JPH0469358A - Asymmetric diacetylene compound - Google Patents

Asymmetric diacetylene compound

Info

Publication number
JPH0469358A
JPH0469358A JP17950190A JP17950190A JPH0469358A JP H0469358 A JPH0469358 A JP H0469358A JP 17950190 A JP17950190 A JP 17950190A JP 17950190 A JP17950190 A JP 17950190A JP H0469358 A JPH0469358 A JP H0469358A
Authority
JP
Japan
Prior art keywords
formula
asymmetric
expressed
diacetylene
diacetylene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17950190A
Other languages
Japanese (ja)
Inventor
Jinichiro Kato
仁一郎 加藤
Katsuyuki Nakamura
克之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17950190A priority Critical patent/JPH0469358A/en
Publication of JPH0469358A publication Critical patent/JPH0469358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

NEW MATERIAL:An asymmetric diacetylene compound expressed by formula I (Y is 2-6C monofunctional hydrocarbon group having unsaturated bond; R and R' are 1-6C bifunctional hydrocarbon group; X is OH, NH2, Cl or Br). EXAMPLE:The compound expressed by formula I (Y is CH2=CH; R is CH2; R' is CH2 and X is OH). USE:A raw material for synthesizing diacetylenic polymers capable of providing crosslinked substances with a high toughness. PREPARATION:For example, a carboxylic acid expressed by the formula YCOOH is made to react with a diacetylenediol expressed by formula II to afforded a half ester expressed by formula I (X is OH), which is further allowed to react with an aminating agent, a chlorinating agent or brominating agent to provide the desired compound expressed by formula I.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非対称ジアセチレン化合物に関するものであり
、更に詳しくは分子末端の一方に、求核反応性、あるい
は求電子反応性に富んだ反応部位を有する非対称ジアセ
チレン化合物に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an asymmetric diacetylene compound, and more specifically, a reactive site rich in nucleophilic reactivity or electrophilic reactivity at one end of the molecule. This relates to an asymmetric diacetylene compound having the following.

〔従来の技術〕[Conventional technology]

線状高分子の配向による一軸方向への高弾性率化は、ア
ルミニウムやスチールを凌ぐレベルに到達している。一
方、熱硬化性樹脂に代表される等方性材料の高弾性率化
は、はとんど試みられていなかった。このような背景の
中で、本発明者らはジアセチレン基と炭素−炭素不飽和
結合を有する化合物を用いた高弾性率材料の開発を行な
ってきた。(例えば、特開昭63−145337号公報
、特開昭63−295612号公報)。
The high modulus of elasticity in the uniaxial direction due to the orientation of linear polymers has reached a level that surpasses that of aluminum and steel. On the other hand, no attempt has been made to increase the elastic modulus of isotropic materials such as thermosetting resins. Against this background, the present inventors have been developing a high elastic modulus material using a compound having a diacetylene group and a carbon-carbon unsaturated bond. (For example, JP-A-63-145337, JP-A-63-295612).

本発明者らによって開発されてきた高弾性率ジアセチレ
ン系架橋体は、等方的に10GPa以上、架橋条件や分
子構造の最適化により20GPa以上の弾性率を発現す
る。このような高弾性率化は架橋密度の増大によって達
成されたが、架橋密度を高めることによって得られた架
橋体は脆くなり、ある程度の強度が要求される用途によ
っては使用上問題となった。タフネスを上げるためには
架橋密度を下げなければいけないが、単にモノマーの架
橋基を減らすような試みは架橋体の弾性率も低下させて
しまう。弾性率を低下させずに高タフネスを有する架橋
体を製造しようとする試みやそれを現実させうる概念は
皆無であった。
The high modulus diacetylene crosslinked product developed by the present inventors exhibits an elastic modulus of 10 GPa or more isotropically, and 20 GPa or more by optimizing the crosslinking conditions and molecular structure. Such a high modulus of elasticity was achieved by increasing the crosslink density, but the crosslinked body obtained by increasing the crosslink density became brittle, which caused problems in use depending on the application where a certain degree of strength was required. In order to increase toughness, it is necessary to lower the crosslinking density, but attempts to simply reduce the number of crosslinking groups in the monomer will also lower the elastic modulus of the crosslinked product. There have been no attempts to produce a crosslinked body with high toughness without lowering the elastic modulus, or any concept that could make this a reality.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本発明は、高タフネスを有する架橋体を与えるジアセチ
レン系ポリマーの合成に有用な非対称ジアセチレン化合
物を提供することを目的とする。
An object of the present invention is to provide an asymmetric diacetylene compound useful in the synthesis of a diacetylene polymer that provides a crosslinked product with high toughness.

〔課題を解決するための手段〕[Means to solve the problem]

タフネスを向上させるには架橋点間の距離をできるだけ
長くする必要がある。そこで、側鎖に反応性官能基を有
するポリマーと分子末端の一方に求核反応性、あるいは
求電子反応性に富んだ非対称ジアセチレン化合物を反応
させると、得られたポリマーがタフネスを持つ高弾性率
材料になり得る可能性を見出した。更に、本発明者らは
、その非対称ジアセチレン化合物の分子構造や反応性を
総括的に検討した結果、本発明に到達した。即ち、本発
明は、一般式(1)で示される非対称ジアセチレン化合
物である。
To improve toughness, it is necessary to make the distance between crosslinking points as long as possible. Therefore, by reacting a polymer having a reactive functional group in its side chain with an asymmetric diacetylene compound rich in nucleophilic reactivity or electrophilic reactivity at one end of the molecule, the resulting polymer has toughness and high elasticity. We found the possibility that it could be used as a rate material. Furthermore, the present inventors comprehensively studied the molecular structure and reactivity of the asymmetric diacetylene compound, and as a result, they arrived at the present invention. That is, the present invention is an asymmetric diacetylene compound represented by general formula (1).

y−coo−R−c=cc=c−R’−x   −−−
(1)(ここで、Yは炭素数2から6までの不飽和結合
を有する1価の炭化水素基を示し、R,R’は炭素数1
から6までの2価の炭化水素基を示し、Xは0H1−N
H,、−CI、−Brから選ばれた基を示す。)本発明
において、Yは炭素数が2〜6までの不飽和結合を有す
る1価の炭化水素基を示し、その具体例としては、 −CH=CH2、−C(CH3)−CH2、−CH=C
HCH3、CH=C(CL)2、−CH=CHCH2C
H3、−CH=CHCH2CH3、CH2CH=CHC
H3、−CH2CH2CH=CHCH2CH3、C=C
H1−CミCCH3、−CH2C−= CCH2CH3
等が挙げられる。これらのYのうち、高弾性率化を達成
しやすい点では−CH=CH2、−C(CH3)=C1
(、。
y-coo-R-c=cc=c-R'-x ---
(1) (Here, Y represents a monovalent hydrocarbon group having 2 to 6 carbon atoms and having an unsaturated bond, and R and R' have 1 carbon number.
represents a divalent hydrocarbon group from to 6, and X is 0H1-N
It represents a group selected from H,, -CI, and -Br. ) In the present invention, Y represents a monovalent hydrocarbon group having 2 to 6 carbon atoms and an unsaturated bond, and specific examples thereof include -CH=CH2, -C(CH3)-CH2, -CH =C
HCH3, CH=C(CL)2, -CH=CHCH2C
H3, -CH=CHCH2CH3, CH2CH=CHC
H3, -CH2CH2CH=CHCH2CH3, C=C
H1-CmiCCH3, -CH2C-=CCH2CH3
etc. Among these Y, -CH=CH2, -C(CH3)=C1 are easy to achieve high elastic modulus.
(,.

−C=CHが好ましく、特にその効果が顕著な点から−
CH=CH2、’C(CH3)二CH2が好ましい。
-C=CH is preferred, especially since its effect is remarkable -
CH=CH2, 'C(CH3)2CH2 is preferred.

R,R’は炭素数が1から6までの2価の炭化水素基を
示し、その具体例としては、 CH2C2H4C3H6C4H3− CH(CH3)−−C(CH3)2− か挙げられる。
R and R' represent a divalent hydrocarbon group having 1 to 6 carbon atoms, and specific examples include CH2C2H4C3H6C4H3- CH(CH3)--C(CH3)2-.

これらのR,R’のうち、架橋体の弾性率の大きさXは
一0H1−NH2、−CI2、−Br  から選ばれた
基を示す。−0H1−Nl(2は、求電子性官能基と、
また−CI!、−Brは求核性官能基と高い反応性を有
しているので、例えば、高分子反応に本発明の非対称ジ
アセチレン化合物を用いる場合、反応相手のポリマーの
側鎖の反応性によってその使い分けをすれば良い。特に
、反応性の良さからは、−NH2、Brが好ましく、合
成の収率の良さや操作のしやすさからは、−0H1−C
Iが好ましい。
Among these R and R', the magnitude X of the elastic modulus of the crosslinked body represents a group selected from -0H1-NH2, -CI2, and -Br. -0H1-Nl (2 is an electrophilic functional group,
Again - CI! , -Br has high reactivity with nucleophilic functional groups, so for example, when using the asymmetric diacetylene compound of the present invention in a polymer reaction, its use can be determined depending on the reactivity of the side chain of the polymer to be reacted with. All you have to do is In particular, from the viewpoint of good reactivity, -NH2 and Br are preferable, and from the viewpoint of good synthesis yield and ease of operation, -0H1-C
I is preferred.

本発明の非対称ジアセチレン化合物の具体例を示すなら
ば以下のようなものが挙げられる。
Specific examples of the asymmetric diacetylene compound of the present invention include the following.

CH2=CHC00CH2C;−CいCCH20HCH
2=CHCOOCH2C−:CいCCH,NH2CH2
=CHCOOCH2いCいCCH2CffCI(z”c
HcOOcH2C’CC””CCH20HCH3 CH2”CC00CH20CいCCH20HCH。
CH2=CHC00CH2C;-CCH20HCH
2=CHCOOCH2C-:CCH,NH2CH2
=CHCOOCH2CCH2CffCI(z”c
HcOOcH2C'CC""CCH20HCH3 CH2"CC00CH20CCCH20HCH.

CH2”CC00CH2C′:CC’CC82N!(2
H3 CH2=CCOOCH2昨CいCCH20HCH3 CH2”CC00CH2C’CC’CCH2BrCl−
12=C)(COO+いCいCCH20HCH2”CH
COO舎いC区÷NH2 CH2二CHCOOCH2C−COヱc+ cβcH2
=c+−+coo4→CC’C(シBrHC″′−CC
OOCH2いC昨CCH20HCH2=CHCOO(C
H2)2昨C宸C(CH2)20HCH2・CHCOO
(CL )2叶C宸C(CH2)2cj2CH2・CH
COO(CH2) 2昨CC−=C(CH2)2BrC
H2・CHCOO(CH2)2いCいC(CH2)2N
H2本発明の非対称ジアセチレン化合物は一般式的な有
機合成法を適用することにより容易に合成できる。従っ
て、特定の合成方法に限定されるものではない。
CH2"CC00CH2C':CC'CC82N!(2
H3 CH2=CCOOCH2CCH20HCH3 CH2"CC00CH2C'CC'CCH2BrCl-
12=C) (COO+CCH20HCH2”CH
COO building C section ÷ NH2 CH22CHCOOCH2C-COec+ cβcH2
=c+-+coo4→CC'C(BrHC″'-CC
OOCH2C lastCCH20HCH2=CHCOO(C
H2) 2 last time C (CH2) 20HCH2・CHCOO
(CL) 2 leaves C shin C (CH2) 2cj2CH2・CH
COO(CH2) 2 last CC-=C(CH2)2BrC
H2・CHCOO(CH2)2CicC(CH2)2N
H2 The asymmetric diacetylene compound of the present invention can be easily synthesized by applying general organic synthesis methods. Therefore, it is not limited to a specific synthesis method.

典型的な合成例を挙げると以下のような方法が考えられ
る。
Typical synthesis examples include the following methods.

YCOO)1. + HORいCいCR”OH→YCO
ORいCいCROH(2) (2)  →YCOORC=CいCRNH2(2)  
→YCOORC;′″−CいCRCj2(2)  →Y
COOR〉cc’cRBrカルボン酸YCOOHとジア
セチレンジオールHORC=CC: CROHを常法の
エステル化反応によってハーフエステル(2)が得られ
る。エステル化の具体的な方法は、例えば、モリリン、
ボイド著” 有機科学(上)、(中)、(下)”東京化
学同人、第3版に記載されている方法がそのまま適用で
きる。この合成反応においてはカルボン酸とジアセチレ
ンジオールの仕込比のバランスを崩してジエステルの生
成をできるだけ押えることが重要である。カボン酸とジ
アセチレンジオールの仕込比(モル比)は、−船釣には
、lO/1〜l/10であり、収率の点から好ましくは
3/1〜1/3、特に好ましくは2/1−1/2である
。また、いずれの仕込比においても反応物は原料やジエ
ステルを含むので、(2)を単離するために、クロマト
処理や再結晶、蒸留などの精製手段をとることかでき、
むしろそのような精製手段をとることは好ましい。この
エステル化反応にはカルボン酸の代りにカルボン酸クロ
リドを用いても良い。
YCOO)1. + HOR ICR”OH→YCO
ORICROH(2) (2) →YCOORC=CCRNH2(2)
→YCOORC;′″-CCRCj2(2) →Y
COOR〉cc'cRBrCarboxylic acid YCOOH and diacetylene diol HORC=CC: Half ester (2) is obtained by esterifying CROH in a conventional manner. Specific methods of esterification include, for example, Moririn,
The method described in "Organic Science (Part 1), (Middle), (Part 2)" by Boyd, Tokyo Kagaku Doujin, 3rd edition can be applied as is. In this synthesis reaction, it is important to suppress the production of diester as much as possible by unbalancing the charging ratio of carboxylic acid and diacetylene diol. The charging ratio (molar ratio) of carboxylic acid and diacetylene diol is -10/1 to 1/10 for boat fishing, preferably 3/1 to 1/3, particularly preferably 2 /1-1/2. In addition, since the reactants contain raw materials and diesters at any charging ratio, purification methods such as chromatography, recrystallization, and distillation can be used to isolate (2).
Rather, it is preferable to use such a purification method. In this esterification reaction, carboxylic acid chloride may be used instead of carboxylic acid.

(2)は、アンモニアなどのアミン化試薬、塩化チオニ
ル、三塩化リン、五塩化リンなどのクロル化試薬、三臭
化リン、五臭化リンなどのブロモ化試薬と反応させるこ
とにより対応するYCOORC:CC=CRNH2、Y
COORC= CC= CRCl 、 YCOORC=
 CC= CRBrに容易に変換できる。具体的な変換
方法は、例えば、モリリン、ボイド著”有機科学(上)
、(中)、(下)”東京化学同人、第3版に記載されて
いる方法がそのまま適用できる。得られたこれらの非対
称ジアセチレン化合物についても、クロマト処理や再結
晶、蒸留などの精製手段をとることができ、むしろその
ような精製手段をとることは好ましい。
(2) can be obtained by reacting with an amination reagent such as ammonia, a chlorination reagent such as thionyl chloride, phosphorus trichloride, or phosphorus pentachloride, or a bromination reagent such as phosphorus tribromide or phosphorus pentabromide. :CC=CRNH2,Y
COORC= CC= CRCl, YCOORC=
It can be easily converted to CC=CRBr. For specific conversion methods, see "Organic Science (Part 1)" by Moririn and Boyd.
, (Middle), (Bottom) The method described in "Tokyo Kagaku Doujin, 3rd edition" can be applied as is. These asymmetric diacetylene compounds obtained can also be purified by purification methods such as chromatography, recrystallization, and distillation. However, it is preferable to use such a purification method.

得られた非対称ジアセチレン化合物の構造は、NMRス
ペクトル、赤外吸収スペクトル、紫外及び可視吸収スペ
クトル、ラマンスペクトル、マススペクトル、元素分析
、X線回折、クロマトグラフィーなどの分析手段によっ
て同定できる。
The structure of the obtained asymmetric diacetylene compound can be identified by analytical means such as NMR spectrum, infrared absorption spectrum, ultraviolet and visible absorption spectrum, Raman spectrum, mass spectrum, elemental analysis, X-ray diffraction, and chromatography.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明をより具体的に説明するか
、言うまでもなく、実施例のみに本発明が限定されるも
のではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited to the Examples.

実施例1 ジアセチレンジオール(HORC門CC=CROH) 
0.1モルとカルボン酸クロリド(YCOCA ) 0
1)モルを精製ジオキサン30−とN−メチルピロリド
ン1〇−の混合溶媒中、60℃にて3時間反応させた。
Example 1 Diacetylene diol (HORC phylum CC=CROH)
0.1 mol and carboxylic acid chloride (YCOCA) 0
1) Moles were reacted at 60° C. for 3 hours in a mixed solvent of 30-years of purified dioxane and 10-years of N-methylpyrrolidone.

反応後、溶媒を留去し、得られた反応物をエーテルに溶
解した後、希水酸化ナトリウム水溶液と水で洗浄した。
After the reaction, the solvent was distilled off, and the resulting reaction product was dissolved in ether and washed with dilute aqueous sodium hydroxide solution and water.

ポウ硝で乾燥後、このエーテル溶液を濃縮し反応物をシ
リカゲルカラム処理した。その結果を第1表に示す。
After drying with sulfuric acid, the ether solution was concentrated and the reaction product was treated with a silica gel column. The results are shown in Table 1.

同定は、NMRスペクトル、赤外吸収スペクトル、紫外
及び可視吸収スペクトル、ラマンスペクトル、マススペ
クトル、元素分析、X線回折、クロマトグラフィーなど
を用いて行なった。
Identification was performed using NMR spectra, infrared absorption spectra, ultraviolet and visible absorption spectra, Raman spectra, mass spectra, elemental analysis, X-ray diffraction, chromatography, and the like.

実施例2 実施例1で得られたアルコール0.1モルをピリジン3
0−に□溶解し、この溶液に塩化チオニルを1071L
lを2時間かけて、5℃を越えないようにして滴下した
。滴下終了後、40℃まで昇温し、更に1時間撹拌した
。反応後、反応物をエーテルに溶解した後、希水酸化ナ
トリウム水溶液と水で洗浄した。ボウ硝で乾燥後、この
エーテル溶液を濃縮し反応物をシリカゲルカラム処理し
た。その結果を第2表に示す。
Example 2 0.1 mol of the alcohol obtained in Example 1 was added to 3 mol of pyridine.
0-, and add 1071 L of thionyl chloride to this solution.
1 was added dropwise over 2 hours without exceeding 5°C. After the dropwise addition was completed, the temperature was raised to 40°C, and the mixture was further stirred for 1 hour. After the reaction, the reaction product was dissolved in ether and washed with dilute aqueous sodium hydroxide solution and water. After drying with glass salt, the ether solution was concentrated and the reaction product was treated with a silica gel column. The results are shown in Table 2.

同定は、NMRスペクトル、赤外吸収スペクトル、紫外
及び可視吸収スペクトル、ラマンスペクトル、マスクベ
クトル、元素分析、X線回折、クロマトグラフィーなど
を用いて行なった。
Identification was performed using NMR spectra, infrared absorption spectra, ultraviolet and visible absorption spectra, Raman spectra, mask vectors, elemental analysis, X-ray diffraction, chromatography, and the like.

実施例3 実施例2において、塩化チオニルの代りに、三臭化リン
を用いた以外は、実施例2を繰返した。
Example 3 Example 2 was repeated except that phosphorus tribromide was used instead of thionyl chloride.

得られた結果は、第3表に示す。The results obtained are shown in Table 3.

実施例4 実施例2又は、3で得られた非対称ジアセチレン化合物
0.1モルをテトラヒドロフラン201nlに容解し、
この溶液に濃アンモニア水20−を加え、308Cにて
24時間反応させた。反応後、溶媒を留去し、得られた
残渣をエーテルに溶解した。このエーテル溶液を希塩酸
水で洗浄した。塩酸層を分離し、希水酸化ナトリウム水
溶液を用いてアルカリ処理した後、エーテル抽出した。
Example 4 0.1 mol of the asymmetric diacetylene compound obtained in Example 2 or 3 was dissolved in 201 nl of tetrahydrofuran,
To this solution was added 20 mm of concentrated ammonia water, and the mixture was reacted at 308C for 24 hours. After the reaction, the solvent was distilled off, and the resulting residue was dissolved in ether. This ether solution was washed with diluted hydrochloric acid water. The hydrochloric acid layer was separated, treated with alkali using dilute aqueous sodium hydroxide solution, and then extracted with ether.

ボウ硝で乾燥後、このエーテル溶液を濃縮し反応物をシ
リカゲルカラム処理した。その結果を第4表に示す。
After drying with glass salt, the ether solution was concentrated and the reaction product was treated with a silica gel column. The results are shown in Table 4.

同定は、NMRスペクトル、赤外吸収スペクトル、紫外
及び可視吸収スペクトル、ラマンスペクトル、マススペ
クトル、元素分析、X線回折、クロマトグラフィーなど
を用いて行なった。
Identification was performed using NMR spectra, infrared absorption spectra, ultraviolet and visible absorption spectra, Raman spectra, mass spectra, elemental analysis, X-ray diffraction, chromatography, and the like.

比較のために、同じ条件で5.7−トデカジイン1,1
2−ジオール ジアクリレート及び5,7−ドデカジイ
ン−1,12−ジオール ジメタクリレートを硬化させ
て得られた硬化物の物性を測定したところ、弾性率は各
々7.8 GPaと7.0GPaであったかその強度は
80MPa程度であった。
For comparison, 5,7-todecadiine 1,1 under the same conditions
When the physical properties of the cured products obtained by curing 2-diol diacrylate and 5,7-dodecadiyne-1,12-diol dimethacrylate were measured, the elastic modulus was 7.8 GPa and 7.0 GPa, respectively. The strength was about 80 MPa.

この結果は、本発明の非対称ジアセチレン化合物を用い
た架橋体が弾性率とタフ、ネスに優れていることを示す
ものである。
This result shows that the crosslinked product using the asymmetric diacetylene compound of the present invention is excellent in elastic modulus, toughness, and ness.

〔発明の効果〕〔Effect of the invention〕

本発明の非対称ジアセチレン化合物は、側鎖に反応性官
能基を有するポリマーと極めて効率的に高分子反応し、
架橋反応性に富んだポリマーを与える。得られた架橋体
は、高弾性率の他に、タフネスも兼ね備えている。従っ
て、本発明の非対称ジアセチレン化合物は、等方的な高
強度、高弾性率材料の原料として有用である。
The asymmetric diacetylene compound of the present invention reacts extremely efficiently with a polymer having a reactive functional group in its side chain,
Provides a polymer with high crosslinking reactivity. The obtained crosslinked body has not only high elastic modulus but also toughness. Therefore, the asymmetric diacetylene compound of the present invention is useful as a raw material for isotropic high-strength, high-modulus materials.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、一般式(1)で示される非対称ジアセチレン化合物
。 Y−COO−R−C≡CC≡C−R′−X・・・・・・
・・(1)(ここで、Yは炭素数2から6までの不飽和
結合を有する1価の炭化水素基を示し、R、R′は炭素
数1から6までの2価の炭化水素基を示し、Xは−OH
、−NH_2、−Cl、−Brから選ばれた基を示す。 )
[Claims] 1. An asymmetric diacetylene compound represented by general formula (1). Y-COO-R-C≡CC≡C-R'-X...
...(1) (Here, Y represents a monovalent hydrocarbon group having 2 to 6 carbon atoms and an unsaturated bond, and R and R' are divalent hydrocarbon groups having 1 to 6 carbon atoms. and X is -OH
, -NH_2, -Cl, -Br. )
JP17950190A 1990-07-09 1990-07-09 Asymmetric diacetylene compound Pending JPH0469358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17950190A JPH0469358A (en) 1990-07-09 1990-07-09 Asymmetric diacetylene compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17950190A JPH0469358A (en) 1990-07-09 1990-07-09 Asymmetric diacetylene compound

Publications (1)

Publication Number Publication Date
JPH0469358A true JPH0469358A (en) 1992-03-04

Family

ID=16066922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17950190A Pending JPH0469358A (en) 1990-07-09 1990-07-09 Asymmetric diacetylene compound

Country Status (1)

Country Link
JP (1) JPH0469358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848553A (en) * 1996-02-16 1998-12-15 Asmo Co., Ltd. Motor device
US5855140A (en) * 1996-02-19 1999-01-05 Asmo Co. Ltd. Motor device
US6963007B2 (en) * 2002-12-19 2005-11-08 3M Innovative Properties Company Diacetylenic materials for sensing applications
US7364918B2 (en) 2002-12-19 2008-04-29 3M Innovative Properties Company Colorimetric sensors constructed of diacetylene materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848553A (en) * 1996-02-16 1998-12-15 Asmo Co., Ltd. Motor device
US5855140A (en) * 1996-02-19 1999-01-05 Asmo Co. Ltd. Motor device
US6963007B2 (en) * 2002-12-19 2005-11-08 3M Innovative Properties Company Diacetylenic materials for sensing applications
US7364918B2 (en) 2002-12-19 2008-04-29 3M Innovative Properties Company Colorimetric sensors constructed of diacetylene materials
US7816473B2 (en) * 2002-12-19 2010-10-19 3M Innovative Properties Company Diacetylenic materials for sensing applications
US8063164B2 (en) 2002-12-19 2011-11-22 3M Innovative Properties Company Diacetylenic materials for sensing applications

Similar Documents

Publication Publication Date Title
JPH04500374A (en) Reactive compounds containing perfluorovinyl groups
EP0429618A1 (en) Reactive compounds containing perfluorocyclobutane rings
JPH0469358A (en) Asymmetric diacetylene compound
JP2002255929A (en) Bis(hydroxyphenylthio)fluorene compound and method for producing the same
JPH0834768A (en) New dimethacrylate
JPS6067446A (en) Production of caprolactone polyester unsaturated monomer
JPH09188807A (en) Additive for unsaturated polyester resin and method for stabilizing unsaturated polyester resin against hydrolysis using said additive
JP2003137881A (en) Monomer for producing poly[3]rotaxane and method for producing the same
JPH02250888A (en) Triorganosilylmethyl alpha-trifluoromethylacrylate
JPS6368542A (en) Fluorinated metharylic acid ester
JPS6330441A (en) Polyhexafluoropropylene oxide derivative and its preparation
JPH05229990A (en) Bifunctional (meth)acrylate
JPS621379B2 (en)
JPH01233259A (en) Phenoxyallene compound having polar group and production thereof
JPS60158137A (en) Preparation of fluorine-containing acrylic acid derivative
JPH0774223B2 (en) Process for producing di (meth) allyl ・ (ω-trialkoxysilylalkyl) isocyanurate
JPH0436290A (en) Silane compound
JP2578056B2 (en) New fluorinated unsaturated carboxylic acid chloride
JPH02256637A (en) 2-(p-or m-tert-butoxyphenyl)ethylmethyl ether and synthesis thereof
JPH0635410B2 (en) Fluorine-containing styrene derivative and method for producing the same
JP4518247B2 (en) Method for producing α, α-difluoromethyl compound
JPS5813528A (en) Novel phenolic compound and its preparation
JP5209201B2 (en) Method for producing high-purity organic acid chloride having an unsaturated group in the molecule
JPH0469132B2 (en)
JPS6212741A (en) Production of 2-perfluoroalkylacrylic acid