JPH0468260B2 - - Google Patents

Info

Publication number
JPH0468260B2
JPH0468260B2 JP61034761A JP3476186A JPH0468260B2 JP H0468260 B2 JPH0468260 B2 JP H0468260B2 JP 61034761 A JP61034761 A JP 61034761A JP 3476186 A JP3476186 A JP 3476186A JP H0468260 B2 JPH0468260 B2 JP H0468260B2
Authority
JP
Japan
Prior art keywords
carbon
graphite material
graphite
resin composition
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61034761A
Other languages
Japanese (ja)
Other versions
JPS62191469A (en
Inventor
Sugiro Ootani
Hiroya Kakegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP61034761A priority Critical patent/JPS62191469A/en
Publication of JPS62191469A publication Critical patent/JPS62191469A/en
Publication of JPH0468260B2 publication Critical patent/JPH0468260B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は新規な熱硬化性樹脂を使用した炭素、
黒鉛材料及びその製造方法に関する。 (従来の技術) 従来、炭素、黒鉛材料は、フエノール樹脂、フ
ラン樹脂、これらの変性物等の熱硬化性樹脂をバ
インダーあるいは含浸剤として用いた前駆体を焼
成(黒鉛化を含む)したり、また、熱硬化性樹脂
ではないが石炭系もしくは石油系の重質油、ター
ル、ピツチ等をバインダーあるいは含浸剤として
用い、これを酸化剤等により不融化(実質的熱硬
化性化)した前駆体を焼成(黒鉛化を含む)する
ことにより得られることが知られている。 さらに、一度焼成した炭素材料にフエノール樹
脂、フラン樹脂、ピツチ等を含浸剤として含浸し
高密度化、高強度化をはかる技術が知られてい
る。 これらのうち、フエノール樹脂、フラン樹脂等
の熱硬化性樹脂をバインダーとする炭素、黒鉛前
駆体あるいはこれを炭素化した炭素材に繰返しフ
エノール樹脂を含浸、焼成することにより炭素、
黒鉛材料の密度や不浸透性を高め得ることが特開
昭53−37713号公報に開示されている。 また、タール、ピツチ等をバインダーとして成
る炭素、黒鉛前駆体にジニトロナフタレン等の芳
香族ニトロ化合物を添加剤として加えることによ
り不融化を促進し、前駆体の炭素化収率を高め得
ることが特公昭53−35792号及び特開昭52−31996
号公報に開示されている。 さらに、タール、ピツチ等をバインダーとして
成る炭素、黒鉛前駆体を空気中で加熱処理するこ
とにより不融化する方法が特開昭53−134507号公
報に開示されている。 また、炭酸カルシウム、及び重炭酸ナトリウム
を添加剤として加えることにより、タール、ピツ
チの流動を阻止し、モザイク化させることが特公
昭53−35793号公報に開示されている。 また、これら従来の炭素、黒鉛材料は、骨材と
バインダーあるいは含浸剤との結合は物理的接着
に依存している。 (発明が解決しようとする問題点) ところで、バインダーあるいは含浸剤に熱硬化
性樹脂を使用することは、成形、焼成工程を容易
なものにでき、そのコストを低減させるために有
効な手段である。 しかしながら、フエノール樹脂、或いはフラン
樹脂等の熱硬化性樹脂をバインダーあるいは含浸
剤として用いた場合には、以後の焼成、黒鉛化後
に現われる物理的な性質が著しく制限される欠
点、すなわち、これらの樹脂から得られる炭素、
黒鉛質にあつては、極めて黒鉛化性の低い炭素、
黒鉛材料しか得られず、又、炭素化収率が低いこ
とより、何度も含浸する等の製造上の欠点を有し
ていた。 また、バインダーにタール、ピツチ等を使用す
る際に不融化を促進する添加剤としてジニトロナ
フタレン等の芳香族ニトロ化合物を用いる場合に
おいては炭素化収率の向上等の利点はあるもの
の、有毒ガスを発生したり、焼成、黒鉛化後の材
質が、難黒鉛化性化してしまうという欠点を有し
ていた。 さらに、タール、ピツチ等をバインダーとして
使用する場合には、イオウ、酸素などの酸化剤に
よる不融化が必要であり、この不融化、すなわち
実質的な熱硬化性化を行なわない場合には、焼成
過程において成形体に変形が起こつたり、重力方
向へのピツチの移動にともなう特性の不均一性は
さけられず、炭素化収率の向上も望めないことか
ら含浸処理をくり返す等の欠点を有していた。こ
のため不融化処理が必要となるが、不融化を行な
うことによつて、ピツチ等の本来の黒鉛化性が著
しくそこなわれ、難黒鉛化性の炭素、黒鉛材料し
か得られないという欠点を有していた。 また、従来の多くの炭素、黒鉛材料の前駆体に
おいては、骨材とバインダーとの結合が物理的接
着(アンカー効果)に依存していることから、こ
れを焼成、黒鉛化することによつて得られる炭
素、黒鉛材料には強度的な限界があつた。 本発明はこのような事情に鑑みなされたもので
あり、本来熱硬化性でありながら炭素化収率が高
く、寸法収縮が小さく、黒鉛化性を自由に制御す
ることができ、また従来のタール、ピツチ等をバ
インダーとした場合の不均一性の問題を解消する
ことができ、しかも各種成形方法を適用すること
ができ、さらに結合強度の優れた炭素、黒鉛材料
及びその製造方法を提供しようとするものであ
る。 (問題点を解決するための手段及び作用) すなわち、第一の発明は、 (イ) 主として二環以上の縮合多環芳香族化合物。 (ロ) ヒドロキシメチル基、ハロメチル基のいずれ
か少なくとも一種の基を二個以上有する一環ま
たは二環以上の芳香環から成る芳香族架橋剤。 (ハ) 酸触媒。 (ニ) 前記(イ)(ロ)(ハ)が反応して成る熱硬化性樹脂組

