine structure at high temperature
JPS57200541A (en) * 1981-06-04 1982-12-08 Nippon Steel Corp Forged direct tempering steel excellent in tenacity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988715A (en) * 1972-12-26 1974-08-24
JPS5524932A (en) * 1978-08-08 1980-02-22 Nippon Steel Corp Manufacture of bainite tough hardening steel
JPS5719324A (en) * 1980-05-30 1982-02-01 Nippon Steel Corp Production of steel for machine structural use for forging having fine structure at high temperature
JPS57200541A (en) * 1981-06-04 1982-12-08 Nippon Steel Corp Forged direct tempering steel excellent in tenacity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013529A1 (en) * 1996-09-27 1998-04-02 Kawasaki Steel Corporation High strength and high tenacity non-heat-treated steel having excellent machinability
WO2010010649A1 (en) 2008-07-23 2010-01-28 Takahashi Yoshiaki Frictional-resistance reduced ship, and method for steering the same

Also Published As

Publication number Publication date
JPS62202054A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
CN111511936B (en) Wire rod for cold heading, worked product using the same, and method for manufacturing the same
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
EP0648853A1 (en) Non-heat-treated steel for hot forging, process for producing non-heat-treated hot forging, and non-heat-treated hot forging
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
JP3036416B2 (en) Hot forged non-heat treated steel having high fatigue strength and method for producing forged product
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JPH09170017A (en) Production of steel plate with high strength and high toughness
JPS62207821A (en) Production of unnormalized steel for hot forging
CN114134387B (en) 1300 MPa-tensile-strength thick-specification ultrahigh-strength steel plate and manufacturing method thereof
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPH0470385B2 (en)
JPH0472886B2 (en)
JPH11131187A (en) Rapidly graphitizable steel and its production
JPH0425343B2 (en)
JP2518873B2 (en) Steel plate for heat treatment
JPH05222450A (en) Production of high tensile steel plate
KR101140911B1 (en) Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered alloy steel
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JP3468875B2 (en) Manufacturing method of high strength and high toughness steel
JPS62260042A (en) High strength unrefined tough steel
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts