JPH0469599B2 - - Google Patents

Info

Publication number
JPH0469599B2
JPH0469599B2 JP4567487A JP4567487A JPH0469599B2 JP H0469599 B2 JPH0469599 B2 JP H0469599B2 JP 4567487 A JP4567487 A JP 4567487A JP 4567487 A JP4567487 A JP 4567487A JP H0469599 B2 JPH0469599 B2 JP H0469599B2
Authority
JP
Japan
Prior art keywords
crystal
temperature
bab
phase
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4567487A
Other languages
Japanese (ja)
Other versions
JPS63215598A (en
Inventor
Norio Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4567487A priority Critical patent/JPS63215598A/en
Publication of JPS63215598A publication Critical patent/JPS63215598A/en
Publication of JPH0469599B2 publication Critical patent/JPH0469599B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有望な非線形光学結晶として最近発
見された低温相構造の硼酸バリウム(β−BaB2
O4)単結晶の育成に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to barium borate (β-BaB 2
O 4 ) Regarding the growth of single crystals.

[従来の技術] 将来の多様な光技術を支える光学材料の一つと
して、大きな非線形光学効果を持ち、かつレーザ
損傷に強い非線形光学材料が待望されている。
[Prior Art] A nonlinear optical material that has a large nonlinear optical effect and is resistant to laser damage is long-awaited as one of the optical materials that will support various optical technologies in the future.

そうした中にあつて、β−BaB2O4結晶は大き
な非線形光学定数を持つことが結晶群論的探索に
より予見され、現実にその効果が証明されるに及
んで[C.Chuangtian et al.:Scientia Sinica
(Series B),Vol.28,No.3,235(1985)]、にわ
かに実用サイズのβ−BaB2O4の良質な単結晶の
育成に関心が集まつてきた。
Under these circumstances, it was predicted through crystal group theory searches that β-BaB 2 O 4 crystals would have large nonlinear optical constants, and this effect was actually proven [C. Chuangtian et al.: Scientia Sinica
(Series B), Vol. 28, No. 3, 235 (1985)], interest has suddenly gathered in the growth of high-quality single crystals of β-BaB 2 O 4 of practical size.

BaB2O4結晶は925℃近傍を境として、それよ
り上の温度では結晶構造R3c−D6 3dを、その下
ではR3−C4 3を採る、いわゆる構造相転移性を持
つ結晶である。第1図に示すように、相図的には
BaOとB2O3がモル比1:1でコングルーエント
に融解して化合物BaB2O4を生成する(第1図、
組成C点)。しかしこの組成融液から、例えば引
き上げ法(CZ法)などを用いて直接に単結晶を
育成しようとしても、相転移の起こり方が不完全
なために、結晶温度が転移点を降下しても高温相
構造がクエンチされてそのまま低温相温度まで持
ち込まれ、室温では、高温相(α相)と低温相
(β相)が混在した構造となる。
The BaB 2 O 4 crystal is a crystal with a so-called structural phase transition property, which has a crystal structure of R3c-D 6 3d at temperatures above 925° C. and a crystal structure of R3-C 4 3 below that temperature. As shown in Figure 1, the phase diagram is
BaO and B 2 O 3 congruently melt in a molar ratio of 1:1 to form the compound BaB 2 O 4 (Fig. 1,
composition point C). However, even if you try to grow a single crystal directly from this compositional melt using, for example, a pulling method (CZ method), the phase transition is incomplete, and even if the crystal temperature drops below the transition point, The high-temperature phase structure is quenched and brought directly to the low-temperature phase temperature, resulting in a structure in which the high-temperature phase (α phase) and low-temperature phase (β phase) coexist at room temperature.

非線形光学効果は反転対称性を欠く低温相構造
のβ−BaB2O4だけに見られる。従つて目的とす
る結晶はβ相だけの単一相からなる単結晶で、そ
れを育成するためには何らかの工夫が要求され
る。
Nonlinear optical effects are observed only in β-BaB 2 O 4 , which has a low-temperature phase structure that lacks inversion symmetry. Therefore, the desired crystal is a single crystal consisting of only the β phase, and some kind of ingenuity is required to grow it.

β−BaB2O4単結晶の育成例としては、第2図
の相図に示すBaB2O4とNa2B2O4の共晶反応の一
部を利用した方法が、唯一公知である。
The only known example of growing a β-BaB 2 O 4 single crystal is a method that utilizes part of the eutectic reaction between BaB 2 O 4 and Na 2 B 2 O 4 shown in the phase diagram in Figure 2. .

[H.Qingzhen et al.:Acta Phys.Sinica
Vol.30,No.4,pp.559(1981).参照]この方法の
要点は、転移温度以下のβ相領域で結晶を育成す
る点で、原料組成MaとMbの範囲で(第2図)、
しかも転移温度Tcと共晶温度Teの間において、
トツプシーデイングCZ法を用いてβ−BaB2O4
直接引き上げるものである。
[H. Qingzhen et al.: Acta Phys. Sinica
Vol.30, No.4, pp.559 (1981). Reference] The key point of this method is to grow crystals in the β phase region below the transition temperature, within the range of raw material compositions Ma and Mb (Figure 2).
Moreover, between the transition temperature Tc and the eutectic temperature Te,
β-BaB 2 O 4 is directly pulled up using the top seeding CZ method.

仮に組成Maの原料を例にとつて具体的な操作
手順を説明する。まずルツボに原料を入れ完全に
融液状態にして反応させ、その後ゆつくり降温す
る。融液から結晶が析出し始める温度Tcで融液
に種結晶を浸し、温度を下げ続けながら引き上げ
る。結晶が育成するにつれて残りの融液組成は
MaからMbに向かつて変化し、共晶点手前にお
いて結晶を融液から引き離し、そのあと室温まで
冷却する。
The specific operating procedure will be explained by taking a raw material with composition Ma as an example. First, raw materials are placed in a crucible, completely melted, and reacted, and then the temperature is slowly lowered. A seed crystal is immersed in the melt at the temperature Tc at which crystals begin to precipitate from the melt, and pulled up while continuing to lower the temperature. As the crystal grows, the remaining melt composition changes to
The crystal changes from Ma toward Mb, separates the crystal from the melt just before the eutectic point, and then cools to room temperature.

[発明が解決しようとする問題点] 上に述べた公知の方法は最大TaからTbまでの
100℃足らずの温度範囲しか利用できず、ルツボ
に仕込んだ原料の内、結晶として析出する量は少
なく、そのため大きなルツボと多量の原料を必要
とし、また融液の冷却速度と結晶の引き上げ速度
の関係など技術的な難しさもあり、引き上げ装置
も必要である。
[Problems to be solved by the invention] The above-mentioned known methods can solve problems from maximum Ta to Tb.
Only a temperature range of less than 100°C can be used, and only a small amount of the raw material charged into the crucible precipitates as crystals. Therefore, a large crucible and a large amount of raw material are required, and the cooling rate of the melt and the rate of pulling the crystals are There are also technical difficulties involved, such as the need for a lifting device.

この発明はβ−BaB2O4単結晶を手軽に育成す
る別の新しい方法を提案するもので、公知例と異
なる原料の組み合わせから出発し、より簡単な装
置と育成技術で、実用サイズの単結晶が得られる
利点を持つものである。
This invention proposes another new method for easily growing β-BaB 2 O 4 single crystals, starting from a combination of raw materials different from known examples, and using simpler equipment and growth techniques to grow a practical-sized single crystal. It has the advantage of being crystallized.

[問題を解決するための手段] この発明においては塩化バリウム(BaCl2)と
メタ硼酸ナトリウム(NaBO2)を出発原料とし、
これと一緒に、塩化ナトリウム(NaCl)をフラ
ツクスとして加えて、加熱、溶融して次式に示す
化学反応を行わせる。
[Means for solving the problem] In this invention, barium chloride (BaCl 2 ) and sodium metaborate (NaBO 2 ) are used as starting materials,
Along with this, sodium chloride (NaCl) is added as a flux, heated and melted to cause the chemical reaction shown in the following equation to occur.

BaCl2+2NaBO2+nNaCl→ BaB2O4+(n+2)NaCl この際、融液をゆつくり降温して反応成生物た
る硼酸バリウムをフラツクス中に単結晶として析
出させる。
BaCl 2 +2NaBO 2 +nNaCl→ BaB 2 O 4 +(n+2)NaCl At this time, the temperature of the melt is slowly lowered to precipitate barium borate, which is a reaction product, as a single crystal in the flux.

[作用] この発明の要点をなす上記反応においては、
NaClは直接反応に加わらず、ただフラツクスと
しての役割りを務め、反応速度を抑え、かつ反応
により生成されるβ−BaB2O4の濃度を希釈して
核発生の多発を防ぎ、結晶サイズの大型化を促進
する働きをする。それと同時にNaClは、析出す
る結晶を保持し、結晶が白金ルツボ壁へ付着し
て、白金との熱膨張の違いに原因してひび割れる
のを防ぎ、加えて、固化する際の体積収縮によ
り、ルツボと内部が分離してその取り出しを極め
て容易にする。
[Operation] In the above reaction which forms the gist of this invention,
NaCl does not directly participate in the reaction, but only serves as a flux, suppressing the reaction rate, diluting the concentration of β-BaB 2 O 4 produced by the reaction, preventing frequent nucleation, and reducing the crystal size. It works to promote enlargement. At the same time, NaCl holds the precipitated crystals and prevents them from adhering to the platinum crucible wall and cracking due to the difference in thermal expansion with platinum. The inside is separated, making it extremely easy to take out.

[実施例] 次にこの発明の実施例を説明する。[Example] Next, embodiments of this invention will be described.

出発原料のNaBO2、BaCl2およびフラツクス
のNaClは、真空乾燥して、それぞれ23.0wt%、
34.5wt%、42.5wt%秤量し、全体でほぼ50grを50
c.c.の蓋付き白金ルツボに入れ、900℃に5時間保
つて完全に融解した後、700℃迄は10℃/hrで、
それ以下400℃迄は20℃/hrで冷却し、以下室温
まで炉冷する。そのあとルツボ内の固化物を取り
出し、流水でNaClを溶かし去り、その中に析出
した目的のβ−BaB2O4単結晶を収拾する。
The starting materials NaBO 2 , BaCl 2 and the flux NaCl were vacuum dried and each had a concentration of 23.0 wt%.
Weighing 34.5wt%, 42.5wt%, almost 50gr overall
Place it in a CC platinum crucible with a lid and keep it at 900℃ for 5 hours to completely melt, then heat at 10℃/hr until 700℃.
Below that, cool down to 400℃ at a rate of 20℃/hr, and then furnace cool to room temperature. After that, the solidified material in the crucible is taken out, the NaCl is dissolved away with running water, and the target β-BaB 2 O 4 single crystal precipitated therein is collected.

[発明の効果] この発明は以上説明したように、塩化バリウム
とメタ硼酸ナトリウムを原料とする硼酸バリウム
の生成反応において、1〜13.5モルの塩化ナトリ
ウムをフラツクスとして原料に混合して溶融し、
生成反応物たる硼酸バリウムをフラツクス中に単
結晶として析出させることにより、きれいな晶癖
を持つサイズ1mmφ×10mmまでの柱状ないし針状
の透明な結晶が育成でき、X線デイフラクトメー
ターで測定した結果、結晶は高温相を全く含ま
ず、全体が純粋な低温相構造からなるβ−BaB2
O4の単結晶であることが証明された。
[Effects of the Invention] As explained above, the present invention includes a process for producing barium borate using barium chloride and sodium metaborate as raw materials, in which 1 to 13.5 moles of sodium chloride is mixed with the raw materials as a flux and melted.
By precipitating barium borate, which is a reaction product, as a single crystal in a flux, columnar or needle-shaped transparent crystals with a clean crystal habit of up to 1 mmφ x 10 mm can be grown, and the results were measured using an X-ray diffractometer. , the crystal does not contain any high temperature phase and consists of a pure low temperature phase structure as a whole β-BaB 2
It was proven to be a single crystal of O 4 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はBaO−B2O3系の相図、第2図はBaB2
O4−Na2B2O4系の相図である。 図中、Cはモル比1:1のコングルーエント組
成の点、Ma,Mbは育成可能な組成範囲の限界
を示す点、Tcは構造相転移温度925±5℃を表
す。
Figure 1 is the phase diagram of the BaO−B 2 O 3 system, Figure 2 is the BaB 2
It is a phase diagram of the O 4 −Na 2 B 2 O 4 system. In the figure, C represents a congruent composition with a molar ratio of 1:1, Ma and Mb represent the limits of the compositional range that can be grown, and Tc represents a structural phase transition temperature of 925±5°C.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化バリウムとメタ硼酸ナトリウムを原料と
する硼酸バリウムの生成反応に於て、塩化バリウ
ム1モル、メタ硼酸ナトリウム2モルの原料に対
して1〜13.5モルの塩化ナトリウムをフラツクス
として混合し、これらを加熱・溶融して反応を行
わしめ、反応生成物たる硼酸バリウムをフラツク
ス中に結晶として析出させることを特徴とする低
温相硼酸バリウム単結晶の育成方法。
1. In the production reaction of barium borate using barium chloride and sodium metaborate as raw materials, 1 to 13.5 moles of sodium chloride are mixed as a flux to 1 mole of barium chloride and 2 moles of sodium metaborate as raw materials. A method for growing a low-temperature phase barium borate single crystal, which is characterized by carrying out a reaction by heating and melting, and precipitating a reaction product, barium borate, as a crystal in a flux.
JP4567487A 1987-02-27 1987-02-27 Production of barium borate single crystal having low temperature phase Granted JPS63215598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4567487A JPS63215598A (en) 1987-02-27 1987-02-27 Production of barium borate single crystal having low temperature phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4567487A JPS63215598A (en) 1987-02-27 1987-02-27 Production of barium borate single crystal having low temperature phase

Publications (2)

Publication Number Publication Date
JPS63215598A JPS63215598A (en) 1988-09-08
JPH0469599B2 true JPH0469599B2 (en) 1992-11-06

Family

ID=12725936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4567487A Granted JPS63215598A (en) 1987-02-27 1987-02-27 Production of barium borate single crystal having low temperature phase

Country Status (1)

Country Link
JP (1) JPS63215598A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085741B2 (en) * 1989-04-19 1996-01-24 日本電気株式会社 Single crystal growth method
JP2807282B2 (en) * 1989-09-22 1998-10-08 住友金属鉱山株式会社 Method for producing beta-type barium metaborate single crystal
US5343827A (en) * 1992-02-19 1994-09-06 Crystal Technology, Inc. Method for crystal growth of beta barium boratean
CN102383182A (en) * 2011-10-23 2012-03-21 福建福晶科技股份有限公司 Molten-salt growth method for reducing central envelope of BBO(Barium Boron Oxide) crystals

Also Published As

Publication number Publication date
JPS63215598A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
EP0004974B1 (en) Process for producing a single crystal of ktiopo4 or its analogues
US5066356A (en) Hydrothermal process for growing optical-quality single crystals
US4793894A (en) Process for crystal growth from solution
US4746396A (en) Process for the flux synthesis of crystals of the KTiOPO4 potassium titanyl monophosphate type
Morrison et al. The growth of large single-crystal Bi4Ti3O12
US5343827A (en) Method for crystal growth of beta barium boratean
Simonova et al. Growth of bulk β-BaB2O4 crystals from solution in LiF-Li2O melt and study of phase equilibria
JPS63195197A (en) Flux synthesis of crystal and epitaxy of ktiopo4 same structure solid solution
JPH0469599B2 (en)
Van Enckevort et al. In situ microscopy of the growth of bismuth germante crystals from high temperature melts
Gualtieri et al. Growth of β-barium borate from NaCl-Na2O solutions
US4931133A (en) High temperature solution growth of barium borate (β-BaB2 O4)
Nikolov et al. On the growth of β-BaB2O4 (BBO) single crystals from high-temperature solutions: I. Study of solvents of the BaO-Na2O-B2O3 system
EP0642603B1 (en) Single cesium titanyl arsenate-type crystals and their preparation
US3939252A (en) Dilithium heptamolybdotetragadolinate
Swets Crystal growth of tetragonal germanium dioxide
JP2647940B2 (en) Single crystal growth method
Simonova et al. Phase equilibria in the ternary reciprocal system Li, Ba//BO2, F and growth of bulk β-BaB2O4 crystals
JPH02279583A (en) Method for growing single crystal
JP3041326B2 (en) Method for producing KTiOPO4 single crystal
Bekker et al. Phase formation in the BaB 2 O 4-BaF 2 system
JPH0412082A (en) Method for growing single crystal
刘军芳 et al. Phase transition and growth of high and low temperature phase of barium metaborate crystals
RU1175186C (en) Method of obtaining crystals with beryllium structure
Chuhua et al. Growth of KTiOAsO4 (KTA) and CsTiOAsO4 (CTA) crystals from new molten salt system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term