物。 (ホ) 表面官能基を有する骨材。 (ヘ) 表面処理剤もしくは添加剤。 前記(ホ)の骨材と前記(ニ)の熱硬化性樹脂組成物と
の界面において、前記(ロ)の芳香族架橋剤を主体と
する前記(ヘ)の表面処理剤もしくは添加剤を介し化
学的に結合して成る前駆体が、焼成されて成る炭
素、黒鉛材料であり、また第二、第三の発明は、
前記(ホ)の骨材と前記(ニ)の熱硬化性樹脂組成物とを
その界面において前記(ヘ)の表面処理剤もしくは添
加剤を介して化学的に結合して成る前駆体を焼成
する前記炭素、黒鉛材料の製造方法であり、前記
(ニ)の熱硬化性樹脂組成物と前記(ホ)の骨材とは焼成
過程において一体化して炭素化し、前記(イ)の縮合
多環芳香族化合物の種類を変えることにより、あ
るいは前記(ロ)の芳香族架橋剤及び前記(ハ)の酸触媒
の量を変えることにより、焼成(黒鉛化を含む)
後の黒鉛化性を制御することができ、しかも結合
強度に優れた炭素、黒鉛材料及びその製造方法を
提供するものである。 以下、この炭素、黒鉛材料について、(ニ)の熱硬
化性樹脂組成物を構成する(イ)の縮合多環芳香族化
合物、(ロ)の芳香族架橋剤、及び(ハ)の酸触媒と、(ヘ)
の表面処理剤及び添加剤、さらに(ホ)の骨材につい
て説明する。 (イ)の縮合多環芳香族化合物には、石炭系若しく
は石油系の重質油、タール、ピツチ、あるいはナ
フタレン、アントラセン、フエナントレン、ピレ
ン、クリセン、ナフタセン、アセナフテン、アセ
ナフチレン、ペリレン、コロネン及びこれらを主
骨格とする誘導体の中から選ばれる一種又は二種
以上の混合物等を使用することができる。 (ロ)の芳香族架橋剤には、ヒドロキシメチル基、
ハロメチル基のいずれか少なくとも一種の基を二
個以上有する一環または二環以上の芳香環から成
る芳香族化合物、例えばp−キシリレンジクロラ
イド、p−キシリレングリコール(1,4−ベン
ゼンジメタノール)、ジメチル−p−キシリレン
グリコール、ジメチル−m−キシリレングリコー
ル等を使用することができる。 (ハ)の酸触媒には、塩化アルミニウム、弗化ホウ
素等のルイス酸或いは、硫酸、リン酸、有機スル
ホン酸、カルボン酸等のプロトン酸、及びこれら
の誘導体の中から選ばれる一種又は二種以上の混
合物を使用することができる。 本発明にあつては、前記(イ)の縮合多環芳香族化
合物のうち分子量が比較的小さいもの、或いは前
記(イ)の縮合多環芳香族化合物の誘導体であつて分
子内に酸素、イオウ等の異種元素を含むもの、或
いは硬化後の熱硬化性樹脂組成物の架橋密度が高
いものを使用する場合には難黒鉛化性の炭素、黒
鉛化質が得られる。 又、分子量が比較的大きく、かつ分子内に酸
素、イオウ等の異種元素を含まない原料を選択す
る場合、或いは硬化後の熱硬化性樹脂組成物の架
橋密度が低い場合には、きわめて黒鉛化性の良好
な炭素、黒鉛化質を得ることができる。 つまり、熱硬化性樹脂組成物を構成する縮合多
環芳香族化合物に分子量が比較的小さいもの、或
いは縮合多環芳香族化合物の誘導体であつて分子
内に酸素、イオウ等の異種元素を含むものを使用
した場合には、硬化或いは炭素化過程において本
発明の架橋剤に由来する架橋の他、分子内に存在
する酸素、イオウに起因するランダムな架橋が起
こり、得られる炭素、黒鉛前駆体の架橋密度は著
しく高くなる。 従つてこれを焼成、黒鉛化することによつて乱
層構造の発達した不浸透性等の特徴を有する難黒
鉛化性の炭素、黒鉛材料を得ることが可能とな
る。 一方、熱硬化性樹脂組成物を構成する縮合多環
芳香族化合物にメソフエースピツチ、ドーマント
メソフエースピツチ等のような巨大分子を含むも
のを使用した場合には、本発明の架橋剤によつて
架橋が進行しさらに巨大な分子となつても、本
来、芳香族分子がもつている黒鉛化性を損なうこ
となく易黒鉛化性でしかも炭素化収率を向上させ
た炭素、黒鉛材料を得ることが可能となる。 これは前記(ニ)の熱硬化性樹脂組成物について先
に出願した特願昭60−278800号願書に添付した明
細書に記載されているように、この熱硬化性組成
物は芳香族共役系に由来する導電性を有してお
り、このことは炭素、黒鉛前駆体中で芳香族架橋
剤と縮合多環芳香族化合物とが同一平面内で架橋
結合し、巨大分子化している、すなわち、極めて
黒鉛結晶に近い配列を示しているため焼成、黒鉛
化によつて容易に発達した黒鉛結晶が得られると
推考されるからである。 これによつて、得られた炭素、黒鉛前駆体を焼
成、黒鉛化することにより耐熱性、強度、靱性、
弾性、耐摩耗性、熱伝導性、導電性に優れた炭
素、黒鉛材料を得ることができる。 尚、前記(イ)の縮合多環芳香族化合物、(ロ)の芳香
族架橋剤、及び(ハ)の酸触媒を反応させて成る(ニ)の
熱硬化性組成物とするための混合比率について
は、(ロ)の芳香族架橋剤/(イ)の縮合多環芳香族化合
物=0.5〜4.0(モル比)の範囲;(ハ)の酸触媒添加
量については、(ロ)の芳香族架橋剤/(イ)の縮合多環
芳香族の化合物の混合物に対して0.5〜10wt%が
好適な範囲である。また、前記(ニ)の熱硬化性組成
物を加熱反応させてなる実質的に熱可塑性を有す
る熱硬化性中間反応生成物(Bステージ樹脂)を
得るための反応温度範囲については、60〜300℃
が好適な範囲である。 次に、本発明における(ヘ)の表面処理剤及び添加
剤については、前記(ロ)の芳香族架橋剤、若しくは
前記(ロ)の芳香族架橋剤と前記(ハ)の酸触媒との混合
物であり、この混合物の融点以上の温度に加熱溶
融させ液状とし、若しくは溶剤に溶解させ溶液と
して(ホ)の骨材の表面処理に使用する場合、また
は、(ヘ)の添加剤として(ホ)の骨材に添加して使用す
る場合も含まれる。また、(ヘ)の表面処理剤或いは
添加剤の(ホ)の骨材に対する添加量は特に限定され
るものではないが、0.01〜5wt%の範囲が好適で
ある。 本発明では(ホ)の骨材として、水素、ハロゲン、
ヒドロキシル基、カルボニル基、カルボキシル
基、アルデヒド基、エポキシ構造、ラクトン構
造、エーテル構造、酸無水物構造の中から選ばれ
る少なくとも一種又は二種以上の表面官能基を有
する、炭素、黒鉛、天然及び合成高分子、及びこ
れらの前駆体を使用することができる。 これらは、例えば石油系あるいは石炭系生コー
クス、カルサインコークス、カーボンフアイバ
ー、人造黒鉛、天然黒鉛、カーボンブラツク、木
炭、メソカーボンマイクロビーズ、バルクメソフ
エース、硬化させたフエノール、フラン等の熱硬
化性樹脂及びこれらの炭素化物である。 またその形態としては、連続繊維状、短繊維
状、粒状、平板状、塊状、多孔体状、織布状、不
織布状等がある。 (ホ)の骨材の表面官能基等については天然及び合
成高分子、炭素前駆体等予めこれらが存在してい
る物はそのまま、その他の存在していても少量で
ある場合には酸化剤による湿式酸化、及び酸素等
による乾式酸化、空気等の酸化性雰囲気中での粉
砕にともなうメカノケミカルな酸化、或いは水素
化等の還元処理による導入が有効である。 このような(ホ)の表面官能基を有する骨材と前記
(ニ)の熱硬化性樹脂組成物とは、両者の界面におい
て(ロ)の芳香族架橋剤、例えばp−キシリレンジク
ロライド、p−キシリレングリコール、ジメチル
−p−キシリレングリコール等を主体とする(ヘ)の
表面処理剤で処理するか、もしくは添加剤として
添加することによつて、これらの架橋剤を介して
化学的に結合している。 これによつて、(ホ)の骨剤と(ニ)の熱硬化性樹脂組
成物は炭素化、黒鉛化の過程において、完全に一
体化し、従来に例を見ない結合強度に優れた炭
素、黒鉛材料を得ることができる。 本発明の方法としては、第二の発明の製造方法
である予め(ホ)の骨材表面を(ヘ)の表面処理剤によつ
て処理しておく方法、及び第三の発明の製造方法
である(ヘ)の添加剤を(ニ)の熱硬化性樹脂組成物に添
加しておく方法があり、これらにいずれの方法に
おいても(ヘ)の表面処理剤若しくは添加材をそれら
の融点以上の温度に加熱溶融させ液状とし、若し
くは溶剤に溶解させ溶液として使用することがで
きるが、これらのうち(ホ)の骨材表面を(ヘ)の表面処
理剤によつて予め処理しておく前者の方法には、
溶剤に溶解させ溶液として使用することが好適で
ある。 本発明によれば、熱硬化性樹脂組成物を;(1)未
反応の粉末混合物として(2)所謂Bステージ樹脂の
粉末として(3)所謂Bステージ樹脂を加熱溶融させ
液状として、あるいは(4)所謂Bステージ樹脂を溶
剤に溶解させ液状として;バインダー、マトリツ
クス、含浸剤、コーテイング剤等として使用する
ことができるが、その際に骨材の形態が;連続繊
維状、織布状、不織布状等の場合には、(3)または
(4)の方法により、含浸法、フイラメントワインデ
イング法、プレプリツグ法等を採用して;単繊維
状、粒状、平板状、塊状等の場合には(1)または(2)
の方法により、混練法、造粒法、コーテイング法
等を採用して;ブロツク状、多孔体状、平板状、
加工品等の場合には、(3)または(4)の方法により、
含浸法等を採用して;それぞれ複合することが好
適である。 また、成形が必要な場合には、ホツトプレス、
ホツトアイソスタテイツクプレス、静水圧プレ
ス、型込、振動、押し出し、射出、トランスフア
ー、真空、吹きつけ、巻きつけ、張り合わせ等の
内から目的に合う成形方を選択し、所定の形状に
熱硬化成形する。この際、成形温度範囲は、100
〜400℃が好適で、複合物が軟化後に熱硬化する
ように成形温度及び時間を設定することが肝要で
ある。 さらに、後硬化する場合には、後硬化温度は
100〜400℃が好適な範囲であり、後硬化時間は10
〜30時間の範囲が好適である。 焼成は、常法に従つて非酸化性雰囲気中でこれ
を行う。特に重質油、タール、ピツチを使用した
熱硬化性樹脂組成物は従来のフエノール、フラン
等の熱硬化性樹脂と比較して遥かに高い炭素化率
を有しており、このため焼成過程においては体積
収縮が小さく、また従来より速い昇温速度で焼成
でき、サイズも大きなものが得られる。 また、本発明では、熱硬化性樹脂組成物自体が
硬化した状態(硬化体)で導電性を示すことから
骨材との複合物を直接通電したり、誘導加熱する
ことにより焼成することができる。 特に熱硬化性樹脂組成物の縮合多環芳香族化合
物に巨大な共役系縮合多環芳香族分子を含む石炭
系もしくは石油系のタール、ピツチを使用した場
合には、導電性は著しい。 本発明では、前記直接通電や誘導加熱による
他、従来より行なわれている外熱式加熱により焼
成することも勿論でき、各種の炭素、黒鉛材料の
製造に応用することが期待できる。 (実施例) 次に本発明を実施例について更に詳細に説明す
る。 実施例 1 市販の粉砕した石油系カルサインコークス(平
均粒子径80μm)を空気中400℃で3時間加熱し、
表面に酸素を含む官能基を導入した後、p−キシ
リレングリコール:5wt%とp−トルエンスルホ
ン酸:1wt%のエタノール溶液から成る表面処理
剤に浸した後、空気中120℃で30分間熱処理し、
これを骨材とした。 バインダーとしては石油系メソフエースピツチ
(軟化点230℃)とα−メチルナフタレンを混合
(重量比7:3)し、軟化点を150℃に調整したも
のとジメチル−p−キシリレングリコールを重量
比で5:2の割合で混合し、そこに5wt%のp−
トルエンスルホン酸を加えた混合物を160℃で10
分間反応させたBステージ樹脂を用いた。 このBステージ樹脂と骨材とを重量比で1:2
の割合で配合した後、160℃、15分間ニーダーで
混練し、混練物を180℃で100×100×50mmの大き
さにホツトプレス成形し、硬化させた後、200℃
で20時間後硬化させ、炭素、黒鉛前駆体を得た。 この前駆体はそれ自体導電性を有するため、非
酸化性雰囲気中、誘導加熱により150℃/hrの昇
温速度で2800℃まで昇温し、2800℃で1時間保持
した。 又、比較のため、この前駆体を非酸化性雰囲気
中、直接通電により400℃/hrの昇温速度で2800
℃まで昇温し、2800℃で1時間保持した。 これらの黒鉛化品の曲げ強度、電気比抵抗、シ
ヨアー硬度、見かけ比重を測定したところ、第1
表に示すような結果を得た。
(Industrial Application Field) The present invention is based on carbon using a new thermosetting resin.
This invention relates to graphite materials and their manufacturing methods. (Prior art) Conventionally, carbon and graphite materials have been produced by firing (including graphitization) a precursor using a thermosetting resin such as a phenolic resin, a furan resin, or a modified product thereof as a binder or impregnating agent. In addition, although it is not a thermosetting resin, it is a precursor made by using coal-based or petroleum-based heavy oil, tar, pitch, etc. as a binder or impregnating agent, and making it infusible (substantially thermosetting) with an oxidizing agent etc. It is known that it can be obtained by firing (including graphitization). Furthermore, a technique is known in which a fired carbon material is impregnated with phenolic resin, furan resin, pitch, etc. as an impregnating agent to increase density and strength. Among these, carbon, graphite precursor or carbonized carbon material using thermosetting resin such as phenolic resin or furan resin as a binder is repeatedly impregnated with phenolic resin and fired.
JP-A-53-37713 discloses that the density and impermeability of graphite materials can be increased. Furthermore, it is particularly possible to promote infusibility and increase the carbonization yield of the precursor by adding an aromatic nitro compound such as dinitronaphthalene as an additive to a carbon or graphite precursor made of tar, pitch, etc. as a binder. Publication No. 53-35792 and Japanese Patent Application Publication No. 52-31996
It is disclosed in the publication No. Further, JP-A-53-134507 discloses a method of making carbon and graphite precursors infusible by heat-treating them in air using tar, pitch, etc. as a binder. Further, Japanese Patent Publication No. 35793/1983 discloses that by adding calcium carbonate and sodium bicarbonate as additives, the flow of tar and pitch is inhibited and a mosaic is formed. Furthermore, these conventional carbon and graphite materials rely on physical adhesion to bond the aggregate and the binder or impregnant. (Problems to be Solved by the Invention) By the way, using a thermosetting resin as a binder or impregnating agent can facilitate the molding and firing process, and is an effective means for reducing costs. . However, when thermosetting resins such as phenolic resins or furan resins are used as binders or impregnating agents, there is a drawback that the physical properties that appear after subsequent firing and graphitization are severely limited. carbon obtained from
In the case of graphite, carbon with extremely low graphitizability,
Only graphite material can be obtained, and since the carbonization yield is low, it has manufacturing disadvantages such as requiring multiple impregnations. In addition, when using tar, pitch, etc. as a binder, aromatic nitro compounds such as dinitronaphthalene are used as additives to promote infusibility, and although there are advantages such as improved carbonization yield, there are also The problem is that the material after generation, firing, and graphitization becomes difficult to graphitize. Furthermore, when using tar, pitch, etc. as a binder, it is necessary to make it infusible with an oxidizing agent such as sulfur or oxygen. In the process, deformation of the compact occurs, non-uniformity of properties due to pitch movement in the direction of gravity cannot be avoided, and improvement in carbonization yield cannot be expected, so there are disadvantages such as repeating the impregnation process. had. For this reason, infusibility treatment is required, but by infusibility, the original graphitizability of pitch etc. is significantly impaired, and the disadvantage is that only carbon and graphite materials that are difficult to graphitize can be obtained. had. In addition, in many conventional carbon and graphite material precursors, the bonding between aggregate and binder relies on physical adhesion (anchor effect), so by firing and graphitizing this, The carbon and graphite materials that could be obtained had a strength limit. The present invention was developed in view of these circumstances, and although it is thermosetting in nature, it has a high carbonization yield, small dimensional shrinkage, and can freely control graphitization properties, and has a structure that is different from conventional tar. The present invention aims to provide a carbon or graphite material that can solve the problem of non-uniformity when using , pitch, etc. as a binder, can be applied with various molding methods, and has excellent bonding strength, and a method for producing the same. It is something to do. (Means and effects for solving the problems) That is, the first invention is: (a) A fused polycyclic aromatic compound mainly having two or more rings. (b) An aromatic crosslinking agent consisting of one or two or more aromatic rings having two or more of at least one of hydroxymethyl groups and halomethyl groups. (c) Acid catalyst. (d) A thermosetting resin composition formed by reacting the above (a), (b), and (c). (e) Aggregates with surface functional groups. (f) Surface treatment agents or additives. At the interface between the aggregate in (e) and the thermosetting resin composition in (d), the surface treatment agent or additive in (f), which is mainly composed of the aromatic crosslinking agent in (b), is used. The second and third inventions are carbon and graphite materials formed by firing a chemically bonded precursor, and the second and third inventions are
Baking a precursor formed by chemically bonding the aggregate of (e) and the thermosetting resin composition of (d) at their interface via the surface treatment agent or additive of (f). A method for producing the carbon and graphite material, the method comprising:
The thermosetting resin composition of (d) and the aggregate of (e) are integrated and carbonized during the firing process, and the composition of the thermosetting resin composition of (d) and the aggregate of (e) are integrated and carbonized. By changing the amounts of the aromatic crosslinking agent (b) and the acid catalyst (c), calcination (including graphitization)
The present invention provides carbon and graphite materials that can control subsequent graphitization and have excellent bond strength, and a method for producing the same. Hereinafter, regarding this carbon and graphite material, the condensed polycyclic aromatic compound (i) constituting the thermosetting resin composition (d), the aromatic crosslinking agent (b), and the acid catalyst (c) ,(f)
The surface treatment agent and additives mentioned above, and the aggregate (e) will be explained below. The condensed polycyclic aromatic compounds in (a) include coal-based or petroleum-based heavy oil, tar, pitch, naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, acenaphthene, acenaphthylene, perylene, coronene, and the like. One type or a mixture of two or more types selected from the main skeleton derivatives can be used. (B) The aromatic crosslinking agent includes a hydroxymethyl group,
Aromatic compounds consisting of one or two or more aromatic rings having two or more of at least one type of halomethyl group, such as p-xylylene dichloride, p-xylylene glycol (1,4-benzenedimethanol), Dimethyl-p-xylylene glycol, dimethyl-m-xylylene glycol, etc. can be used. The acid catalyst (c) includes one or two selected from Lewis acids such as aluminum chloride and boron fluoride, protonic acids such as sulfuric acid, phosphoric acid, organic sulfonic acids, and carboxylic acids, and derivatives thereof. Mixtures of the above can be used. In the present invention, among the fused polycyclic aromatic compounds described in (a) above, those having a relatively small molecular weight, or derivatives of the fused polycyclic aromatic compounds described in (a) above, which contain oxygen and sulfur in the molecule. When using a thermosetting resin composition containing different elements such as, or a thermosetting resin composition having a high crosslinking density after curing, a non-graphitizable carbon or a graphitizable substance can be obtained. In addition, when selecting a raw material that has a relatively large molecular weight and does not contain foreign elements such as oxygen and sulfur in the molecule, or when the crosslinking density of the thermosetting resin composition after curing is low, it is extremely difficult to graphitize. Carbon and graphitized substances with good properties can be obtained. In other words, the fused polycyclic aromatic compound constituting the thermosetting resin composition has a relatively small molecular weight, or it is a derivative of the fused polycyclic aromatic compound and contains different elements such as oxygen and sulfur in the molecule. When carbonization is used, in addition to crosslinking originating from the crosslinking agent of the present invention, random crosslinking due to oxygen and sulfur present in the molecule occurs during the curing or carbonization process, and the resulting carbon and graphite precursor The crosslink density becomes significantly higher. Therefore, by firing and graphitizing this material, it is possible to obtain a non-graphitizable carbon or graphite material which has a developed turbostratic structure and has characteristics such as impermeability. On the other hand, when the fused polycyclic aromatic compound constituting the thermosetting resin composition contains a macromolecule such as mesophase pitch, dormant mesophase pitch, etc., the crosslinking agent of the present invention To obtain a carbon or graphite material that is easily graphitized without impairing the graphitizability originally possessed by aromatic molecules even when crosslinking progresses and becomes even larger molecules, and which also has an improved carbonization yield. becomes possible. This is because, as described in the specification attached to the previously filed Japanese Patent Application No. 60-278800 regarding the thermosetting resin composition (d) above, this thermosetting resin composition is based on an aromatic conjugated resin composition. This means that the aromatic crosslinking agent and the condensed polycyclic aromatic compound are crosslinked in the same plane in the carbon and graphite precursor to form a macromolecule, that is, This is because it exhibits an arrangement extremely close to that of graphite crystals, so it is thought that well-developed graphite crystals can be easily obtained through firing and graphitization. By firing and graphitizing the carbon and graphite precursors obtained, heat resistance, strength, toughness,
Carbon and graphite materials with excellent elasticity, wear resistance, thermal conductivity, and electrical conductivity can be obtained. In addition, the mixing ratio for producing the thermosetting composition (d) obtained by reacting the fused polycyclic aromatic compound (a), the aromatic crosslinking agent (b), and the acid catalyst (c). For (b) aromatic crosslinking agent/(a) condensed polycyclic aromatic compound = range of 0.5 to 4.0 (molar ratio); for (c) acid catalyst addition amount, (b) aromatic crosslinking agent A suitable range is 0.5 to 10 wt% based on the mixture of crosslinking agent/(a) fused polycyclic aromatic compound. In addition, the reaction temperature range for obtaining a thermosetting intermediate reaction product (B stage resin) having substantially thermoplastic properties by subjecting the thermosetting composition (d) to a heating reaction is 60 to 300°C. ℃
is a suitable range. Next, regarding the surface treatment agent and additive (f) in the present invention, the aromatic crosslinking agent described in (b) above, or a mixture of the aromatic crosslinking agent described in (b) above and the acid catalyst described in (c) above. When the mixture is heated and melted to a temperature above the melting point to form a liquid, or dissolved in a solvent and used as a solution for the surface treatment of aggregate (e), or as an additive in (e). This also includes when it is added to aggregate. Further, the amount of the surface treatment agent (f) or additive added to the aggregate (e) is not particularly limited, but is preferably in the range of 0.01 to 5 wt%. In the present invention, as the aggregate (e), hydrogen, halogen,
Carbon, graphite, natural and synthetic materials having at least one or more surface functional groups selected from hydroxyl groups, carbonyl groups, carboxyl groups, aldehyde groups, epoxy structures, lactone structures, ether structures, and acid anhydride structures. Macromolecules and their precursors can be used. These include thermosetting materials such as petroleum or coal-based raw coke, calcine coke, carbon fiber, artificial graphite, natural graphite, carbon black, charcoal, mesocarbon microbeads, bulk mesophase, hardened phenol, and furan. These are resins and carbonized products thereof. In addition, its form includes continuous fibers, short fibers, granules, flat plates, lumps, porous bodies, woven fabrics, nonwoven fabrics, and the like. Regarding the surface functional groups of the aggregate in (e), natural and synthetic polymers, carbon precursors, etc., which already exist, can be used as is, and if other substances are present, but in small quantities, they can be treated with an oxidizing agent. Wet oxidation, dry oxidation using oxygen or the like, mechanochemical oxidation accompanying pulverization in an oxidizing atmosphere such as air, or reduction treatment such as hydrogenation is effective. Aggregates having such surface functional groups (e) and the above-mentioned
(d) The thermosetting resin composition mainly contains the aromatic crosslinking agent (b) such as p-xylylene dichloride, p-xylylene glycol, dimethyl-p-xylylene glycol, etc. at the interface between the two. By treating with the surface treatment agent (f) or adding it as an additive, chemical bonding is achieved via these crosslinking agents. As a result, the aggregate (e) and the thermosetting resin composition (d) are completely integrated during the carbonization and graphitization process, and the carbon has unprecedented bonding strength. Graphite material can be obtained. The method of the present invention includes the manufacturing method of the second invention, in which the surface of the aggregate is previously treated with the surface treatment agent of (f), and the manufacturing method of the third invention. There is a method of adding a certain additive (f) to the thermosetting resin composition (d), and in either method, the surface treatment agent or additive (f) is added to the thermosetting resin composition (f) at a temperature above their melting point. It can be used as a liquid by heating and melting it at a high temperature, or as a solution by dissolving it in a solvent, but in the former case, the surface of the aggregate in (e) is pretreated with the surface treatment agent in (f). The method includes
It is preferable to dissolve it in a solvent and use it as a solution. According to the present invention, the thermosetting resin composition can be prepared (1) as an unreacted powder mixture, (2) as a powder of a so-called B-stage resin, (3) as a liquid by heating and melting the so-called B-stage resin, or (4) as a powder of a so-called B-stage resin. ) The so-called B-stage resin is dissolved in a solvent and made into a liquid; it can be used as a binder, matrix, impregnating agent, coating agent, etc., but in this case, the form of the aggregate is: continuous fiber, woven fabric, non-woven fabric. In such cases, (3) or
By method (4), impregnation method, filament winding method, prepreg method, etc. are adopted; in case of monofilament, granule, tabular, lump, etc., use (1) or (2).
By using methods such as kneading method, granulation method, coating method, etc.; block shape, porous body shape, flat shape,
In the case of processed products, etc., use method (3) or (4).
It is preferable to combine them by employing an impregnation method or the like. In addition, if molding is required, hot press,
Select the molding method that suits your purpose from hot isostatic press, hydrostatic press, molding, vibration, extrusion, injection, transfer, vacuum, spraying, winding, lamination, etc., and heat harden it into the desired shape. Shape. At this time, the molding temperature range is 100
~400°C is preferred, and it is important to set the molding temperature and time so that the composite is thermoset after softening. Furthermore, when post-curing, the post-curing temperature is
The preferred range is 100-400℃, and the post-curing time is 10
A range of ~30 hours is preferred. Firing is performed in a non-oxidizing atmosphere according to a conventional method. In particular, thermosetting resin compositions using heavy oil, tar, and pitch have a much higher carbonization rate than conventional thermosetting resins such as phenol and furan. has small volumetric shrinkage, can be fired at a faster temperature increase rate than conventional methods, and can be produced in large sizes. Furthermore, in the present invention, since the thermosetting resin composition itself exhibits conductivity in a cured state (cured product), the composite with aggregate can be fired by directly applying electricity or by induction heating. . In particular, when coal-based or petroleum-based tar or pitch containing giant conjugated fused polycyclic aromatic molecules is used as the fused polycyclic aromatic compound of the thermosetting resin composition, the conductivity is remarkable. In addition to the above-mentioned direct current application and induction heating, the present invention can of course be fired by conventional external heating, and can be expected to be applied to the production of various carbon and graphite materials. (Example) Next, the present invention will be described in more detail with reference to Examples. Example 1 Commercially available crushed petroleum-based calcine coke (average particle size 80 μm) was heated in air at 400°C for 3 hours.
After introducing a functional group containing oxygen to the surface, it was immersed in a surface treatment agent consisting of an ethanol solution of 5 wt% p-xylylene glycol and 1 wt% p-toluenesulfonic acid, and then heat treated in air at 120°C for 30 minutes. death,
This was used as aggregate. The binder was a mixture of petroleum-based mesophacetic pitch (softening point 230°C) and α-methylnaphthalene (weight ratio 7:3), the softening point of which was adjusted to 150°C, and dimethyl-p-xylylene glycol in a weight ratio. 5:2 ratio, and 5wt% p-
The mixture with toluenesulfonic acid was heated at 160℃ for 10 minutes.
A B-stage resin reacted for minutes was used. The weight ratio of this B-stage resin and aggregate is 1:2.
After mixing in the ratio of
After curing for 20 hours, a carbon and graphite precursor was obtained. Since this precursor itself has conductivity, the temperature was raised to 2800°C at a heating rate of 150°C/hr by induction heating in a non-oxidizing atmosphere, and held at 2800°C for 1 hour. For comparison, this precursor was heated to 2800°C at a heating rate of 400°C/hr by direct current in a non-oxidizing atmosphere.
The temperature was raised to ℃ and held at 2800℃ for 1 hour. When we measured the bending strength, electrical resistivity, Shore hardness, and apparent specific gravity of these graphitized products, we found that
The results shown in the table were obtained.

【表】 実施例 2 水素等の表面官能基を有する石炭系メソカーボ
ンマイクロビーズ(平均粒子径5μm)を骨材と
し、バインダーとして軟化点85℃の石炭系ピツチ
(平均分子量400)と、p−キシリレングリコール
とをモル比で1:2.5の割合で混合し、そこに6wt
%のp−トルエンスルホン酸を加えた混合物を用
いた。 バインダー組成物に添加剤としてp−キシリレ
ンジクロライドを1.5wt%添加した後、骨材に対
して重量比で1:1の割合に配合し、140℃で15
分間ヘンシエルミキサーで骨材にコーテイングし
た。 この混練物を押し出し成形した後、200℃で硬
化させた。 その後、硬化物は従来法に従つて焼成し、2800
℃で黒鉛化した。 この黒鉛材料を20φ×50mmの大きさに加工し
て、放電加工機G−30(三菱電気(株)製)に固定し
て、SK鋼を相手材として電極プラス極性で、ケ
ロシン中でピーク電流3A、パルス幅20μsecの条
件で放電加工を行なつた。 SK鋼を20φの面積で5mmの深さに加工した後
の電極の長さ方向の消耗は、約0.5mmときわめて
小さい値を示した。 実施例 3 市販の5mm以下に切断したピツチ系凡用カーボ
ンフアイバーを空気中400℃で3時間加熱し、表
面に酸素を含む官能基を導入した後、p−キシリ
レンジクロライド:5wt%とp−トルエンスルホ
ン酸:1wt%のエタノール溶液から成る表面処理
剤に浸した後、空気中120℃で30分間熱処理し、
これを骨材とした。 バインダーとしては、ピレン−フエナントレン
の混合物(モル比7:3)とp−キシリレンジク
ロライドをモル比で1:1.5の割合で混合し、そ
こに3wt%の無水塩化アルミニウムを加えた混合
物を130℃で40分間反応させたBステージ樹脂を
用いた。 このBステージ樹脂を100μm以下に粉砕し、骨
材と重量比で1:1の割合で配合し、充分に混合
した。 混合物をマイクロ波加熱のモールドプレスを用
い180℃で成形し、200℃で10時間後硬化させ炭
素、黒鉛前駆体を得た。 前駆体を非酸化性雰囲気中200℃/hrの昇温速
度で2000℃まで昇温したところ、気孔率80%の多
孔質黒鉛材料が得られた。 又、この多孔質黒鉛材料は優れた耐熱性と高温
断熱特性を示した。 実施例 4 石油系生コークスを超微粉砕機により空気中で
10μm以下に粉砕し、粉砕と同時に酸素を含む表
面官能基を導入し、これを骨材とした。バインダ
ーとしては、軟化点115℃石炭系エアブローピツ
チ(平均分子量約600)とp−キシリレンジクロ
ライドをモル比で1:2の割合で混合し、ここの
無水塩化アルミニウムを3wt%添加した混合物を
120℃で15分間反応させたBステージ樹脂を用い
た。 このBステージ樹脂を40μm以下に粉砕し、こ
れと骨材とを重量比で2:1の割合で配合し、添
加剤として骨材に対してp−キシリレンジクロラ
イドを1.0wt%、p−トルエンスルホン酸を1.0wt
%加えた後180℃で100φ×10tの大きさにインジ
エクシヨン成形した。 続いて200℃で15時間、後硬化し炭素、黒鉛前
駆体を得た。 この前駆体は常法に従い焼成し、2500℃で黒鉛
化した。この黒鉛材料は9Kg/cm2の空気に対して
不浸透性であつた。 実施例 5 市販の黒鉛材料(気孔率16%)を200×200×
100mmの各ブロツクに加工し、p−キシリレング
リコール5wt%、p−トルエンスルホン酸2wt%
のエタノール溶液を減圧し、含浸した後、150℃
空気中で1hr乾燥し、これを骨材とした。 含浸剤として、市販の石炭系含浸用ピツチ(軟
化点85℃、炭素化収率53%、平均分子量400)と
ジメチル−m−キシリレングリコールをモル比で
1:2で混合し、そこにトリフルオロメタンスル
ホン酸を5wt%混合し、120℃で40分間窒素気流
中で反応させたBステージ樹脂(軟化点70℃)を
用い、骨材ブロツクに150℃で減圧含浸した。 比較のため含浸用ピツチのみを150℃で減圧含
浸し、両者とも50℃/hrの昇温速度で酸化性雰囲
気中800℃まで焼成あと、常法に従つて2800℃で
黒鉛化した。 これらの見かけ比重、電気比抵抗、熱伝導率に
ついての測定結果を第2表に示す。
[Table] Example 2 Coal-based mesocarbon microbeads (average particle size 5 μm) having surface functional groups such as hydrogen were used as aggregate, coal-based pitch (average molecular weight 400) with a softening point of 85°C was used as a binder, and p- Mix with xylylene glycol at a molar ratio of 1:2.5, and add 6wt.
% of p-toluenesulfonic acid was used. After adding 1.5wt% of p-xylylene dichloride as an additive to the binder composition, it was mixed at a weight ratio of 1:1 with respect to the aggregate, and the mixture was heated at 140℃ for 15% by weight.
The aggregate was coated in a Henschel mixer for minutes. This kneaded material was extruded and then cured at 200°C. After that, the cured product was fired according to the conventional method, and
Graphitized at ℃. This graphite material was machined to a size of 20φ x 50mm, fixed to an electric discharge machine G-30 (manufactured by Mitsubishi Electric Corporation), and the peak current was Electric discharge machining was performed under the conditions of 3A and a pulse width of 20μsec. After machining SK steel to a depth of 5 mm in an area of 20φ, the wear in the length direction of the electrode was approximately 0.5 mm, which was extremely small. Example 3 A commercially available pitch-based general-purpose carbon fiber cut into pieces of 5 mm or less was heated in air at 400°C for 3 hours to introduce oxygen-containing functional groups onto the surface, and then p-xylylene dichloride: 5 wt% and p- Toluenesulfonic acid: After being immersed in a surface treatment agent consisting of a 1wt% ethanol solution, heat treated in air at 120℃ for 30 minutes,
This was used as aggregate. As a binder, a mixture of pyrene-phenanthrene (molar ratio 7:3) and p-xylylene dichloride were mixed at a molar ratio of 1:1.5, and 3 wt% of anhydrous aluminum chloride was added thereto, and the mixture was heated at 130°C. A B-stage resin that had been reacted for 40 minutes was used. This B-stage resin was pulverized to 100 μm or less, blended with aggregate at a weight ratio of 1:1, and thoroughly mixed. The mixture was molded at 180°C using a microwave heated mold press and post-cured at 200°C for 10 hours to obtain a carbon and graphite precursor. When the precursor was heated to 2000°C at a heating rate of 200°C/hr in a non-oxidizing atmosphere, a porous graphite material with a porosity of 80% was obtained. Moreover, this porous graphite material showed excellent heat resistance and high temperature insulation properties. Example 4 Petroleum-based raw coke is pulverized in air using an ultrafine crusher.
It was ground to 10 μm or less, and surface functional groups containing oxygen were introduced at the same time as the grinding, and this was used as aggregate. As a binder, a mixture of coal-based air-blow pitch (average molecular weight approximately 600) with a softening point of 115°C and p-xylylene dichloride in a molar ratio of 1:2, with 3 wt% of anhydrous aluminum chloride added thereto, was used.
A B-stage resin reacted at 120°C for 15 minutes was used. This B-stage resin is pulverized to 40 μm or less, and mixed with aggregate at a weight ratio of 2:1. As additives, 1.0 wt% of p-xylylene dichloride and p-toluene are added to the aggregate. 1.0wt sulfonic acid
After adding %, it was in-die extension molded at 180°C to a size of 100φ x 10t. Subsequently, it was post-cured at 200°C for 15 hours to obtain a carbon and graphite precursor. This precursor was calcined according to a conventional method and graphitized at 2500°C. This graphite material was impermeable to 9 kg/cm 2 of air. Example 5 Commercially available graphite material (porosity 16%) was 200×200×
Processed into 100mm blocks, p-xylylene glycol 5wt%, p-toluenesulfonic acid 2wt%
After vacuuming and impregnating the ethanol solution, 150℃
It was dried in the air for 1 hour and used as aggregate. As an impregnating agent, commercially available coal-based impregnating pitch (softening point: 85°C, carbonization yield: 53%, average molecular weight: 400) and dimethyl-m-xylylene glycol were mixed in a molar ratio of 1:2, and trifluoride was added thereto. Using a B-stage resin (softening point 70°C) mixed with 5 wt% of lomethanesulfonic acid and reacted at 120°C for 40 minutes in a nitrogen stream, the aggregate block was impregnated under reduced pressure at 150°C. For comparison, only the impregnation pitch was impregnated under reduced pressure at 150°C, and both were fired at a heating rate of 50°C/hr to 800°C in an oxidizing atmosphere, and then graphitized at 2800°C according to a conventional method. The measurement results of these apparent specific gravity, electrical resistivity, and thermal conductivity are shown in Table 2.

【表】 (発明の効果) 以上本発明によれば、その炭素、黒鉛材料は、
骨材と熱硬化性樹脂組成物とをその界面において
芳香族架橋剤を主体とする表面処理剤もしくは添
加剤を介し化学的に結合させた後、焼成して成る
ものであり、熱硬化性樹脂組成物と骨材とは焼成
過程において一体化して炭素化し、結合強度に優
れたものとなつている。 また、本発明によれば、熱硬化性樹脂組成物の
縮合多環芳香族化合物の種類を変えることによ
り、あるいは前記芳香族架橋剤及び前記酸触媒の
量を変え架橋密度を変化させることにより、焼成
(黒鉛化を含む)後の黒鉛化性を難黒鉛化性のも
のから易黒鉛化性のものまで制御することができ
る。 また、本発明に係る炭素、黒鉛材料は熱硬化性
樹脂でありながら炭素化収率が高く、寸法収縮が
小さいから、比較的大きなサイズのものを製造す
るのにも適している。 さらに、成形が容易であり、各種の成形方法に
適用することができる。 また、本発明に係る炭素、黒鉛材料を製造する
際の焼成に、熱硬化性樹脂組成物が硬化した状態
(硬化体)で導電性を示すことから、直接通電し
たり、誘導加熱することによる焼成ができ、外熱
式加熱による製造に適さない炭素、黒鉛材料の製
造に適している。 この様にして、本発明により、種々の黒鉛化性
を示し、強度、弾性率、摺動特性等の機械的性
質、熱伝等率、熱膨張率、耐スポーリング性等の
熱的性質、電気比抵抗等の電気的性質などの物理
的特性を自由に制御しうる炭素、黒鉛材料を製造
し得る。 また、製造工程においては熱硬化性の特徴を生
かし、種々の賦形方法が採用でき、かつ、低収
縮、高寸法、安定性、高炭素化率によつて、大幅
なコスト低減が期待できる。
[Table] (Effects of the invention) According to the present invention, the carbon and graphite materials are
It is made by chemically bonding aggregate and a thermosetting resin composition at the interface via a surface treatment agent or additive mainly consisting of an aromatic crosslinking agent, and then firing. The composition and aggregate are integrated and carbonized during the firing process, resulting in excellent bonding strength. Further, according to the present invention, by changing the type of condensed polycyclic aromatic compound in the thermosetting resin composition, or by changing the amounts of the aromatic crosslinking agent and the acid catalyst and changing the crosslinking density, Graphitizability after firing (including graphitization) can be controlled from non-graphitizable to easily graphitizable. Furthermore, although the carbon and graphite materials according to the present invention are thermosetting resins, they have a high carbonization yield and small dimensional shrinkage, so they are suitable for manufacturing relatively large products. Furthermore, it is easy to mold and can be applied to various molding methods. In addition, since the thermosetting resin composition exhibits conductivity in the cured state (cured product) during baking when producing the carbon and graphite materials according to the present invention, it is possible to conduct the baking process by directly applying electricity or by induction heating. It can be fired and is suitable for manufacturing carbon and graphite materials that are not suitable for manufacturing by external heating. In this way, the present invention exhibits various graphitizability, mechanical properties such as strength, elastic modulus, and sliding properties, thermal properties such as heat transfer coefficient, thermal expansion coefficient, and spalling resistance. Carbon and graphite materials whose physical properties such as electrical properties such as electrical resistivity can be freely controlled can be produced. In addition, in the manufacturing process, various shaping methods can be employed by taking advantage of the thermosetting characteristics, and significant cost reductions can be expected due to low shrinkage, high dimensions, stability, and high carbonization rate.

Claims (1)

【特許請求の範囲】 1 (イ) 主として二環以上の縮合多環芳香族化合
物。 (ロ) ヒドロキシメチル基、ハロメチル基のいずれ
か少なくとも一種の基を二個以上有する一環ま
たは二環以上の芳香環から成る芳香族架橋剤。 (ハ) 酸触媒。 (ニ) 前記(イ)(ロ)(ハ)が反応して成る熱硬化性樹脂組

物。 (ホ) 表面官能基を有する骨材。 (ヘ) 表面処理剤もしくは添加剤。 前記(ニ)の熱硬化性樹脂組成物と(ホ)の骨材との界
面において、前記(ロ)の芳香族架橋剤を主体とする
前記(ヘ)の表面処理剤もしくは添加剤を介し化学的
に結合して成る前駆体が、焼成されて成ることを
特徴とする炭素、黒鉛材料。 2 特許請求の範囲第1項記載の炭素、黒鉛材料
において、前記(ニ)の熱硬化性樹脂組成物は、前記
(イ)の縮合多環芳香族化合物と前記(ロ)の芳香族架橋
剤と前記(ハ)の酸触媒との混合物、もしくはこれら
の熱硬化性中間反応生成物の中から選ばれる少な
くとも一種が反応により熱硬化されて成ることを
特徴とする炭素、黒鉛材料。 3 特許請求の範囲第1項記載の炭素、黒鉛材料
において、前記(イ)の縮合多環芳香族化合物は、石
炭系もしくは石油系の重質油、タール、ピツチ、
あるいはナフタレン、アントラセン、フエナント
レン、ピレン、クリセン、ナフタセン、アセナフ
テン、アセナフチレン、ペリレン、コロネン、及
びこれらを主骨格とする誘導体の中から選ばれる
一種又は二種以上の混合物であることを特徴とす
る炭素、黒鉛材料。 4 特許請求の範囲第1項記載の炭素、黒鉛材料
において、前記(ハ)の酸触媒は、塩化アルミニウ
ム、弗化ホウ素、リン酸、有機スルホン酸、カル
ボン酸、及びこれらの誘導体の中から選ばれる一
種又は二種以上の混合物であることを特徴とする
炭素、黒鉛材料。 5 特許請求の範囲第1項記載の炭素、黒鉛材料
において、前記(ホ)の骨材は、炭素、黒鉛、天然及
び合成高分子、及びこれらの前駆体の中から選ば
れる一種又は二種以上の化合物もしくは混合物で
あり、少なくともその表面に水素、ハロゲン、ヒ
ドロキシル基、カルボニル基、カルボキシル基、
アルデヒド基、エポキシ構造、ラクトン構造、エ
ーテル構造、酸無水物構造の中から選ばれる一種
又は二種以上を予め有するもの、もしくはこれら
が導入されたものであることを特徴とする炭素、
黒鉛材料。 6 特許請求の範囲第1項記載の炭素、黒鉛材料
において、前記(ホ)の骨材は、非晶質、結晶質のい
ずれか少なくとも一種であり、かつその形態が連
続繊維状、短繊維状、粒状、平板状、塊状、ブロ
ツク状、多孔体状、織布状、不織布状の中から選
ばれる一種もしくは二種以上を組合せて成ること
を特徴とする炭素、黒鉛材料。 7 特許請求の範囲第1項記載の炭素、黒鉛材料
において、前記(ヘ)の表面処理剤及び前記添加剤
は、ヒドロキシメチル基、ハロメチル基のいずれ
か少なくとも一種の基を二個以上有する一環また
は二環以上の芳香環から成る前記(ロ)の芳香族架橋
剤、もしくは前記(ロ)の芳香族架橋剤と前記(ハ)の酸
触媒との混合物から成る架橋能を有する組成物で
あることを特徴とする炭素、黒鉛材料。 8 下記(a)〜(d)のシーケンスから成ることを特徴
とする炭素、黒鉛材料の製造方法。 (a) 少なくともその表面に水素、ハロゲン、ヒド
ロキシル基、カルボニル基、カルボキシル基、
アルデヒド基、エポキシ構造、ラクトン構造、
エーテル構造、酸無水物構造の中から選ばれる
一種又は二種以上を有する骨材の該表面を、ヒ
ドロキシメチル基、ハロメチル基のいずれか少
なくとも一種の基を二個以上有する一環または
二環以上の芳香環から成る芳香族架橋剤を主体
とする表面処理剤によつて被覆せしめた後、熱
処理を行なう工程: (b) (イ) 主として二環以上の縮合多環芳香族化合
物。 (ロ) ヒドロキシメチル基、ハロメチル基のいず
れか少なくとも一種の基を二個以上有する一
環または二環以上の芳香環から成る芳香族架
橋剤。 (ハ) 酸触媒。 前記(イ)(ロ)(ハ)が組合されて成る熱硬化性樹脂組
成物と、前記(a)工程で処理した骨材とを複合化
する工程: (c) 前記(b)工程により得られた複合物を酸化性も
しくは非酸化性雰囲気中100〜400℃の温度範囲
に加熱し、前記骨材と前記熱硬化性樹脂組成物
とを、その界面において化学的に結合させ、同
時に前記熱硬化性樹脂組成物を硬化させる工
程: (d) 前記(c)により得られた化合物を焼成する工
程。 9 特許請求の範囲第8項記載の炭素、黒鉛材料
の製造方法において、前記表面処理剤は、融点以
上の温度に加熱溶融させ液状とし、もしくは溶剤
に溶解させ溶液として使用することを特徴とする
炭素、黒鉛材料の製造方法。 10 特許請求の範囲第8項記載の炭素、黒鉛材
料の製造方法において、前記熱硬化性樹脂組成物
は、前記(イ)の縮合多環芳香族化合物と前記(ロ)の芳
香族架橋剤と前記(ハ)の酸触媒との粉末混合物、ま
たは前記粉末混合物を酸化性もしくは非酸化性雰
囲気中60〜300℃の温度範囲に加熱反応させてな
る実質的に熱可塑性を有する熱硬化性中間反応生
成物であり、これらを粉末として、加熱溶融させ
液状として、または溶剤に溶解させ溶液として使
用することを特徴とする炭素、黒鉛材料の製造方
法。 11 特許請求の範囲第8項記載の炭素、黒鉛材
料の製造方法において、前記焼成は、誘導加熱に
よりなされることを特徴とする炭素、黒鉛材料の
製造方法。 12 特許請求の範囲第8項記載の炭素、黒鉛材
料の製造方法において、前記焼成は、直接通電に
よりなされることを特徴とする炭素、黒鉛材料の
製造方法。 13 下記(a)〜(c)のシーケンスから成ることを特
徴とする炭素、黒鉛材料の製造方法。 (a) (イ) 主として二環以上の縮合多環芳香族化合
物。 (ロ) ヒドロキシメチル基、ハロメチル基のいず
れか少なくとも一種の基を二個以上有する一
環または二環以上の芳香環から成る芳香族架
橋剤。 (ハ) 酸触媒。 前記(イ)(ロ)(ハ)が組合されて成る熱硬化性樹脂組
成物に、過剰の前記(ロ)の芳香族架橋剤、もしく
は前記(ロ)の芳香族架橋剤と前記(ハ)の酸触媒との
混合物から成る添加剤を加えて、これに少なく
ともその表面に水素、ハロゲン、ヒドロキシル
基、カルボニル基、カルボキシル基、アルデヒ
ド基、エポキシ構造、ラクトン構造、エーテル
構造、酸無水物構造の中から選ばれる一種又は
二種以上を有する骨材を加えて複合化する工
程: (b) 前記(a)工程により得られた複合物を酸化性も
しくは非酸化性雰囲気中100〜400℃の温度範囲
に加熱し、前記骨材と前記熱硬化性樹脂組成物
とを、その界面において化学的に結合させ同時
に熱硬化性樹脂組成物を硬化させる工程: (c) 前記(b)により得られた化合物を焼成する工
程。 14 特許請求の範囲第13項記載の炭素、黒鉛
材料の製造方法において、前記添加剤は、融点以
上の温度に加熱溶融させ液状とし、もしくは溶剤
に溶解させ溶液として使用することを特徴とする
炭素、黒鉛材料の製造方法。 15 特許請求の範囲第13項記載の炭素、黒鉛
材料の製造方法において、前記熱硬化性樹脂組成
物は、前記(イ)の縮合多環芳香族化合物と前記(ロ)の
芳香族架橋剤と前記(ハ)の酸触媒との粉末混合物、
または前記粉末混合物を酸化性もしくは非酸化性
雰囲気中60〜300℃の温度範囲に加熱反応させて
なる実質的に熱可塑性を有する熱硬化性中間反応
生成物であり、これらを粉末として、加熱溶融さ
せ液状として、または溶剤に溶解させ溶液として
使用することを特徴とする炭素、黒鉛材料の製造
方法。 16 特許請求の範囲第13項記載の炭素、黒鉛
材料の製造方法において、前記焼成は、誘導加熱
によりなされることを特徴とする炭素、黒鉛材料
の製造方法。 17 特許請求の範囲第13項記載の炭素、黒鉛
材料の製造方法において、前記焼成は、直接通電
によりなされることを特徴とする炭素、黒鉛材料
の製造方法。
[Scope of Claims] 1 (a) A fused polycyclic aromatic compound mainly having two or more rings. (b) An aromatic crosslinking agent consisting of one or two or more aromatic rings having two or more of at least one of hydroxymethyl groups and halomethyl groups. (c) Acid catalyst. (d) A thermosetting resin composition formed by reacting the above (a), (b), and (c). (e) Aggregates with surface functional groups. (f) Surface treatment agents or additives. At the interface between the thermosetting resin composition (d) and the aggregate (e), chemical A carbon or graphite material characterized by being formed by firing a precursor formed by bonding with each other. 2. In the carbon, graphite material according to claim 1, the thermosetting resin composition (d) is
A mixture of the fused polycyclic aromatic compound (a), the aromatic crosslinking agent (b), and the acid catalyst (c), or at least one thermosetting intermediate reaction product thereof Carbon and graphite materials characterized by being thermoset by reaction. 3. In the carbon and graphite material described in claim 1, the condensed polycyclic aromatic compound (a) is coal-based or petroleum-based heavy oil, tar, pitch,
or carbon, which is one or a mixture of two or more selected from naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, acenaphthene, acenaphthylene, perylene, coronene, and derivatives having these as main skeletons; graphite material. 4. In the carbon and graphite material described in claim 1, the acid catalyst (c) is selected from aluminum chloride, boron fluoride, phosphoric acid, organic sulfonic acids, carboxylic acids, and derivatives thereof. A carbon or graphite material characterized by being one type or a mixture of two or more types. 5. In the carbon/graphite material described in claim 1, the aggregate (e) is one or more selected from carbon, graphite, natural and synthetic polymers, and precursors thereof. It is a compound or mixture of hydrogen, halogen, hydroxyl group, carbonyl group, carboxyl group,
A carbon characterized by having one or more selected from among an aldehyde group, an epoxy structure, a lactone structure, an ether structure, and an acid anhydride structure, or having one or more of these introduced therein;
graphite material. 6. In the carbon or graphite material described in claim 1, the aggregate (e) is at least one type of amorphous or crystalline, and has a form of continuous fibers or short fibers. A carbon or graphite material characterized by being made of one or a combination of two or more selected from the group consisting of granules, flat plates, lumps, blocks, porous bodies, woven fabrics, and non-woven fabrics. 7. In the carbon or graphite material according to claim 1, the surface treatment agent (f) and the additive are monomers or monomers having two or more of at least one of hydroxymethyl groups and halomethyl groups. A composition having a crosslinking ability consisting of the aromatic crosslinking agent (b) above, which is composed of two or more aromatic rings, or a mixture of the aromatic crosslinking agent (b) above and the acid catalyst described in (c) above. A carbon and graphite material characterized by 8. A method for producing carbon and graphite materials, characterized by comprising the following sequences (a) to (d). (a) at least on the surface hydrogen, halogen, hydroxyl group, carbonyl group, carboxyl group,
aldehyde group, epoxy structure, lactone structure,
The surface of the aggregate having one or more selected from the group consisting of ether structure and acid anhydride structure is covered with a one- or two- or more-ring structure having two or more groups of at least one of hydroxymethyl group and halomethyl group. A step of heat-treating after coating with a surface treatment agent mainly consisting of an aromatic crosslinking agent consisting of aromatic rings: (b) (a) A fused polycyclic aromatic compound mainly having two or more rings. (b) An aromatic crosslinking agent consisting of one or two or more aromatic rings having two or more of at least one of hydroxymethyl groups and halomethyl groups. (c) Acid catalyst. A step of compounding the thermosetting resin composition formed by combining the above (a), (b), and (c) with the aggregate treated in the above (a) step: The resulting composite is heated to a temperature range of 100 to 400°C in an oxidizing or non-oxidizing atmosphere to chemically bond the aggregate and the thermosetting resin composition at the interface, and at the same time Step of curing the curable resin composition: (d) Step of firing the compound obtained in the above (c). 9. In the method for producing a carbon or graphite material as set forth in claim 8, the surface treatment agent is heated and melted at a temperature higher than the melting point to form a liquid, or dissolved in a solvent and used as a solution. Manufacturing method of carbon and graphite materials. 10 In the method for producing a carbon or graphite material according to claim 8, the thermosetting resin composition comprises the fused polycyclic aromatic compound (a) and the aromatic crosslinking agent (b). A thermosetting intermediate reaction having substantially thermoplastic properties, which is obtained by heating the powder mixture with the acid catalyst of (c), or by heating the powder mixture to a temperature range of 60 to 300°C in an oxidizing or non-oxidizing atmosphere. A method for producing carbon and graphite materials, which is a product, and is characterized in that it is used as a powder, as a liquid by heating and melting, or as a solution by dissolving it in a solvent. 11. The method for producing a carbon/graphite material according to claim 8, wherein the firing is performed by induction heating. 12. The method for producing a carbon or graphite material according to claim 8, wherein the firing is performed by direct energization. 13. A method for producing carbon and graphite materials, characterized by comprising the following sequences (a) to (c). (a) (a) Mainly fused polycyclic aromatic compounds with two or more rings. (b) An aromatic crosslinking agent consisting of one or two or more aromatic rings having two or more of at least one of hydroxymethyl groups and halomethyl groups. (c) Acid catalyst. The thermosetting resin composition formed by combining the above (a), (b), and (c) is combined with an excess of the aromatic crosslinking agent of the above (b), or the aromatic crosslinking agent of the above (b) and the above (c). to which an additive consisting of a mixture of hydrogen, halogen, hydroxyl group, carbonyl group, carboxyl group, aldehyde group, epoxy structure, lactone structure, ether structure, acid anhydride structure is added to the surface of A step of adding and compounding an aggregate having one or more types selected from among the above: (b) The composite obtained in step (a) above is heated at a temperature of 100 to 400°C in an oxidizing or non-oxidizing atmosphere. (c) A step of chemically bonding the aggregate and the thermosetting resin composition at the interface and curing the thermosetting resin composition at the same time. The process of firing a compound. 14. In the method for producing a carbon or graphite material according to claim 13, the additive is heated to a temperature higher than the melting point to form a liquid, or dissolved in a solvent to be used as a solution. , a method for producing graphite materials. 15 In the method for producing a carbon or graphite material according to claim 13, the thermosetting resin composition comprises the fused polycyclic aromatic compound of (a) and the aromatic crosslinking agent of (b). A powder mixture with the acid catalyst of (c) above,
or a thermosetting intermediate reaction product having substantially thermoplastic properties obtained by heating the powder mixture to a temperature range of 60 to 300°C in an oxidizing or non-oxidizing atmosphere; A method for producing carbon and graphite materials, which is characterized in that they are used as a liquid or as a solution by dissolving them in a solvent. 16. The method for producing a carbon/graphite material according to claim 13, wherein the firing is performed by induction heating. 17. The method for producing a carbon or graphite material according to claim 13, wherein the firing is performed by direct energization.
JP61034761A 1986-02-19 1986-02-19 Carbon, graphite material using thermosetable resin and manufacture Granted JPS62191469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034761A JPS62191469A (en) 1986-02-19 1986-02-19 Carbon, graphite material using thermosetable resin and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034761A JPS62191469A (en) 1986-02-19 1986-02-19 Carbon, graphite material using thermosetable resin and manufacture

Publications (2)

Publication Number Publication Date
JPS62191469A JPS62191469A (en) 1987-08-21
JPH0468260B2 true JPH0468260B2 (en) 1992-10-30

Family

ID=12423297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034761A Granted JPS62191469A (en) 1986-02-19 1986-02-19 Carbon, graphite material using thermosetable resin and manufacture

Country Status (1)

Country Link
JP (1) JPS62191469A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979641B1 (en) * 2002-02-06 2010-09-02 터치스톤 리서치 래버러토리 리미티드 Microwave assisted treatment of carbon foam
JP2005200276A (en) * 2004-01-16 2005-07-28 Hitachi Chem Co Ltd Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
JP2015178583A (en) * 2014-02-28 2015-10-08 コスモ石油株式会社 Filler and composition containing the same
WO2015129669A1 (en) * 2014-02-28 2015-09-03 コスモ石油株式会社 Finely pulverized petroleum coke, fired finely pulverized petroleum coke, filler for rubber composition, and rubber composition

Also Published As

Publication number Publication date
JPS62191469A (en) 1987-08-21

Similar Documents

Publication Publication Date Title
CN1744974B (en) Carbon/carbon composites by hot pressing
JPS62873B2 (en)
JPH0468260B2 (en)
JPS62156124A (en) Carbon or graphite precursor with thermosetting resin as binder
JPH0717449B2 (en) Method for producing impermeable carbon material
US5372702A (en) Composition for use in the production of composite carbon materials, composition carbon material produced therefrom, and process for producing the same
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JPH0531469B2 (en)
JPS62274559A (en) Manufacture of composite electrode for fuel cell
CN115650727B (en) Glass carbon graphite block or bar
JPH07315931A (en) Carbon material for ion implantation member and production thereof
JP2540133B2 (en) Highly graphitizable high-density carbon and method for producing graphite material
JPH0670184B2 (en) Composite material using thermosetting resin as matrix and method for producing the same
KR0143615B1 (en) A method for manufacturing c/c composites of high thermal conductivity
JPS62283807A (en) Impermeable carbon material and its production
JPS60127264A (en) Phenol resin coated carbonaceous fiber
JPS61122162A (en) Manufacture of carbon fiber reinforced carbon material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPH04182355A (en) Carbon fiber reinforced carbon composite material and its production
JPS59232906A (en) Manufacture of gas impermeable carbonaceous material
JPH01145373A (en) Production of carbon fiber-reinforced carbonaceous material
JPH04149069A (en) Carbon fiber reinforced carbon composite material and its production
JPS5957975A (en) Non-permeable carbon material manufacture
JPH01294573A (en) Production of heat-insulating carbonaceous structure
JPH0751660B2 (en) Impermeable carbon material and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees